A Constructive Proof of Gleason’s Theorem (1999)

by Fred Richman , Douglas Bridges
Venue:J. Func. Anal
Citations:12 - 2 self

Active Bibliography

7 Addition Theorems – Ehud Hrushovski A, Itamar Pitowsky B - 1965
1 Constructive Mathematics and Quantum Physics – Douglas Bridges, Karl Svozil - 1999
An Extension of Gleason's Theorem for Quantum Computation – unknown authors
1 Piron's and Bell's Geometric Lemmas and Gleason's Theorem – Georges Chevalier, Anatolij Dvurecenskij, Karl Svozil - 2000
Easy Proofs of Some Consequences of Gleason's Theorem – Mirko Navara
Piron's and Bell's Geometrical Lemmas – Mirko Navara - 2001
4 An extension of gleason’s theorem for quantum computation – Abbas Edalat
3 Embedding Quantum Universes in Classical Ones – Cristian S. Calude, Peter H. Hertling, Karl Svozil - 1999
3 Generalizations of Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem – Ehud Hrushovski, Itamar Pitowsky - 2004
8 Contexts in quantum, classical and partition logic – Karl Svozil - 2006
15 The change-making problem – L. J. Bunce, J. D. Maitl - 1975
1 Adjoints, absolute values and polar decompositions – Douglas Bridges, Fred Richman, Peter Schuster, Communicated William, B. Arveson
3 Constructive Closed Range and Open Mapping Theorems – Douglas Bridges, Hajime Ishihara - 1998
2 Locating the range of an operator on a Hilbert space – Douglas Bridges, Hajime Ishihara - 1992
Epistemic truth and excluded middle* – Cesare Cozzo, Università Di Roma ”la Sapienza
2 PLURALISM IN MATHEMATICS – E. B. Davies - 2004
Contents – Bernard Dacorogna, Wilfrid Gangbo - 2004
A NOTE ON LENGTH AND ANGLE – A. J. Van Der Poorten, R. C. Talent
SECOND DERIVATIVE TEST FOR ISOMETRIC EMBEDDINGS IN Lp – Alexander Koldobsky - 1997