A complete Vinogradov 3-primes theorem under the Riemann hypothesis (1997)

by J. -m. Deshouillers , G. Effinger , H. Te Riele , D. Zinoviev , Communicated Hugh Montgomery
Venue:ERA Am. Math. Soc
Citations:6 - 1 self

Documents Related by Co-Citation

20 The exceptional set in Goldbach’s problem – H L Montgomery, R C Vaughan - 1975
155 Sieve method – H Halberstam, H Richert - 1974
133 Some problems of ‘Partitio Numerorum’ III: On the expression of a number as a sum of primes – G H Hardy, J E Littlewood - 1922
7 Checking the odd Goldbach conjecture up to 10 20 – Yannick Saouter - 1998
129 The Riemann Zeta-Function – A Ivić - 1985
111 Asymptotic formulae in combinatorial analysis – G H Hardy, S Ramanujan - 1917
7 Some problems of “Partitio Numerorum”; V. A further contribution to the study of Goldbach’s problem – G H Hardy, J E Littlewood - 1923
44 Representation of an odd number as a sum of three primes – I M Vinogradov - 1937
5 The Scarborough–Stone problem, in – J E Vaughan - 2007
8 On Goldbach’s problem: proof that almost all even positive integers are sums of two primes – T Estermann - 1938
2 Recent progress in the Goldbach problem – R D James - 1949
2 Some results on Goldbach’s problem – A Languasco - 1995
2 Variations: problems with prime numbers. L’Educazione Matematica, Anno XXI, Serie VI, 2:47–57, 2000. http://www. math.unipr.it/˜zaccagni/psfiles/papers/Goldbach_E.pdf. Prof. Alessandro Zaccagnini Dipartimento di Matematica Università degli Studi di Parma – Goldbach
9 Additive problems with prime – A Zaccagnini - 1995
8 Waring's problem – W J ELLISON - 1971
35 The Hardy-Littlewood method – R C Vaughan - 1997
81 Twelve Lectures on Subjects Suggested by his Life and Work – G H Hardy, Ramanujan - 1999
132 The Book of Prime Number Records – P Ribenboim - 1988
49 Le grand crible dans la théorie analytique des nombres, Astérisque – Enrico Bombieri - 1987