The ∀∃-theory of R(≤, ∨, ∧) is undecidable (2004)

by Russell G. Miller , Andre O. Nies , Richard A. Shore
Venue:TRANS. AMER. MATH. SOC
Citations:2 - 0 self

Active Bibliography

1 Abstract – Cristopher Moore, Alexander Russell
2 2004], The 89-theory of R( ; _; ^) is undecidable – Andre O. Nies, Richard A. Shore
2 The ∀∃ theory of D(≤, ∨, ′ ) is undecidable – Richard A. Shore, Theodore A. Slaman - 2003
4 Conjectures and Questions from Gerald Sacks’s Degrees of Unsolvability – Richard A. Shore - 1993
6 Degree structures: Local and global investigations – Richard A. Shore
6 The recursively enumerable degrees – Richard A. Shore - 1996
34 Parameter Definability in the Recursively Enumerable Degrees – Andre Nies
DEGREES AND REVERSE MATHEMATICS – Emery Shafer - 2011
The n-r.e. degrees: undecidability and Σ1 substructures – Mingzhong Cai, Theodore A. Slaman, Richard A. Shore - 2012
1 Undecidability and 1-types in intervals of the computably enumerable degrees – Klaus Ambos-spies, Denis R. Hirschfeldt, Richard A. Shore - 2000
Computability Theory, Algorithmic Randomness and Turing’s Anticipation – Rod Downey
1 Computational Processes, Observers and Turing Incompleteness – Klaus Sutner
1 Extension of embeddings in the recursively enumerable degrees – Theodore A. Slaman, Robert I. Soare
4 Global Properties of the Turing Degrees and the Turing Jump – Theodore A. Slaman
2 On Lachlan's major subdegree problem, to – S. Barry Cooper, Leeds Ls Jt, Angsheng Li - 1989
2 Splitting and Nonsplitting, II: A Low_2 C.E. Degree Above Which 0' Is Not Splittable – S. Barry Cooper, Angsheng Li - 2001
Universality, Turing Incompleteness and Observers – Klaus Sutner
1 Superbranching degrees – Rod Downey - 1990
On minimal wtt-degrees and computably enumerable Turing degrees – Rod Downey, Reed Solomon - 2006