The Rabin-Monier theorem for Lucas pseudoprimes (1997)

Cached

Download Links

by F. Arnault
Venue:Math. Comp
Citations:3 - 0 self

Active Bibliography

MO419 – Probabilistic Algorithms – Flávio K. Miyazawa – IC/UNICAMP 2010 A survey on Probabilistic Algorithms to Primality Test – Marcio Machado, Pereira Ra, Marco Alves, Ganhoto Ra
5 Primality Testing Revisited – J.H. Davenport - 1992
Breaking a Cryptographic Protocol with – Daniel Bleichenbacher
1 Finding strong pseudoprimes to several bases. II,Math – Zhenxiang Zhang, Min Tang
TWO KINDS OF STRONG PSEUDOPRIMES UP TO 10 36 – Zhenxiang Zhang
CryptoBytes 3 (1), 1997 – RSA Laboratories - 1997
ON THE GENERALIZED FIBONACCI PSEUDOPRIMES – Emilio Montolivo, Fondazione Ugo Bordoni - 1988
1 Higher-Order Carmichael Numbers – Everett W. Howe - 1998
1 MATHEMATICS OF COMPUTATION – Everett W. Howe - 2000
18 The Carmichael Numbers up to 10^15 – R.G.E. Pinch - 1992
13 Efficiency and Security of Cryptosystems Based on Number Theory – Daniel Bleichenbacher - 1996
Improved Bounds for Goldback Conjecture – Yannick Saouter
2 New experimental results concerning the Goldbach conjecture – H. J. J. Te Riele, J-m. Deshouillers, J-m. Deshouillers, Segalen Bordeaux, Y. Saouter, Y. Saouter - 1998
NOTES ON SOME NEW KINDS OF PSEUDOPRIMES – Zhenxiang Zhang
VERIFYING THE GOLDBACH CONJECTURE UP TO 4 · 10 14 – unknown authors
6 A complete Vinogradov 3-primes theorem under the Riemann hypothesis – J. -m. Deshouillers, G. Effinger, H. Te Riele, D. Zinoviev, Communicated Hugh Montgomery - 1997
21 Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Parameters – Ueli M. Maurer - 1995
Uncertainty can be Better than Certainty: Some Algorithms for Primality Testing ∗ – Richard P. Brent - 2006
Small Base Groups, Large Base Groups and the Case of Giants – Jonathan Cohen