ABSOLUTE QUADRATIC PSEUDOPRIMES

Cached

Download Links

by Richard G. E. Pinch

Active Bibliography

2 Building Pseudoprimes With A Large Number Of Prime Factors – D. Guillaume, F. Morain - 1995
2 A one-parameter quadratic-base version of the Baillie–PSW probable prime test – Zhenxiang Zhang
3 Some Primality Testing Algorithms – R.G.E. Pinch - 1993
A GENERALIZATION OF MILLER’S PRIMALITY THEOREM PEDRO BERRIZBEITIA AND AURORA OLIVIERI – Communicated Ken Ono
18 The Carmichael Numbers up to 10^15 – R.G.E. Pinch - 1992
1 ON THE EXISTENCE AND NON-EXISTENCE OF ELLIPTIC PSEUDOPRIMES – Siguna Müller
Primality testing – Richard P. Brent - 2003
3 Primality testing – Richard P - 1992
CS 810: Introduction to Complexity Theory 10/17/03 Lecture 14: Probabilistic Computation, MAX-CUT – Instructor Jin-yi, Cai Scribe, Rakesh Kumar, Yunpeng Li
Modern Primality Tests and the Agrawal-Kayal-Saxena Algorithm – Jason Wojciechowski - 2003
Primality Testing and Randomized Algorithms – Major Theme Of
1 NP and Mathematics - a computational complexity perspective – Avi Wigderson, Steve Smale
Black Boxes, Incorporated. – Mohammad Mahmoody-ghidary, Avi Wigderson - 2009
Computational Complexity – C.-H. L. Ong - 1999
6 Towards a deterministic polynomial-time Primality Test – Neeraj Kayal, Nitin Saxena, Supervisor Dr. Manindra Agarwal - 2002
9 Computational Complexity – Oded Goldreich, Avi Wigderson - 2004
22 Primality testing using elliptic curves – Shafi Goldwasser, Joe Kilian - 1999
7 Automorphisms of Finite Rings and Applications to Complexity of Problems – Manindra Agrawal, Nitin Saxena - 2005
69 Almost All Primes Can be Quickly Certified – Shafi Goldwasser, Joe Kilian