Formal verification of IA-64 division algorithms (2000)

Cached

Download Links

by John Harrison
Venue:Proceedings, Theorem Proving in Higher Order Logics (TPHOLs), LNCS 1869
Citations:18 - 4 self

Active Bibliography

31 A Machine-Checked Theory of Floating Point Arithmetic – John Harrison - 1999
3 Floating-point verification – John Harrison - 1995
9 Formal verification of square root algorithms – John Harrison - 2003
25 Formal Verification of Floating Point Trigonometric Functions – John Harrison - 2000
24 A proof-producing decision procedure for real arithmetic – Sean Mclaughlin, John Harrison - 2005
7 Floating-point verification using theorem proving – John Harrison - 2006
1 Hierarchical verification of the implementation of the ieee-754 table-driven floating-point exponential function using hol – Amr T. Abdel-hamid, Sofiène Tahar, John Harrison - 2001
17 Towards Self-verification of HOL Light – John Harrison - 2006
1 HOL Light Tutorial (for version 2.20). http://www.cl.cam.ac.uk/ jrh13/hol-light/tutorial 220.pdf – John Harrison
9 HOL Light Tutorial (for version 2.20 – John Harrison - 2006
11 Formal Verification of the VAMP Floating Point Unit – Christoph Berg, Christian Jacobi - 2001
unknown title – Michael J. Schulte, Earl E. Swartzlander
3 Provably faithful evaluation of polynomials – Sylvie Boldo, Université Paris-sud, César Muñoz - 2006
approximation errors – École Normale, Supérieure Lyon, Sylvain Chevillard, John Harrison, Christoph Lauter, École Normale, Supérieure Lyon, Sylvain Chevillard, John Harrison, Christoph Lauter, École Normale, Supérieure Lyon - 2010
10 Some functions computable with a fused-mac – Sylvie Boldo, Jean-michel Muller - 2005
6 Accelerating correctly rounded floating-point division when the divisor is known in advance – Nicolas Brisebarre, Jean-michel Muller, Saurabh Kumar Raina - 2004
7 Correctly rounded multiplication by arbitrary precision constants – Nicolas Brisebarre, Jean-michel Muller, Senior Member - 2005
Computer Arithmetic (ARITH-20), Tübingen: Allemagne (2011)" DOI: 10.1109/ARITH.2011.13 Augmented precision square roots, 2-D norms, and discussion on correctly rounding √ x 2 + y 2 – Nicolas Brisebarre, Mioara Joldes, Érik Martin-dorel, Jean-michel Muller, Peter Kornerup - 2011
2 Isolating critical cases for reciprocals using integer factorization – John Harrison