Soundness and Principal Contexts for a Shallow Polymorphic Type System based on Classical Logic

Cached


by Alexander J. Summers
Citations:1 - 0 self

Documents Related by Co-Citation

35 Polymorphic type assignment and CPS conversion – Robert Harper, Mark Lillibridge - 1993
2 Completeness of continuation models for lambda-mu-calculus – Martin Hofmann, Thomas Streicher - 2002
3 Weak normalization implies strong normalization in a class of non-dependent pure type systems. Theoretical Computer Science 269 – G Barthe, J Hatcliff, M H Sørensen - 2001
2 Strong normalization of λμ˜μ with explicit substitutions – E Polonovski - 2004
2 λμ-calculus and duality: call-by-name and call-by-value – J Rocheteau - 2005
1 Extensional universal types for call-by-value – K Asada - 2008
1 http://journals.cambridge.org Downloaded: 19 Feb 2013 IP address: 193.137.16.116 Espírito – R Matthes Santo, K Nakazawa, L Pinto - 1993
6 Call-by-value λ-calculus and LJQ – Roy Dyckhoff, Stéphane Lengrand - 2007
2 Monadic translation of intuitionistic sequent calculus – José Espírito Santo, Ralph Matthes, Luís Pinto - 2009
17 Arithmetical proofs of strong normalization results for symmetric λ-calculi – René David, Karim Nour
10 Strong normalization proof with CPSTranslation for the second order classical natural deduction – K Nakazawa, M Tatsuta - 2003
34 Domain-Free Pure Type Systems – Gilles Barthe, Morten Heine Sørensen - 1993
3 Continuation-Passing Style and Strong Normalisation for Intuitionistic Sequent Calculi – José Espírito Santo, Ralph Matthes, Luís Pinto
3 Strong normalization proofs by CPS-translations – Satoshi Ikeda, Koji Nakazawa - 2006
4 Explicitly typed λµ-calculus for polymorphism and call-by-value – K Fujita - 1999
81 Representing control: a study of the CPS transformation – Olivier Danvy, Andrzej Filinski - 1992
58 Classical Logic and Computation – Christian Urban - 2000
22 C’est maintenant qu’on calcule: au cœur de la dualité. Mémoire de habilitation, Université Paris 11, Décembre 2005 – H Herbelin
34 Proofs of Strong Normalisation for Second Order Classical Natural Deduction – Michel Parigot - 1997