RZ: A tool for bringing constructive and computable mathematics closer to programming practice (2007)

by Andrej Bauer , Christopher A. Stone
Venue:CiE 2007: Computation and Logic in the Real World, volume 4497 of LNCS
Citations:5 - 2 self

Documents Related by Co-Citation

10 Constructive analysis, Types and Exact Real Numbers – H Geuvers, M Nigqui, B Spitters, F Wiedijk
13 A certified, corecursive implementation of exact real numbers – Alberto Ciaffaglione - 2006
8 From coinductive proofs to exact real arithmetic – Ulrich Berger
13 M.H.: Semantics of a sequential language for exact real-number computation – J R Marcial-Romero, Escardó - 2004
10 Monotone Inductive and Coinductive Constructors of Rank 2 – Ralph Matthes - 2001
5 Hybrid Functional Interpretations – Mircea-dan Hernest, Paulo Oliva
7 Realizability interpretation of proofs in constructive analysis – Helmut Schwichtenberg - 2006
2 A domain model characterising strong normalisation – U Berger
5 Realizability for monotone clausular (co)inductive definitions – F Miranda-Perea
10 Continuous functions on final coalgebras – Neil Ghani, Peter Hancock, Dirk Pattinson - 2007
49 A realizability interpretation of the theory of species – W W Tait - 1975
13 Affine functions and series with co-inductive real numbers – Y Bertot
12 Iteration and Coiteration Schemes for Higher-Order and Nested Datatypes – Andreas Abel, Ralph Matthes, Tarmo Uustalu - 2004
94 Recursive types and type constraints in second-order lambda calculus – P F Mendler - 1987
68 Iterated Inductive Definitions and Subsystems of Analysis – Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, Wilfried Sieg - 1981
17 Computing with Real Numbers - I. The LFT Approach to Real Number Computation - II. A Domain Framework for Computational Geometry – Abbas Edalat, Reinhold Heckmann - 2002
227 Une extension de l’interprétation de Gödel à l’analyse, et son application à l’élimination des coupures dans l’analyse et la théorie des types – Jean-Yves Girard - 1970
395 LCF considered as a programming language – G Plotkin - 1977
13 A proof of strong normalisation using domain theory – Thierry Coquand, Chalmers Tekniska Högskola - 2006