Nonuniform Fast Fourier Transforms Using Min-Max Interpolation (2003)

Cached

Download Links

by Jeffrey A. Fessler , Bradley P. Sutton
Venue:IEEE Trans. Signal Process
Citations:83 - 13 self

Documents Related by Co-Citation

94 On the fast Fourier transform of functions with singularities – G Beylkin - 1995
143 Fast Fourier transforms for nonequispaced data – A Dutt, V Rokhlin - 1993
83 Selection of a convolution function for Fourier inversion using gridding [computerised tomography application – John I. Jackson, Craig H. Meyer, Dwight G. Nishimura, Albert Macovski - 1991
43 Nonuniform fast Fourier transform – A. J. W. Duijndam, M.A. Schonewille - 1999
23 Iterative tomographic image reconstruction using Fourier-based forward and back- projectors – Jeffrey A. Fessler - 2004
29 Advances in sensitivity encoding with arbitrary k-space trajectories – K P Pruessmann, M Weiger, P Börnert, P Boesiger - 2001
46 Fast Approximate Fourier Transforms For Irregularly Spaced Data – Antony F. Ware - 1998
110 Fast Fourier transforms for nonequispaced data: A tutorial – Daniel Potts, Gabriele Steidl, Manfred Tasche - 2000
19 iterative image reconstruction for MRI in the presence of field inhomogeneities – B P Sutton, D C Noll, J A Fessler, “Fast - 2003
69 SENSE: Sensitivity encoding for fast MRI – Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, Peter Boesiger - 1999
33 The regular Fourier matrices and nonuniform fast Fourier transforms – N Nguyen, Q H Liu - 1999
28 Non-equispaced fast Fourier transforms with applications to tomography – K Fourmont - 2003
215 Sparse MRI: The application of compressed sensing for rapid – M Lustig, D Donoho, J Pauly
35 Rapid computation of the discrete Fourier transform – C R Anderson, M D Dahleh - 1996
13 Dynamic field map estimation using a spiral-in / spiral-out acquisition – B P Sutton, D C Noll, J A Fessler - 2004
1286 Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information – Emmanuel J. Candès, Justin Romberg, Terence Tao - 2006
1702 Compressed sensing – David L. Donoho
400 The Mathematics of Computerized Tomography – F Natterer - 1986
20 A new linogram algorithm for computerized tomography – Daniel Potts, Gabriele Steidl