Proving primality in essentially quartic random time (2003)

by Daniel J. Bernstein
Venue:Math. Comp
Citations:21 - 0 self

Documents Related by Co-Citation

121 On distinguishing prime numbers from composite numbers – L Adleman, C Pomerance, R Rumely
75 Almost All Primes Can be Quickly Certified – Shafi Goldwasser, Joe Kilian
600 A classical introduction to modern number theory (second edition), Graduate texts – K Ireland, M Rosen - 1990
29 Implementing the asymptotically fast version of the elliptic curve primality proving algorithm – F. Morain, Of P. Berrizbeitia, D. Bernstein, P. Mih─âilescu, R. Mocenigo
21 Primality testing with Gaussian periods – H. W. Lenstra, Carl Pomerance - 2003
452 zur Gathen and – J von - 2003
905 The arithmetic of elliptic curves – J Silverman - 1986
987 A Course in Computational Algebraic Number Theory – Henri Cohen - 1996
924 Parameterized Complexity – Rod G. Downey, Michael R. Fellows, Rolf Niedermeier, Peter Rossmanith, Rod G. Downey (wellington, New Zeal, Michael R. Fellows (newcastle, Rolf Niedermeier (tubingen, Peter Rossmanith (tu Munchen - 1998