Nitpick: A counterexample generator for higher-order logic based on a relational model finder (Extended Abstract) (2009)

by Jasmin Christian Blanchette , Tobias Nipkow
Venue:IN TAP 2009: SHORT PAPERS, ETH
Citations:22 - 8 self

Documents Related by Co-Citation

724 M.: Isabelle/HOL - A Proof Assistant for HigherOrder Logic – T Nipkow, L C Paulson, Wenzel - 2002
60 Kodkod: A relational model finder – Emina Torlak, Daniel Jackson - 2007
289 Software Abstractions: Logic, Language, and Analysis – Daniel Jackson - 2006
16 SAT-Based Finite Model Generation for Higher-Order Logic – T Weber - 2008
42 Random testing in isabelle/hol – Stefan Berghofer, Tobias Nipkow, Technische Universität München - 2004
854 A formulation of the simple theory of types – Alonzo Church - 1940
20 Relational analysis of algebraic datatypes – Viktor Kuncak, Daniel Jackson - 2005
419 Z3: An Efficient SMT Solver – Leonardo De Moura, Nikolaj Bjørner - 2008
309 QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs – Koen Claessen, John Hughes - 2000
7 Verifying a hotel key card system – Tobias Nipkow - 2006
311 An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof (2nd Ed – Peter B Andrews - 2002
42 Inductive datatypes in HOL - lessons learned in Formal-Logic Engineering – Stefan Berghofer, Markus Wenzel - 1999
4 Relational analysis of (co)inductive predicates, (co)inductive datatypes, and (co)recursive functions – J C Blanchette - 2010
12 MemSAT: Checking axiomatic specifications of memory models – E Torlak, M Vaziri, J Dolby - 2010
199 Melham, editors. Introduction to HOL: A theorem proving environment for higher order logic – M J C Gordon, T F - 1993
9 Monotonicity Inference for Higher-Order Formulas – Jasmin Christian Blanchette, Alexander Krauss - 2010
31 A Brief Overview of HOL4 – Konrad Slind, Michael Norrish - 2008
4 Integrating testing and interactive theorem proving. See URL http://www.ccs.neu.edu/home/harshrc/ITaITP.pdf – H R Chamarthi, P Dillinger, M Kaufmann, P Manolios
25 New techniques that improve MACE-style model finding – K Claessen, N Sörensson