Defining and reasoning about recursive functions: a practical tool for the coq proof assistant (2006)

by Gilles Barthe , Julien Forest , David Pichardie , Vlad Rusu
Venue:In Functional and Logic Programming (FLOPS’06), LNCS 3945
Citations:17 - 0 self

Documents Related by Co-Citation

469 Interactive theorem proving and program development: Coq’Art: The calculus of inductive constructions – Y Bertot, P Castéran - 2004
42 Inductive datatypes in HOL - lessons learned in Formal-Logic Engineering – Stefan Berghofer, Markus Wenzel - 1999
724 M.: Isabelle/HOL - A Proof Assistant for HigherOrder Logic – T Nipkow, L C Paulson, Wenzel - 2002
8 Fixed point semantics and partial recursion in Coq – Y Bertot, V Komendantsky - 2008
18 A structured approach to proving compiler optimizations based on dataflow analysis – Yves Bertot, Benjamin Grégoire, Xavier Leroy - 2005
38 Modelling General Recursion in Type Theory – Ana Bove, Venanzio Capretta - 2002
10 Fonctions récursives générales par itération en théorie des types – A Balaa, Y Bertot - 2002
9 Efficient reasoning about executable specifications in Coq, in – G Barthe, P Courtieu - 2002
16 Fix-point Equations for Well-Founded Recursion in Type Theory – Antonia Balaa, Yves Bertot - 2000
18 Function definition in higher-order logic – Konrad Slind - 1996
12 foetus – Termination Checker for Simple Functional Programs – Andreas Abel - 1998
19 Partial Objects in the Calculus of Constructions – Philippe Audebaud - 1991
229 Formal certification of a compiler back-end, or: programming a compiler with a proof assistant – Xavier Leroy - 2006
62 Formal verification of a C compiler front-end – Sandrine Blazy, Zaynah Dargaye, Xavier Leroy - 2006
45 Extracting a Data Flow Analyser in Constructive Logic – David Cachera, Thomas Jensen, David Pichardie, Vlad Rusu - 2004
210 Termination of Term Rewriting Using Dependency Pairs – Thomas Arts, Jürgen Giesl - 2000
30 Reasoning about Terminating Functional Programs – Konrad Slind - 1999
5 The hol light theorem prover. http://www.cl.cam.ac.uk/~jrh13/ hol-light – John Harrison
199 Melham, editors. Introduction to HOL: A theorem proving environment for higher order logic – M J C Gordon, T F - 1993