Computing Upper and Lower Bounds on Likelihoods in Intractable Networks (1996)

by Tommi S. Jaakkola , Michael Jordan , Michael I
Citations:41 - 10 self

Documents Related by Co-Citation

7069 Probabilistic Reasoning in Intelligent Systems – J Pearl - 1988
567 Probabilistic Inference Using Markov Chain Monte Carlo Methods – Radford M. Neal - 1993
181 Connectionist learning of belief networks – R M Neal - 1992
8569 Elements of Information Theory – T M Cover, J A Thomas - 1991
8058 Maximum likelihood from incomplete data via the EM algorithm – A. P. Dempster, N. M. Laird, D. B. Rubin - 1977
116 Mean Field Theory for Sigmoid Belief Networks – Lawrence K. Saul, Tommi Jaakkola, Michael I. Jordan - 1996
29 Recursive Algorithms for Approximating Probabilities in Graphical Models – Tommi Jaakkola, Michael I. Jordan
1349 A reformulation of linear models – J A Nelder - 1977
611 BAYESIAN LEARNING FOR NEURAL NETWORKS – Radford M. Neal - 1995
830 An introduction to variational methods for graphical models – Michael I. Jordan - 1999
99 Exploiting Tractable Substructures in Intractable Networks – Lawrence Saul, Michael I. Jordan - 1995
766 A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants – Radford Neal, Geoffrey E. Hinton - 1998
256 Approximating probabilistic inference in Bayesian belief networks is NP-hard – Paul Dagum, R. Martin Chavez - 1991
4786 Neural Networks for Pattern Recognition – C M Bishop - 1995
144 A mean field theory learning algorithm for neural networks – C Peterson, J R Anderson - 1987
3279 Convex Analysis – R. Tyrrell Rockafellar - 1970
194 The Helmholtz Machine – Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, Richard S. Zemel - 1995
72 Efficient Implementation of Gaussian Processes – Mark Gibbs, David J.C. MacKay - 1997
588 The computational complexity of probabilistic inference using Bayesian belief networks – G F Cooper - 1990