Choice of Basis for Laplace Approximation (1998)

Cached

Download Links

by David J.C. MacKay
Venue:Machine Learning
Citations:23 - 1 self

Documents Related by Co-Citation

8029 Maximum likelihood from incomplete data via the EM algorithm – A. P. Dempster, N. M. Laird, D. B. Rubin - 1977
560 Probabilistic Inference Using Markov Chain Monte Carlo Methods – Radford M. Neal - 1993
519 Bayesian Interpolation – David J.C. MacKay - 1991
126 Keeping Neural Networks Simple by Minimizing the Description Length of the Weights – Geoffrey E. Hinton, et al.
1143 Information Theory, Inference, and Learning Algorithms – David J C MacKay - 2003
193 Accurate approximations for posterior moments and marginal densities – L Tierney, J Kadane - 1986
136 Inferring Parameters and Structure of Latent Variable Models by Variational Bayes – Hagai Attias, London Wcn Ar - 1999
148 Variational Inference for Bayesian Mixtures of Factor Analysers – Zoubin Ghahramani, Matthew J. Beal - 2000
607 BAYESIAN LEARNING FOR NEURAL NETWORKS – Radford M. Neal - 1995
830 An introduction to variational methods for graphical models – Michael I. Jordan - 1999
1073 A Bayesian method for the induction of probabilistic networks from data – Gregory F. Cooper, Tom Dietterich - 1992
1029 Bayesian Theory – J Bernardo, A Smith - 1994
396 A Practical Bayesian Framework for Backprop Networks – David J.C. MacKay - 1991
901 Learning Bayesian networks: The combination of knowledge and statistical data – David Heckerman, David M. Chickering - 1995
30 Stochastic complexity (with discussion – J Rissanen - 1987
973 Bayes Factors – Robert E. Kass, Adrian E. Raftery - 1995
18 A comparison of sequential learning methods for incomplete data – R Cowell, A Dawid, P Sebastiani - 1995
2855 UCI repository of machine learning databases [http://www.ics.uci.edu/∼mlearn/mlrepository.html – C Blake, C Merz - 1998
140 Propagation of Probabilities, Means and Variances in Mixed Graphical Association Models – Steffen L. Lauritzen, Steffen L. Lauritzen - 1992