Proving primality in essentially quartic random time (2003)

by Daniel J. Bernstein
Venue:Math. Comp
Citations:21 - 0 self

Documents Related by Co-Citation

542 A Classical Introduction to Modern Number Theory, Graduate Texts – K Ireland, M Rosen - 1990
28 Implementing the asymptotically fast version of the elliptic curve primality proving algorithm – F. Morain, Of P. Berrizbeitia, D. Bernstein, P. Mih─âilescu, R. Mocenigo
17 Primality testing with Gaussian periods – H. W. Lenstra, Carl Pomerance - 2003
920 A Course in Computational Algebraic Number Theory, Springer-Verlag, 3rd printing – H Cohen - 1996
825 The Arithmetic of Elliptic Curves – J Silverman - 1986
430 zur Gathen and – J von - 1999
109 On distinguishing prime numbers from composite numbers – L M ADLEMAN, C POMERANCE, R S RUMELY
2524 Handbook of Applied Cryptography – Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, R. L. Rivest - 1997
878 Parameterized Complexity – Rod G. Downey, Michael R. Fellows, Rolf Niedermeier, Peter Rossmanith, Rod G. Downey (wellington, New Zeal, Michael R. Fellows (newcastle, Rolf Niedermeier (tubingen, Peter Rossmanith (tu Munchen - 1998