Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise (2006)

by Joel A. Tropp
Citations:293 - 1 self

Documents Related by Co-Citation

1660 Atomic decomposition by basis pursuit – Scott Shaobing Chen, David L. Donoho, Michael, A. Saunders - 1998
1304 Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information – Emmanuel J. Candès, Justin Romberg, Terence Tao - 2006
534 Greed is Good: Algorithmic Results for Sparse Approximation – Joel A. Tropp - 2004
1730 Compressed sensing – David L. Donoho
291 Stable recovery of sparse overcomplete representations in the presence of noise – David L. Donoho, Michael Elad, Vladimir N. Temlyakov - 2006
173 A generalized uncertainty principle and sparse representation in pairs of bases – Michael Elad, Alfred M. Bruckstein - 2002
759 Least angle regression – Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani
832 Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? – Emmanuel J. Candès , Terence Tao - 2004
1828 Regression Shrinkage and Selection Via the Lasso – Robert Tibshirani - 1994
742 Signal recovery from incomplete and inaccurate measurements – E Candès, J Romberg, T Tao
426 The Dantzig Selector: Statistical Estimation When p Is Much Larger Than n – Emmanuel Candes, Terence Tao - 2007
213 Sparse representations in unions of bases – R Gribonval, M Nielsen - 2003
52 On sparse representation in pairs of bases – A Feuer, A Nemirovski
342 For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1-norm Solution is also the Sparsest Solution – David L. Donoho - 2004
361 Uncertainty principles and ideal atomic decomposition – David L. Donoho, Xiaoming Huo - 2001
662 Decoding by Linear Programming – Emmanuel J. Candès, Terence Tao - 2004
426 An iterative thresholding algorithm for linear inverse problems with a sparsity constraint – I Daubechies, M Defrise, C De-Mol - 2004
399 High dimensional graphs and variable selection with the Lasso – Nicolai Meinshausen, Peter Bühlmann - 2006
235 Subset Selection in Regression – A Miller - 2002