Scheme: An interpreter for extended lambda calculus (1975)

by Gerald Jay Sussman , Guy L Steele Jr.
Venue:MEMO 349, MIT AI LAB
Citations:75 - 3 self

Documents Related by Co-Citation

1559 The Definition of Standard ML – Robin Milner, Mads Tofte - 1990
299 Definitional interpreters for higher-order programming languages – John C. Reynolds - 1972
179 The next 700 programming languages – P J Landin - 1966
149 The theory and practice of first-class prompts – M Felleisen - 1988
110 Continuations: A Mathematical Semantics for Handling Full Jumps – Christopher Strachey - 1974
90 Revised report on the algorithmic language scheme – J Rees, W Clinger - 1986
234 A Formulae-as-Types Notion of Control – Timothy G. Griffin - 1990
331 The mechanical evaluation of expressions – P J Landin - 1964
128 Lambda Calculus Models of Programming Languages – James H Morris - 1968
116 A syntactic theory of sequential control – Matthias Felleisen, Daniel P Friedman, E Kohlbecker, B F Duba - 1987
401 Viewing Control Structures as Pattern of Passing Messages – C Hewitt - 1977
31 A scheme for a higher-level semantic algebra – William Clinger, Daniel P Friedman, Mitchell Wand - 1985
31 A generalization of jumps and labels – Peter J. Landin - 1965
199 Call-by-name, call-by-value and the λ-calculus – G Plotkin - 1975
3388 Communicating Sequential Processes – C. A. R. Hoare - 1985
15 The Calculi of Lambda-v-CS-Conversion: A Syntactic Theory of Control and State in Imperative Higher-Order Programming Languages – M Felleisen - 1987
220 Call-by-name, call-by-value, and the #-calculus – G Plotkin - 1975
20 Obtaining coroutines from continuations – C T Haynes, D Friedman, M Wand - 1986
27 Engines from Continuations – R. Kent Dybvig, Robert Hieb - 1989