A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra (1992)

by David Avis , Komei Fukuda
Citations:182 - 28 self

Documents Related by Co-Citation

83 How good are convex hull algorithms? – David Avis, David Bremner, Raimund Seidel - 1996
30 The complexity of vertex enumeration methods – M E Dyer - 1983
152 Reverse Search for Enumeration – David Avis, Komei Fukuda - 1993
690 Algorithms in Combinatorial Geometry – H Edelsbrunner - 1987
1468 Theory of Linear and Integer Programming – A Schrijver - 1986
22 A C implementation of the reverse search vertex enumeration algorithm – PI D Avis - 1994
60 An algorithm for convex polytopes – D R Chand, S S Kapur - 1970
361 Lectures on polytopes – G M Ziegler - 1995
76 An optimal convex hull algorithm in any fixed dimension – Bernard Chazelle - 1993
31 Finding the convex hull facet by facet – G F Swart - 1985
63 The Double Description Method – T S Motzkin, H Raiffa, G L Thompson, R M Thrall - 1953
17 More Output-Sensitive Geometric Algorithms (Extended Abstract) – Kenneth L. Clarkson - 1994
147 The maximum numbers of faces of a convex polytope – P McMullen - 1970
34 Primal-Dual Methods for Vertex and Facet Enumeration – David Bremner, Komei Fukuda, Ambros Marzetta - 1998
71 Constructing higher dimensional convex hulls at logarithmic cost per face – Raimund Seidel - 1986
8 Output-size sensitive algorithms for constructive problems in computational geometry – R Seidel - 1986
458 The Quickhull algorithm for convex hulls – C. Bradford Barber, David P. Dobkin, Hannu Huhdanpaa - 1996
260 Convex polytopes – B. Grunbaum, G. C. Shephard - 1967
22 The Vertex Set of a 0/1-Polytope is Strongly P-Enumerable – Michael R. Bussieck, Marco E. L├╝bbecke - 1998