Flyspeck i: Tame graphs (2006)

Cached

Download Links

by Tobias Nipkow , Gertrud Bauer , Paula Schultz
Venue:International Joint Conference on Automated Reasoning, volume 4130 of LNCS
Citations:11 - 2 self

Documents Related by Co-Citation

62 A computer-checked proof of the Four Colour Theorem. http://research. microsoft.com/ ∼ gonthier/4colproof.pdf – Georges Gonthier - 2006
724 M.: Isabelle/HOL - A Proof Assistant for HigherOrder Logic – T Nipkow, L C Paulson, Wenzel - 2002
469 Interactive theorem proving and program development: Coq’Art: The calculus of inductive constructions – Y Bertot, P Castéran - 2004
112 A proof of the Kepler conjecture – Thomas C. Hales - 1994
164 Isabelle: A Generic Theorem Prover, volume 828 – L C Paulson
377 Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition - Preliminary Report – G E Collins - 1974
532 PVS: A Prototype Verification System – S. Owre, J. M. Rushby, N. Shankar - 1992
199 Melham, editors. Introduction to HOL: A theorem proving environment for higher order logic – M J C Gordon, T F - 1993
21 Interpretation of locales in Isabelle: Theories and proof contexts – Clemens Ballarin - 2006
315 System Description: Twelf --- A Meta-Logical Framework for Deductive Systems – Frank Pfenning, Carsten Schurmann - 1999
7 Formal Global Optimisation with Taylor Models,” in IJCAR, ser – R Zumkeller - 2006
1565 The Definition of Standard ML – Robin Milner, Mads Tofte - 1990
3 Flyspeck: A blueprint for the formal proof of the Kepler conjecture. source files at http://code.google.com/p/flyspeck/source/browse/trunk – T C Hales - 2008
81 Isar -- a Generic Interpretative Approach to Readable Formal Proof Documents – Markus Wenzel - 1999
24 A proof-producing decision procedure for real arithmetic – Sean Mclaughlin, John Harrison - 2005
568 A Decision Method for Elementary Algebra and Geometry – A Tarski - 1948
2 KeplerCode: computer resources for the Kepler and Dodecahedral Conjecutures. http://code.google.com/p/kepler-code – S McLaughlin
7 Some algorithms arising in the proof of the Kepler conjecture. Available as arXiv:math/0205209v1 – Thomas C Hales
5 Flyspeck II: The Basic Linear Programs – Steven Obua