The ∀∃-theory of R(≤, ∨, ∧) is undecidable (2004)

by Russell G. Miller , Andre O. Nies , Richard A. Shore
Venue:TRANS. AMER. MATH. SOC
Citations:2 - 0 self

Documents Related by Co-Citation

10 First-order theory of the degrees of recursive unsolvability – Stephen G Simpson - 1977
34 Parameter Definability in the Recursively Enumerable Degrees – Andre Nies
73 Degrees of Unsolvability – M Lerman - 1983
7 1998], The Π3-theory of the computably enumerable Turing degrees is undecidable – Steffen Lempp, André Nies, Theodore, A. Slaman - 1998
25 Recursive enumerability and the jump operator – G E Sacks - 1963
475 Recursively Enumerable Sets and Degrees – R Soare - 1987
45 A minimal degree less than 0 – G E Sacks - 1961
35 The recursively enumerable degrees are dense – G E Sacks - 1964
18 The theory of the degrees below 0 – Richard A. Shore - 1981
16 The Mathematics of Metamathematics. Państwowe Wydawnictow Naukowe – Helena Rasiowa, Roman Sikorski - 1963
10 Certain properties of the Medvedev lattice – Elena Z Dyment - 1976
8 Some remarks on the algebraic structure of the Medvedev lattice – Andrea Sorbi - 1990
5 Embedding Brouwer algebras in the Medvedev lattice – Andrea Sorbi - 1991
4 Some quotient lattices of the Medvedev lattice. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik – Andrea Sorbi - 1991
5 A note on the cardinality of the medvedev lattice – Richard A Platek - 1970
10 Menger’s theorem for countable graphs – Ron Aharoni - 1987
2 On some filters and ideals of the Medvedev lattice – A Sorbi - 1990
12 Enumerable sets are diophantine. Doklady Akademii Nauk SSSR – Yuri Matiyasevich - 1970
4 Menger’s theorem for infinite graphs – Ron Aharoni, Eli Berger - 2007