The Dirichlet Problem for the Total Variation Flow (2001)

by F. Andreu , C. Ballester , V. Caselles , J. M. Mazon
Citations:21 - 7 self

Active Bibliography

43 Minimizing total variation flow – F. Andreu, C. Ballester, J. M. Mazón - 2001
122 Filling-in by joint interpolation of vector fields and gray levels – Coloma Ballester, M. Bertalmio, Associate Member, Guillermo Sapiro, Joan Verdera - 2001
2 Existence and Uniqueness of Solution for a Parabolic Quasilinear Problem for Linear Growth Functionals with L¹ Data – F. Andreu, V. Caselles, J. M. Mazón - 2001
7 A Parabolic Quasilinear Problem for Linear Growth Functionals – F. Andreu, V. Caselles, J.M. Mazón, J. M. Maz'on
13 Some Qualitative Properties for the Total Variational Flow – F. Andreu, V. Caselles, J. I. Diaz, J. M. Mazon
11 Disocclusion By Joint Interpolation Of Vector Fields And Gray Levels – Coloma Ballester, Vicent Caselles, Joan Verdera - 2003
Restoration and Zoom . . . BLURRED AND NOISY IMAGES BY ACCURATE TOTAL VARIATION MINIMIZATION WITH LOCAL CONSTRAINTS. – Andrés Almansa, Vicent Caselles, Gloria Haro, Bernard Rougé - 2008
Flux – unknown authors
10 Crystalline mean curvature flow of convex sets – Giovanni Bellettini, Vicent Caselles, Antonin Chambolle, Matteo Novaga - 2004
Texture Separation BV - G and BV - L¹ Models – A. Haddad - 2007
13 Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces – Linh H. Lieu, et al. - 2008
50 A MULTISCALE IMAGE REPRESENTATION USING HIERARCHICAL (BV, L²) DECOMPOSITIONS – Eitan Tadmor, Suzanne Nezzar, Luminita Vese - 2004
2 Partial Differential Equations in the 20th Century – Haïm Brezis, Felix Browder - 1998
SpezialForschungsBereich F 32 – Karl–franzens Universität Graz, Technische Universität Graz, Medizinische Universität Graz, M. Freiberger, F. Knoll, K. Bredies, H. Scharfetter, R. Stollberger, Manuel Freiberger - 2012
14 Analysis of total variation flow and its finite element approximations – Xiaobing Feng, Andreas Prohl - 2002
4 Regularity for solutions of the total variation denoising problem – A. Chambolle, M. Novaga - 2009
1 A Variational Model for Filling-In – C. Ballester, V. Caselles, J. Verdera, M. Bertalmio, G. Sapiro
3 A TV based restoration model with local constraints – A. Almansa, C. Ballester, G. Haro, A. Almansa, C. Ballester, G. Haro - 2006
2 EXACT RECONSTRUCTION OF DAMAGED COLOR IMAGES USING A TOTAL VARIATION MODEL – I. Fonseca, G. Leoni, F. Maggi, M. Morini