Generalized high degrees have the complementation property

by Noam Greenberg , Antonio Montalbán , Richard , A. Shore
Venue:Journal of Symbolic Logic
Citations:3 - 0 self

Active Bibliography

2 Jumps of minimal degrees below 0 – Rodney G. Downey, Richard A. Shore - 1996
Computability Theory, Algorithmic Randomness and Turing’s Anticipation – Rod Downey
4 Global Properties of the Turing Degrees and the Turing Jump – Theodore A. Slaman
4 Conjectures and Questions from Gerald Sacks’s Degrees of Unsolvability – Richard A. Shore - 1993
4 Double Jump Inversions and Strong Minimal Covers in the Turing Degrees – Yuval Gabay - 2004
6 Local initial segments of the Turing degrees – Bjørn Kjos-hanssen - 2002
RESTRICTED JUMP INTERPOLATION IN THE D.C.E. DEGREES – Carl G. Jockusch, Angsheng Li - 2009
2 Definability and Global Degree Theory – S. Barry Cooper
5 Natural Definability in Degree Structures – Richard A. Shore
10 Defining the Turing Jump – Richard A. Shore , Theodore A. Slaman - 1999
5 Embedding Lattices with Top Preserved Below Non-GL2 Degrees – Peter A. Fejer - 1997
18 The theory of the degrees below 0 – Richard A. Shore - 1981
7 1995], Degree theoretic definitions of the low 2 recursively enumerable sets – Rod Downey, Richard A. Shore - 1995
6 The recursively enumerable degrees – Richard A. Shore - 1996
1 A single minimal complement for the c.e. degrees – Andrew E. M. Lewis
Annals of Mathematics First-Order Theory of the Degrees of Recursive Unsolvability – G. Simpson, G. Simpson
LOW LEVEL NONDEFINABILITY RESULTS: DOMINATION AND RECURSIVE ENUMERATION – Mingzhong Cai, Richard, A. Shore
1 DISCONTINUOUS PHENOMENA – Leeds Ls Jt
2 Strong minimal covers and a question of Yates: the story so far – Andrew E. M. Lewis - 2006