Documents Related by Co-Citation

678 The Weighted Majority Algorithm – Nick Littlestone, Manfred K. Warmuth - 1994
251 Aggregating strategies – V Vovk - 1990
680 Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm – Nick Littlestone - 1988
53 Tight Worst-Case Loss Bounds for Predicting With Expert Advice – David Haussler, Jyrki Kivinen, Manfred K. Warmuth - 1994
2307 A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting – Yoav Freund, Robert E. Schapire - 1997
35 Learning probabilistic prediction functions – Alfredo DeSantis, George Markowski, Mark N Wegman - 1988
155 Universal Portfolios – Thomas M. Cover - 1996
134 Additive versus exponentiated gradient updates for linear prediction – Jyrki Kivinen, Manfred K Warmuth - 1997
106 A Game of Prediction with Expert Advice – V. Vovk, V. Vovk - 1997
36 A randomization rule for selecting forecasts – Dean P Foster, Rakesh V Vohra - 1993
8569 Elements of Information Theory – T M Cover, J A Thomas - 1991
158 Universal prediction of individual sequences – Meir Feder, Neri Merhav, Michael Gutman - 1992
110 Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms – N Littlestone - 1989
102 Universal consistency and cautious fictitious play – D Fudenberg, D Levine - 1995
198 Tracking the best expert – Mark Herbster, Manfred, K. Warmuth, Gerhard Widmer, Miroslav Kubat - 1995
108 Redundant noisy attributes, attribute errors, and linearthreshold learning using winnow – Nick Littlestone - 1991
247 Exponentiated Gradient Versus Gradient Descent for Linear Predictors – Jyrki Kivinen, Manfred K. Warmuth - 1995
8950 The Nature of Statistical Learning Theory – Vladimir N. Vapnik - 1995
127 Empirical Support for Winnow and Weighted-Majority Algorithms: Results on a Calendar Scheduling Domain – Avrim Blum - 1995