Bayesian inference for finite-state transducers (2010)

by David Chiang , Jonathan Graehl , Kevin Knight , Adam Pauls , Sujith Ravi
Venue:in HLT-NAACL
Citations:7 - 4 self

Active Bibliography

564 Dynamic Bayesian Networks: Representation, Inference and Learning – Kevin Patrick Murphy - 2002
741 Gradient-based learning applied to document recognition – Yann Lecun, Léon Bottou, Yoshua Bengio, Patrick Haffner - 1998
759 Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part-of-Speech Tagging – Eric Brill - 1995
526 Pictorial Structures for Object Recognition – Pedro F. Felzenszwalb, Daniel P. Huttenlocher - 2003
735 Visual reconstruction – Andrew Blake, Andrew Zisserman - 1987
857 A tutorial on learning with Bayesian networks – David Heckerman - 1995
705 What energy functions can be minimized via graph cuts – Vladimir Kolmogorov, Ramin Zabih - 2004
1136 CONDENSATION - conditional density propagation for visual tracking – Michael Isard, Andrew Blake - 1998
1046 A taxonomy and evaluation of dense two-frame stereo correspondence algorithms – Daniel Scharstein, Richard Szeliski - 2002