29

Semantic Foundations for Embedding HOL in Nuprl
– Douglas J. Howe
 1996

501

Introduction to HOL: A Theorem Proving Environment for Higher Order Logic
– M J C Gordon, T F Melham
 1993

55

A NonTypeTheoretic Semantics for TypeTheoretic Language
– S Allen
 1987

269

Constructive mathematics and computer programming
– P MartinLöf
 1982

74

Implementing Mathematics with the Nuprl Development System
– R L Constable
 1986

74

Building reliable, highperformance communication systems from components
– Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey, Mark Hayden , Kenneth Birman, Robert Constable
 1999

9

Experience using type theory as a foundation for computer science
– Robert L Constable
 1995

155

Implementing Mathematics with The Nuprl Proof Development System
– Robert L. Constable, Stuart F. Allen, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, Scott F. Smith, James T. Sasaki, S. F. Smith
 1986

342

Intuitionistic type theory
– P MartinLöf
 1984

11

Verifying a logic synthesis tool in Nuprl
– M Aagaard, M Leeser
 1993

14

Hybrid Interactive Theorem Proving using Nuprl and HOL
– Amy P. Felty, Douglas J. Howe
 1997

9

The structure of nuprl’s type theory
– Robert L. Constable
 1997

25

Elements of Mathematics Theory of Sets
– N Bourbaki
 1968

474

The calculus of constructions
– T Coquand, G Huet
 1988

97

Type Theory and Functional Programming
– Simon Thompson, C Simon Thompson
 1991

443

The formulaeastypes notion of construction
– William A Howard
 1980

10

Constructively formalizing automata
– Robert L Constable, Paul B Jackson, Pavel Naumov, Juan Uribe
 1997

100

Edinburgh LCF: a mechanized logic of computation
– M Gordon, R Milner, C Wadsworth
 1979

44

The Nuprl Open Logical Environment
– S. F. Allen, R. L. Constable, R. Eaton, C. Kreitz, L. Lorigo
 2000
