Type-Based Termination of Recursive Definitions (2002)

Cached

Download Links

by G. Barthe , M. J. Frade , E. Giménez , L. Pinto , T. Uustalu
Citations:39 - 3 self

Active Bibliography

28 Termination Checking with Types – Andreas Abel - 1999
Least and Greatest Fixed Points in Intuitionistic Natural Deduction – Tarmo Uustalu, Varmo Vene - 2002
6 A Cube of Proof Systems for the Intuitionistic Predicate mu-,nu-Logic – Tarmo Uustalu, Varmo Vene - 1997
3 Practical Inference for Typed-Based Termination in a Polymorphic Setting – Gilles Barthe, Benjamin Gregoire, Fernando Pastawski
18 Verifying safety policies with size properties and alias controls – Wei-ngan Chin, Siau-cheng Khoo, Shengchao Qin, Corneliu Popeea, Huu Hai Nguyen - 2005
7 Specification and Verification of a Formal System for Structurally Recursive Functions – Andreas Abel - 2000
6 Program Generation, Termination, and Binding-time Analysis – Neil D. Jones, Arne J. Glenstrup - 2002
13 A Dependently Typed Framework for Static Analysis of Program Execution Costs – Edwin Brady, Kevin Hammond - 2005
65 A General Formulation of Simultaneous Inductive-Recursive Definitions in Type Theory – Peter Dybjer - 1998
1 Phase distinctions in the compilation of Epigram – James Mckinna, Edwin Brady - 2005
2 Type-based Inference of Size Relationships for XML Transformations – Zhendong Su, et al.
5 Extending sized type with collection analysis – Wei-ngan Chin, Siau-cheng Khoo, Dana N. Xu - 2003
35 Dependent Types for Program Termination Verification – Hongwei Xi - 2001
53 Tagless Staged Interpreters for Typed Languages – Emir Pasalic, Walid Taha, Tim Sheard - 2002
Automated Verification of Shape, Size and Bag Properties via Separation Logic – Huu Hai, Nguyen Cristina, David Shengchao, Qin Wei-ngan Chin
7 Facilitating Program Verification with Dependent Types – Hongwei Xi - 2003
9 Why dependent types matter – Thorsten Altenkirch, Conor Mcbride, James Mckinna - 2005
7 Programming with inductive and co-inductive types – John Greiner - 1992
8 A predicative strong normalisation proof for a λ-calculus with interleaving inductive types – Andreas Abel, Thorsten Altenkirch - 1999