COMMON VALUES OF THE ARITHMETIC FUNCTIONS φ AND σ

by Kevin Ford , Florian Luca , Carl Pomerance
Citations:4 - 3 self

Active Bibliography

15 The distribution of totients – Kevin Ford - 1998
1 PRIME CHAINS AND PRATT TREES – Kevin Ford, Sergei V. Konyagin, Florian Luca
9 The number of solutions of Φ(x) = m – Kevin Ford
Divisibility, Smoothness and Cryptographic Applications – David Naccache, Igor E. Shparlinski - 2008
21 Smooth numbers: computational number theory and beyond – Andrew Granville - 2008
5 On values taken by the largest prime factor of shifted primes – William D. Banks, Igor E. Shparlinski
1 Smooth values of iterates of the Euler phi-function – Youness Lamzouri
ON COMMON VALUES OF φ(n) AND σ(m), II – Kevin Ford, Paul Pollack
ON COMMON VALUES OF φ(n) AND σ(m), I – Kevin Ford, Paul Pollack
6 Residue classes free of values of Euler’s function – Kevin Ford, Sergei Konyagin, Carl Pomerance - 1999
3 On the genera of X0(N – János A. Csirik, Joseph L. Wetherell, Michael, E. Zieve
Landau's Problem on Primes – János Pintz
6 The iterated Carmichael λ function and the number of cycles of the power generator – Greg Martin, Carl Pomerance - 2005
Compositions with the Euler and Carmichael Functions – W. D. Banks, F. Luca, F. Saidak, P. Stănică
SIEVING VERY THIN SETS OF PRIMES, AND PRATT TREES WITH MISSING PRIMES – Kevin Ford, Dedicated Paul, T. Bateman
5 Smooth Orders and Cryptographic Applications – Carl Pomerance, Igor Shparlinski - 2002
SETS OF MONOTONICITY FOR EULER’S TOTIENT FUNCTION – Paul Pollack, Carl Pomerance, Enrique, Trevi Ño
2 Large families of pseudorandom sequences of k symbols and their complexity – R. Ahlswede, C. Mauduit, A. Sárközy - 2006
3 Rabinowitsch Revisited – Andrew Granville, Richard A. Mollin