The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view (2005)

by Bryna Kra
Citations:18 - 2 self

Documents Related by Co-Citation

150 The primes contain arbitrarily long arithmetic progressions – Ben Green, Terence Tao
137 A NEW PROOF OF SZEMERÉDI’S THEOREM – W. T. Gowers - 2001
140 Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions – H Furstenberg - 1977
232 On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 – E Szemerédi - 1975
85 On some sequences of integers – P. Erdős, Mordechai Lewin - 1936
78 Nonconventional ergodic averages and nilmanifolds – B Host, B Kra
76 An ergodic Szemer'edi theorem for commuting transformations – H. Furstenberg, Y. Katznelson, Y. Katznelson - 1979
46 UNIVERSAL CHARACTERISTIC FACTORS AND FURSTENBERG AVERAGES – T. Ziegler - 2004
110 A NEW PROOF OF SZEMERÉDI’S THEOREM FOR ARITHMETIC PROGRESSIONS OF LENGTH FOUR – W. T. Gowers - 1998
34 A quantitative ergodic theory proof of Szemerédi’s theorem – Terence Tao - 2004
19 The dichotomy between structure and randomness, arithmetic progressions, and the primes – Terence Tao
81 Polynomial extensions of van der Waerden’s and Szemerédi’s theorems – V Bergelson, A Leibman - 1996
42 On certain sets of positive density – P Varnavides - 1959
47 A Szemerédi-type regularity lemma in abelian groups – Ben Green
52 On sets of integers containing no four elements in arithmetic progression – E Szemerédi - 1969
226 Recurrence in Ergodic Theory and Combinatorial Number Theory – H Furstenberg - 1981
138 On certain sets of integers – K F Roth - 1953
35 Applications of the regularity lemma for uniform hypergraphs – Vojtěch Rödl, Jozef Skokan - 2006
18 The Gaussian primes contain arbitrarily shaped constellations – Terence Tao