Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network (2002)

by Seiya Imoto , Kim Sunyong , Takao Goto , Sachiyo Aburatani , Kousuke Tashiro , Satoru Kuhara , Satoru Miyano
Venue:Proc. 1st IEEE Computer Society Bioinformatics Conference
Citations:41 - 18 self

Documents Related by Co-Citation

731 Using Bayesian networks to analyze expression data – Nir Friedman, Michal Linial, Iftach Nachman - 2000
98 Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression – Seiya Imoto, Takao Goto, Satoru Miyano - 2002
99 Combining location and expression data for principled discovery of genetic regulatory network models – Alexander J. Hartemink, David K. Gifford, Tommi S. Jaakkola, Richard A. Young - 2002
159 Inferring Subnetworks from Perturbed Expression Profiles – Dana Pe'er, Aviv Regev, Gal Elidan, Nir Friedman - 2001
164 Modeling Gene Expression With Differential Equations – Ting Chen, Hongyu L. He, George M. Church - 1999
55 Modelling regulatory pathways in E. coli from time series expression profiles – Irene M. Ong, Jeremy D. Glasner, David Page, Informatics - 2002
181 IDENTIFICATION OF GENETIC NETWORKS FROM A SMALL NUMBER OF GENE EXPRESSION PATTERNS UNDER THE BOOLEAN NETWORK MODEL – Tatsuya Akutsu, Satoru Miyano, Satoru Kuhara - 1999
60 Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 19 Suppl 2 – Y Tamada, S Kim, H Bannai, S Imoto, K Tashiro - 2003
131 Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks – David K. Gifford, Tommi S. Jaakkola - 2001
59 Inferring gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations – Michiel De Hoon, Seiya Imoto, Satoru Miyano - 2003
777 Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization – P T Spellman, G Sherlock, M O Zhang, V R Iyer, K Anders, M B Eisen, P O Brown, D Botstein, B Futcher - 1998
55 Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks – Seiya Imoto, Tomoyuki Higuchi, Takao Goto, Kousuke Tashiro, Satoru Kuhara, Satoru Miyano - 2003
7069 Probabilistic Reasoning in Intelligent Systems – J Pearl - 1988
38 Evaluating functional network inference using simulations of complex biological systems V. – Anne Smith, Erich D. Jarvis, Alexander J. Hartemink, Er J. Hartemink - 2002
238 Learning Bayesian Networks With Local Structure – Nir Friedman, Moises Goldszmidt - 1996
1081 A Bayesian method for the induction of probabilistic networks from data – Gregory F. Cooper, Tom Dietterich - 1992
217 Learning the structure of dynamic probabilistic networks – Nir Friedman, Kevin Murphy, Stuart Russell - 1998
157 Modelling gene expression data using dynamic bayesian networks – Kevin Murphy, Saira Mian - 1999
234 Reveal, A General Reverse Engineering Algorithm For Inference Of Genetic Network Architectures – Shoudan Liang, Stefanie Fuhrman, Roland Somogyi - 1998