Carmichael numbers and pseudoprimes Notes by G.J.O. Jameson

by Unknown Authors

Active Bibliography

Notes by G.J.O. Jameson – unknown authors
21 Smooth numbers: computational number theory and beyond – Andrew Granville - 2008
unknown title – unknown authors
unknown title – unknown authors
1 DIVISORS OF SHIFTED PRIMES – Dimitris Koukoulopoulos
J. Aust. Math. Soc. 94 (2013), 268–275 doi:10.1017/S1446788712000547 CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS – Kaisa Matomäki, Communicated I. E. Shparlinski - 2013
2 On Generalized Carmichael Numbers – Lorenz Halbeisen, Norbert Hungerbühler - 2000
2 Building Pseudoprimes With A Large Number Of Prime Factors – D. Guillaume, F. Morain - 1995
Breaking a Cryptographic Protocol with – Daniel Bleichenbacher
On the Distribution of Carmichael Numbers – Aran Nayebi - 906
21 Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters – Ueli M. Maurer - 1995
Uncertainty can be Better than Certainty: Some Algorithms for Primality Testing ∗ – Richard P. Brent - 2006
Primality testing – Richard P. Brent - 2003
3 Primality testing – Richard P - 1992
LEHMER’S TOTIENT PROBLEM AND CARMICHAEL NUMBERS IN A PID – Jordan Schettler
1 ON THE EXISTENCE AND NON-EXISTENCE OF ELLIPTIC PSEUDOPRIMES – Siguna Müller
Abstract Uncertainty can be Better than Certainty: Some Algorithms for Primality Testing ∗ – Richard P. Brent
6 It Is Easy to Determine Whether a Given Integer Is – Andrew Granville - 2005
12 It Is Easy to Determine Whether a Given Integer Is Prime – Andrew Granville - 2004