Proving primality in essentially quartic random time (2003)

by Daniel J. Bernstein
Venue:Math. Comp
Citations:18 - 0 self

Documents Related by Co-Citation

27 Implementing the asymptotically fast version of the elliptic curve primality proving algorithm – F. Morain, Of P. Berrizbeitia, D. Bernstein, P. Mihăilescu, R. Mocenigo
18 Primality testing with Gaussian periods – H. W. Lenstra, Carl Pomerance - 2003
107 On distinguishing prime numbers from composite numbers – L M Adleman, C Pomerance, R S Rumely - 1983
69 Almost All Primes Can be Quickly Certified – Shafi Goldwasser, Joe Kilian
8 Efficient quasi-deterministic primality test improving AKS – R M Avanzi, P Mihăilescu
162 Elliptic Curves And Primality Proving – A. O. L. Atkin, F. Morain - 1993
45 Constructing elliptic curves with given group order over large finite fields. Algorithmic Number Theory – G Lay, H Zimmer - 1994
82 Counting Points on Elliptic Curves Over Finite Fields – René Schoof, Par Ren E Schoof - 1995
25 Action of modular correspondences around CM points – Jean-Marc Couveignes , Thierry Henocq
5 C.K.: Generating elliptic curves of prime order. In: Cryptographic hardware and embedded systems—CHES 2001 – E Savas, T A Schmidt, Koc - 2001
6 On the construction of prime order elliptic curves – E Konstantinou, Y C Stamatiou, C D Zaroliagis
21 Hilbert’s 12th problem, complex multiplication and Shimura reciprocity – P Stevenhagen - 2001
16 Generating class fields using Shimura reciprocity, Algorithmic Number Theory — ANTS-III – Alice Gee, Peter Stevenhagen - 1998
17 CONSTRUCTING ELLIPTIC CURVES OF PRESCRIBED ORDER – Reinier Martijn Bröker - 2006
11 Elliptic curves with a given number of points – Reinier Bröker, Peter Stevenhagen - 2004
9 On some subgroups of the multiplicative group of finite rings – J F Voloch
5 Primality proving via one round in ECPP and one iteration in AKS – Qi Cheng - 2003
71 There are infinitely many Carmichael numbers – W. R. Alford, Andrew Granville, Carl Pomerance - 1982
171 Elliptic curves over finite fields and the computation of square roots mod p – René Schoof - 1985