First and Second-Order Methods for Learning: between Steepest Descent and Newton's Method (1992)

Cached

Download Links

by Roberto Battiti
Venue:Neural Computation
Citations:126 - 6 self

Active Bibliography

125 Efficient BackProp – Yann Lecun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Müller - 1998
12 Efficient Training of Feed-Forward Neural Networks – Martin Møller - 1997
6 Deterministic Nonmonotone Strategies for Effective Training of Multilayer Perceptrons – Vassilis P. Plagianakos, George D. Magoulas, Michael N. Vrahatis
Parameter Optimization Algorithm with Improved Convergence Properties for Adaptive Learning – G. D. Magoulas, M. N. Vrahatis
Nonmonotone Methods for Backpropagation Training with Adaptive Learning Rate – V.P. Plagianako, M.N. Vrahatis - 1999
27 Improving the Convergence of the Backpropagation Algorithm Using Learning Rate Adaptation Methods – G. D. Magoulas, M. N. Vrahatis, G. S. Androulakis - 1999
ADAPTIVE ALGORITHMS FOR NEURAL NETWORK SUPERVISED LEARNING: A DETERMINISTIC OPTIMIZATION APPROACH – George D. Magoulas, Michael N. Vrahatis - 2005
Performance Evaluation Analysis of MLP & DG-RBF Feed Forward Neural Networks for Pattern Classification of Handwritten English Curve Scripts – Naveen Kumar Sharma, Manu Pratap Singh
54 Neural networks for the prediction and forecasting of water . . . – Holger R. Maier, Graeme C. Dandy - 2000
9 On Training Neural Nets through Stochastic Minimization – Roberto Brunelli - 1994
29 Fast Training Algorithms For Multi-Layer Neural Nets – Richard P. Brent - 1993
4 Matrix Algebras In Quasi-Newton Methods For Unconstrained Minimization – Carmine Di Fiore, Stefano Fanelli, Filomena Lepore, Paolo Zellini - 2000
6 Discovering Efficient Learning Rules for Feedforward Neural Networks using Genetic Programming – Amr Radi, Riccardo Poli - 2002
Learning with First, Second, and No Derivatives: a Case Study in High Energy Physics – Roberto Battiti Dipartimento, Roberto Battiti, Giampietro Tecchiolli - 1994
13 Nonmonotone Methods for Backpropagation Training with Adaptive Learning Rate – V. P. Plagianakos, M. N. Vrahatis, G. D. Magoulas - 1999
5 Globally Convergent Algorithms With Local Learning Rates – George D. Magoulas, Vassilis P. Plagianakos, Michael N. Vrahatis
Chapter 15 IMPROVED LEARNING OF NEURAL NETS THROUGH GLOBAL SEARCH – V. P. Plagianakos, G. D. Magoulas, M. N. Vrahatis
English vowels with Radial Basis Function Neural Networks – Holkar S. R, Dr. Manu, Pratap Singh
1 Development and Convergence Analysis of Training Algorithms with Local Learning Rate Adaption – G. D. Magoulas, V. P. Plagianakos, M. N. Vrahatis