Hidden Markov models in computational biology: applications to protein modeling (1994)

by Anders Krogh , Michael Brown , I. Saira Mian , Kimmen Sjölander , David Haussler
Citations:522 - 34 self

Active Bibliography

.2 Kinase experiments – Protein Kinases
130 Dirichlet Mixtures: A Method for Improving Detection of Weak but Significant Protein Sequence Homology – Kimmen Sjölander, Kevin Karplus, Michael Brown, Richard Hughey, Anders Krogh, I. Saira Mian, David Haussler - 1996
33 Grouping Web Page References into Transactions for Mining World Wide Web Browsing Patterns – R. Cooley, B. Mobasher, J. Srivastava - 1997
73 Using Dirichlet Mixture Priors to Derive Hidden Markov Models for Protein Families – Michael Brown, Richard Hughey, Anders Krogh, I. Saira Mian, Kimmen Sjölander, David Haussler - 1993
4 BioMed Central – Bmc Bioinformatics, Ling Qin, Yixin Chen, Yi Pan, Ling Chen, Open Access - 2006
A Bayesian Approach to Motif-based Protein Modeling – William Noble Grundy, William Noble Grundy - 1998
12 The Application of Stochastic Context-Free Grammars to Folding, Aligning and Modeling Homologous RNA Sequences – Yasubumi Sakakibara, Michael Brown, Richard Hughey, I. Saira Mian, Kimmen Sjölander, Rebecca C. Underwood, David Haussler - 1993
11 Discovering Empirically Conserved Amino Acid Substitution Groups in Databases of Protein Families – Thomas D. Wu, Douglas L. Brutlag - 1996
530 Fitting a mixture model by expectation maximization to discover motifs in biopolymers – Timothy L. Bailey - 1994
72 MetaMEME: motif-based hidden Markov models of protein families – William N. Grundy, Timothy L. Bailey, Michael E. Baker, Charles P. Eikan - 1997
2 Pattern Discovery In Sequence Databases: Algorithms And Applications To DNA/Protein Classification – Gung-wei Chirn, Gung-wei Chirn - 1997
7 Parameterization studies of Hidden Markov Models representing highly divergent protein sequences – Marcella A. Mcclure, Rajasekhar Raman - 1995
4 Part 1: Overview of the Probably Approximately Correct (PAC) Learning Framework – David Haussler - 1995
163 Hidden Markov models for sequence analysis: extension and analysis of the basic method – Richard Hughey, Anders Krogh - 1996
58 Predicting protein structure using hidden Markov models – Kevin Karplus , Kimmen Sjölander , Christian Barrett , Melissa Cline , David Haussler , Richard Hughey , Liisa Holm , Chris Sander - 1997
3 Advances in Hidden Markov Models for Sequence Annotation – Broňa Brejová, Daniel G. Brown, Tomas Vinar
18 Data Filtering and Distribution Modeling Algorithms for Machine Learning – Yoav Freund, Manfred K. Warmuth, David Haussler, David P. Helmbold - 1993
173 Hidden Markov processes – Yariv Ephraim, Neri Merhav - 2002
724 Hierarchical mixtures of experts and the EM algorithm – Michael I. Jordan - 1994