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1 IntroductionSince the early work on NOAH [29], the common wisdom of the planningcommunity has been that nonlinear planners are more e�cient than linearalgorithms, but this intuition has never been convincingly demonstrated. Fur-thermore, the very term \linear planner" is often confusingly given two di�er-ent meanings:1. A planner that represents plans as totally ordered sets of actions (i.e.,manipulates linear lists of actions).2. A planner that focuses problem solving attention on one subgoal, shiftingto another only after the �rst has been completely addressed.2We argue that the factors of plan representation and subgoal selection canand should be considered independently. In this paper we focus on the formerand hold the latter �xed; we evaluate the relative e�ciency of total-order andpartial order representations in planners that focus on a single subgoal beforeshifting to the next goal.3 To alleviate confusion, we follow the advice of [8]and avoid the adjective \linear" in the rest of this paper. By holding thesubgoal elaboration strategy �xed, we present an objective evaluation of earlyordering commitment on planning e�ciency.We found no problem domains in which a total-order planner performedsigni�cantly better than an equivalent partial-order planner, but several do-mains in which the partial-order algorithm was exponentially faster than thetotal-order planners. The contribution of this paper is a careful characteriza-tion of the types of domains in which a partial-order planner beats total-orderapproaches (the requisite features are rather subtle) and a description of do-mains in which both approaches encounter intractable branching. We arguethat the observed performance di�erences are best understood with an exten-sion of Korf's taxonomy of subgoal collections [17]. Each planner performedwell when dealing with problems whose subgoals were independent or trivially2In fact, Sussman's original de�nition of the \linear assumption" is satis�ed only by aplanner that assumes that subgoals can be solved independently and in any order [32, p.58], but few consider this a viable strategy.3Note that it is crucial to distinguish between a planner's plan-time and execution-timecommitments. A planner's decision to plan for subgoal U before subgoal V is not necessarilyrelated to the decision to execute the actions corresponding to U strictly before, strictlyafter or interleaved with those generated for V . In fact, in a partial-order planner, thesedecisions are necessarily distinct while some total-order planners link the decisions and somedo not. As long as a planner does not link these decisions, subgoal ordering is independentof completeness. 1



serializable, but problems with laboriously serializable or nonserializable sub-goals were intractable. Since the di�erent plan representations induce di�erentsearch spaces, the subgoals for a given problem may be trivially serializablefor one planner, laboriously serializable for another, and nonserializable for athird. We believe that the partial-order representation yields superior perfor-mance because it more frequently produces trivial serializability.1.1 Algorithms & MethodologyWe performed this evaluation by implementing three planners that share keysubroutines but di�er in important ways. All planners operate on actionschemata that conform to the STRIPS representation [11].The planner that turned out to perform the best is a lifted version ofMcAllester and Rosenblitt's [19] propositional planner; since it represents planswith a partial order and uses tagged pointers, called \causal links," to markprotections, we call it POCL.4 The second planner represents plans as to-tally ordered sequences of steps; since this planner also uses causal links todetermine appropriate locations for new steps, it is called the \total-order,causal-link planner," or TOCL. The third, and simplest, planner is called the\total-order, prior-insertion planner" (TOPI) since it dispenses with causallinks and only adds steps prior to the existing steps of an incomplete plan. Toassure a fair comparison, the three planners share data structures and utilityroutines to the maximum extent possible.We tested the set of planners on large sets of randomly generated prob-lems from both classical (e.g., the blocks world, transportation planning, anda reconstruction of Ste�k's [31] MOLGEN molecular biology domain) and arti-�cial domains. In this paper we limit our report almost exclusively to arti�cialdomains. While the \real" domains were a rich source of intuitions, the dif-�culty of decoupling di�erent causes of combinatorial explosion made themuninformative testbeds for empirical experiments. Speci�cally, planners maketwo types of combinatorial choices: deciding how to achieve a goal and de-ciding when to do so. Most real problems are fraught with both sources ofintractability, but neither partial nor total order representation provides muchguidance in the problem of choosing how to achieve a goal. Since we are inter-ested in the utility of partial-order plan representations, we focus this paperon the combinatorics of ordering decisions. Thus most of our arti�cial domainsinclude only one method for achieving each type of goal, but these methods4A Common Lisp implementation of this algorithm, known as SNLP, has be-come quite popular as a framework for AI research and education. Send mail tobug-snlp@cs.washington.edu for information on acquiring the source code for the threeplanners and for the domains mentioned in this paper.2



interact in rich and complex ways. However, since there is interaction betweenthe choice of operator used to achieve a goal and choice of the order in whichthe resulting steps are executed, section 3.6 does explore arti�cial domainswith signi�cant operator selection complexity and section 3.8 brie
y discussesexperience with a \real" domain.Another advantage of arti�cial domains is the ability to quantify the dif-�culty of problems. In real domains it is extremely di�cult to come up withsuch a measure | the number of objects in the world, the number of subgoals,the length of an optimal solution, and related measures are much too crudeto yield any useful generalizations. The regularity of an arti�cial domain fa-cilitates such a measure (even for randomly generated problems), enabling aprecise estimate of the asymptotic complexity growth as problems get harder.Of course, the analysis of arti�cial domains is not an end in itself, but by de-coupling the myriad causes of planning complexity, they provide insight intothe di�culties implicit in conventional domains.We used the following experimental methodology. In each domain and foreach di�culty level, we generated a �xed number of random problems whichwere given to each of the three planners. We display the data by graphingthe mean CPU time required by the planners at each di�culty level as wellas 90% con�dence intervals. With probability 0.9 the mean of all possibleproblems at a particular di�culty level is within the interval. We terminatedeach planner's performance curve when the di�culty became so great that itcould not successfully complete all problems in the random suite within thetime bound. Depending on the domain, we varied the number of problemsthat we generated per di�culty level from �ve to thirty in an e�ort to keepthe con�dence intervals small.1.2 ContributionsOur paper presents two major results: an extension to Korf's classi�cation ofsubgoals and a series of experiments comparing the performance of our threeplanners on eight di�erent domains. We link the contributions by analyzingthe experimental results in terms of our augmented taxonomy.Korf's [17] insightful de�nition of independent, serializable, and nonserial-izable collections of subgoals forms the foundation of our work. However, weargue that the de�nition of subgoal independence is so strong that in practiceit rarely applies, and we observe that while nonserializable subgoals are alwaysdi�cult, many serializable problems are almost as hard. This leads us to re�neKorf's class of serializable subgoals with the following new classes:� A set of subgoals is trivially serializable if each subgoal can be3



solved sequentially in any order without ever violating past progress. Aswe explain in section 3, trivial serializability is considerably more generalthan independence, yet results in comparable performance.� A set of subgoals is laboriously serializable if there exist an inade-quate percentage of orders in which the subgoals may be solved withoutever violating past progress. When it is di�cult or impossible to de-termine the correct order, laboriously serializable subgoals are just asintractable as nonserializable ones.Figure 19 (page 36) shows the extended hierarchy of subgoal collectionsthat results from our analysis. We also extend Korf's treatment of subgoalsfrom search through states of the world to search through a space of incompleteplans, since this is the representation of choice in modern planners [6]. Withthis reformulation the computational advantages of the various algorithmsbecomes clearer: the natural subgoal decomposition of a problem might betrivially serializable for the search space of one planner, laboriously serializablefor another, and nonserializable for a third (table 3 on page 37). In fact, thearti�cial domain D1S2 (section 3.5) has exactly this property.In addition to classifying problems in terms of their subgoal structure, weperformed a series of experiments to evaluate the relative performance of thethree planners. In no domain did either of the total-order planners performsigni�cantly better than the partial-order planner; however, in some casesthe partial-order planner POCL did exponentially better than either total-order algorithm. Both causal-link planners outperformed TOPI on all but thesimplest problems and domains.In all our tests there was a clear correspondence between the classi�cationof a problem's natural subgoals and the speed of the planner. All three al-gorithms took exponential time to solve problems in which the subgoals werelaboriously serializable or nonserializable yet took apparently linear (or low-order polynomial) time on domains with independent or trivially serializablesubgoals. We conclude that the major advantage of using a partial-order plan-ning algorithm derives from the fact that it renders many subgoal collectionstrivially serializable.1.3 OutlineIn the next section we formally de�ne the class of problems that we are try-ing to solve. We then give pseudocode descriptions for the three planningalgorithms, POCL, TOCL, and TOPI, and present a complexity analysis oftheir operation. The bulk of the paper is our analysis of the performance of4



the planners on a number of di�erent domains. We start, in section 3, byextending Korf's [17] characterization of problem domains, and then we per-form a sequence of experiments that isolate the domain features that give thepartial-order planner a major advantage over total-order approaches. Section4 summarizes our results and proves several generalizations. Related and fu-ture work are discussed in sections 5 and 6 respectively. Finally, section 7closes by stating our contributions.
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2 PlannersBefore presenting our results, we summarize the algorithms and representa-tions used. Each planner uses what is known as the STRIPS action represen-tation [5] although it is in fact a simpli�cation of that used by STRIPS [7,11]. Each operator has sets of preconditions, an add list and a delete list (themembers of which are propositional schemata that are function-free atomic)and a set of codesignation (and noncodesignation) constraints. For example,the blocks world operator (puton ?x ?y)5, which takes block ?x from ?z andputs it on ?y, is shown in �gure 1.(defoperator : action 0(puton ?x ?y): precond 0((on ?x ?z) (clear ?x) (clear ?y)): add 0((on ?x ?y) (clear ?z)): delete 0((on ?x ?z) (clear ?y)): equals 0((6= ?x ?y) (6= ?x ?z) (6= ?y ?z)(6= ?x Table) (6= ?y Table)))Figure 1: An operator to move a block ?x o� of ?z and onto ?y.Note the codesignation constraints listed in the :equals �eld. They specifythat ?x, ?y, and ?z must refer to di�erent blocks. Also neither ?x nor ?y canrefer to Table. The variables mentioned in an action are only used to de�neconstraints between a step's variables. A unique set of variables is created andused whenever a new step is created. Codesignation constraints between vari-ables of di�erent steps are added to an incomplete plan to constrain a step'spossible e�ects. For example, a step with action (puton ?x1 ?y1) can be con-strained to clear block C by adding the codesignation constraint: (= ?z1 C).Although the limitations of this action representation have been clearlydocumented [5], we have succeeded in encoding a number of domains, in-cluding the blocks world, several arti�cial worlds, a discrete time version ofMinton's scheduling world [21], a simple transportation scheduling world, andan approximation of Ste�k's MOLGEN molecular biology domain [31].The planners each require three arguments: a set of operators, a set ofinitial conditions, and a set of goal conditions; they return sequences of steps.All planners treat variables the same way in that they use least-commitment,constraint-posting techniques when reasoning about the arguments to the op-erators, and all planners operate via backward chaining. To ensure fairness,5Symbols that start with question marks denote variables (which are also known asformal objects [20]). 6



the planners were implemented in Common Lisp using a shared set of datastructures and subroutines. The most important such subroutine is the vari-able binding and uni�cation code that handles all of the variable constraints.2.1 Planning as SearchLike [17], we view planning as a search problem. In order to discuss ourplanners, we need to de�ne a planning problem, and how it can be consideredas a search. From [19] we adopt:De�nition 1 A STRIPS operator consists of an operator name plus aprecondition list, an add list and a delete list. The elements of theprecondition, add, and delete lists are all function-free, atomic expressions. ASTRIPS planning problem is a triple �O;�;
� in which O denotes a setof STRIPS operators, � denotes a set of initial propositions, and 
 denotes aset of goal propositions.Previous analyses of planning problems [13, 17] viewed planning as a searchthrough a graph of world-states | i.e., a graph in which nodes are labeledwith a set of propositions that specify what is true in that state of the world.A STRIPS planning problem can be solved by searching through such a graph.� speci�es the initial world-state, 
 speci�es a set of goal world-states, andthe operators in O specify the directed edges. If an operator's preconditionsare satis�ed in a world-state, then an edge leads from that node to the nodedenoting the e�ect of applying that operator. The purpose of the search is to�nd a path from the initial world-state to a goal world-state. The solution tothe planning problem consists of the actions associated with the edges of thispath. An example of such a search space appears in �gure 2.One of the major contributions of Sacerdoti's NOAH [29] was a conceptualshift: instead of viewing planning as search through a space of world-states,NOAH searched through a space of (possibly incomplete) plan-states. Ourplanners perform similar searches.De�nition 2 A plan-state is a triple: �S;O;B� in which S denotes a setof plan steps (also known as actions), O denotes a set of ordering constraintsthat specify a (possibly partial) order on S, and B denotes a set of bindingconstraints over the variables mentioned by the steps in S.This shift makes the structure of a search space dependent on the planneras well as the domain. The arcs between world-states were just determined bydomain actions, but the arcs between plan-states represent the extension of7
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. Edges out of a world-state correspond to operatorsthat can be performed in that world-statean incomplete plan (i.e., the addition of a step, ordering constraint or bindingconstraint) rather than the regression of a world description.In plan-state search, a planning problem is encoded in an initial plan-state�S;O;B�consisting of two steps s0 and s1. The step s0 adds �, and s1 has
 for preconditions. This plan-state has no variable-binding constraints, butO has one constraint to force s0 before s1. The set O de�nes what can beadded to the set S in a plan-state. The goal of the search is to �nd a solutionplan-state.De�nition 3 A solution plan-state �S;O;B�is a plan-state in whichthe preconditions of each step si 2 S are all necessarily true in the inputsituation of si.To make this de�nition precise, we recall the following terminology fromChapman's formalization of planning [5]. The input situation of a step is aset of propositions that are true immediately prior to the execution of thatstep [5]. A proposition is necessarily true in the input situation of a step in apartially ordered plan-state �S;O;B� when it is true in all completions thatextend the partial constraints of O and B into total constraints.2.2 AlgorithmsIn order to test our intuitions regarding how representations of the space ofplan-states a�ects planning di�culty, we implemented three di�erent planningalgorithms. Each of these algorithms is sound and complete and each exhibitswhat McAllester terms the \systematic" property [19]6. Loosely speaking,6We note that the utility of systematicity has not been clearly documented. We sus-pect that for some domains systematic planners will be more e�cient than nonsystematic8



systematicity means that each algorithm is guaranteed to search among plan-states in an irredundant fashion { visiting every possible plan-state exactlyonce. This property is re
ected in the structure of each planner's search spacein that the directed edges form a tree rooted in the initial plan-state.The �rst algorithm, called POCL and shown in �gure 3, uses a partiallyordered step representation for de�ning plans. POCL is a lifted version ofMcAllester's algorithm. The algorithm is loosely descended from TWEAK [5]and NONLIN [33], but is conceptually simpler. Like some previous planners(e.g., [14, 33, 34, 35]) but unlike TWEAK, McAllester's algorithm uses causallinks to record the purpose for introducing a step into a plan and to protectthat purpose. If a step Si adds a proposition p to satisfy a precondition ofstep Sj, then Si p!Sj denotes the causal link. McAllester's key innovation isa clever, methodical technique for creating and protecting causal links. Wesay that a link Si p!Sj is threatened if some step Sk may possibly be orderedbetween Si and Sj, and Sk either deletes or adds7 a proposition that possiblyuni�es with p. Two propositions possibly unify if they can be uni�ed by addingvariable-binding constraints to a plan-state without making that plan-state'svariable constraint set B inconsistent.Each precondition p of a plan-state step Sj is an open condition if it has nocorresponding causal link Si p!Sj 2 L. The algorithm searches for a solutionplan-state �S;O;B�by eliminating open conditions in G while ensuring thesafety of causal links in L. In the initial invocation of POCL, �S;O;B�is theinitial plan-state, G is the set of preconditions of s1, and L is the empty set.Our use of least commitment for variable bindings has a subtle e�ect on thecausal-link-protection step. In the absence of unbound variables, protecting acausal link si p!sj from a step sk simply involved ordering sk before si or aftersj. With the introduction of unbound variables we get the extra possibilityof adding variable constraints between the e�ects of sk and the propositionp. For example, there are 5 di�erent sets of constraints that can be added toprotect si(on?x?y)! sj from a step sk that deletes (on ?a ?b).1. fsk before sig2. fsk after sjg3. fsk between si and sj, ?x 6= ?a, ?y 6= ?bgalgorithms while the converse will hold in other domains. Since a detailed evaluation of theutility of systematicity is beyond the scope of this paper, we feel that holding systematicityconstant in our experiments increases their validity.7Steps that add p threaten the causal link Si p!Sj because they negate the purpose foradding step Si. POCL would not be systematic if it ignored these threats.9



Algorithm: POCL(�S;O;B�,G,L)1. Termination: If G is empty, report success and stop.2. Goal selection: Let c be a proposition in G, and let Sneed be the stepfor which c is a precondition.3. Operator selection: Let Sadd be a step that adds c (either a newstep or an existing step possibly prior to Sneed). If no such step existsthen backtrack. Let L0 = L [ fSadd c!Sneedg, S 0 = S [ fSaddg, O0 =O [ fSadd � Sneedg, and B 0 = B[ the set of variable bindings to makeSadd add c. Backtrack point: Each existing and possibly addable stepmust be considered for completeness.4. Update goal set: Let G0 = (G � fcg)[ preconditions of Sadd, if new.5. Causal link protection: A step sk threatens a causal link si p!sj whenit occurs between si and sj and it adds or deletes p. For every step skthat might threaten a causal link si p!sj 2 L0:� Ensure that sk does not threaten si p!sj by adding constraints toO0 and/or B 0. Backtrack point: Each way to protect si p!sj from skmust be considered for completeness.6. Recursive invocation: POCL(�S 0; O0; B 0�,G',L').Figure 3: The Partial-Order, Causal-Link (POCL) Algorithm4. fsk between si and sj, ?x 6= ?a, ?y = ?bg5. fsk between si and sj, ?x = ?a, ?y 6= ?bgThe addition of codesignation as well as noncodesignation constraints isrequired to ensure systematicity. In general, the number of ways to protect acausal link is exponential in the number of unbound variables involved.The second algorithm, TOCL, is similar to POCL, but it restricts its useof plan-states by only generating plans comprised of totally ordered sets ofsteps. It can insert steps anywhere between s0 and s1 in a plan, but it cannever reorder two existing steps. The algorithm (�gure 4) is similar to POCLexcept there is an extra linearization step, and causal links are only used todetermine possible locations for new steps.Since TOCL is just a modi�cation of POCL, its calling conventions areidentical, and its search space is very similar to that of POCL. The similarityis due to the fact that they start with the same initial plan-state and each par-tially ordered plan produced by POCL corresponds to a set of totally orderedplans. Each of these totally ordered plans are generated by TOCL whenever10



Algorithm: TOCL(�S;O;B�,G,L)1. Termination: If G is empty, report success and stop.2. Goal selection: Let c be a proposition in G, and let Sneed be the stepfor which c is a precondition.3. Operator selection: Let Sadd be a step that adds c (either a new stepor an existing step which is necessarily prior to Sneed). If no such stepexists then backtrack. Let L0 = L [ fSadd c!Sneedg, S 0 = S [ fSaddg,and B 0 = B[ set of variable bindings to make Sadd add c. If Sadd is anew step, let R = (Sinitial; Sneed), the ordered pair of existing steps thatbound the places to insert Sadd into the plan. Backtrack point: Eachexisting and possibly addable step must be considered for completeness.4. Update goal set: Let G0 = (G � fcg)[ preconditions of Sadd, if new.5. Causal link protection: For every step sk that might threaten a causallink si p!sj 2 L0:� Protect the causal link from sk by adding constraints to B 0. Also,if Sadd is new, either si or sk is Sadd and the link can be protectedby replacing one of the bounds in R. Backtrack point: Each way toprotect si p!sj from sk must be considered for completeness.6. Linearization: If Sadd is a new step, let O0 = O[ constraints to insertSadd into the plan-state at a point between the steps in R. Otherwise, letO0 = O. Backtrack point: Each insertion point between R's steps mustbe considered for completeness.7. Recursive invocation: TOCL(�S 0; O0; B 0�,G',L').Figure 4: The Total-Order, Causal-Link (TOCL) AlgorithmPOCL generates the partially ordered plan. This similarity lets us comparethe two algorithms using techniques developed in [22].The third algorithm, TOPI, only adds steps to the beginning of the plan(i.e., immediately after s0). Thus it can be seen that TOPI is equivalent tothe regression planner of [25, section 7.4] which performs backward-chainingsearch through the space of lifted world states.TOPI works by de�ning the the goal conditions as planning subgoals andbuilding a plan backwards (�gure 5). It considers all steps that could possiblyadd a subgoal without deleting any other unsolved subgoal. When it �ndssuch a step it creates a new plan-state by adding that step between s0 andevery other step already in the plan, eliminating the resolved subgoals andadding the weakest preconditions for the new step as new subgoals. Theplanner terminates when all of the open goals of a plan G unify with the11



initial conditions I.Since causal links were used to guide the placement of new steps in a plan,and since TOPI only inserts steps at one point, causal links are not neededby TOPI. Although TOPI does not require data structures for links or stepordering, it shares with the other algorithms the data structures and routinesfor variable bindings and constraints.Algorithm: TOPI(�S;O;B�,I,G)1. Termination: If G � I, report success and stop.2. Operator selection: Let Sadd be a new step that adds a set of condi-tions A such that (A \ G) 6= ;, does not delete g 2 G, and has a set ofpreconditions C. Let S 0 = S[fSaddg, O0 = O[ ordering constraints thatmake Sadd come after s0 but before any other step in S, and B 0 = B[constraints to make Sadd add A and not delete any element of G. Back-track point: All possibly added steps and variable constraints must beconsidered for completeness.3. Update goal set: Let G0 be the set (G�A) [ C4. Recursive invocation: TOPI(�S 0; O0; B 0�,I,G').Figure 5: The Total-Order, Prior-Insertion (TOPI) Algorithm2.3 Per-Step ComplexityComparing the performance of these three algorithms requires looking at thenumber of plan-states each algorithm generates when solving a planning prob-lem and the computational cost per plan-state. Comparing the number ofplan-states generated requires looking at planning problems, but the per-plan-state complexity can be inferred from the algorithm descriptions.From the POCL and TOCL algorithm descriptions we see that steps todetect termination, select goals, and update the goal set all require constanttime. The major points where the algorithms di�er in terms of per-plan-statecomplexity are the steps selecting an operator to solve a goal and protectinga causal link. They arise from the di�erent ways that step orderings areperformed. One of the problems in operator selection is to determine theexisting steps that might solve the selected goal; this takes O(jSj2) time forpartially ordered steps and O(jSj) time for totally ordered steps. Similarly,causal-link protection only involves protecting a new link from existing stepsand existing links from a new step. For this reason there are onlyO(jSj) threatsto resolve, and the loop only executes O(jSj) times. Detecting these threats12



requires O(jSj2) time for POCL and only O(jSj) time for TOCL. Resolving athreat takes constant time.In contrast with the causal-link algorithms, the TOPI algorithm's per-plan-state complexity does not depend on the number of steps at all. It dependson the number of unsolved goals jGj. The most costly step in TOPI is thetermination detection step because �nding a set of variable bindings to makeG a subset of I takes exponential time. We can prove that this problem isNP-hard by reducing the 3-Dimensional Matching problem [12], which is NP-complete, to it. The step by step per-plan-state complexity comparison issummarized in table 1. AlgorithmStep POCL TOCL TOPITermination O(1) O(1) O(jIjjGj)Goal selection O(1) O(1) {Operator selection O(jOj) O(jSj) O(jGj)Update goal set O(1) O(1) O(1)Causal link protection O(jOj) O(jSj) {Linearization { O(1) {Table 1: The complexity of each step in the three planning algorithms for aplan-state �S;O;B�. The number of ordering constraints O can be O(jSj2).For TOPI the sets I and G are the initial conditions and open goals respec-tively.
13



3 Analysis of DomainsIn the view of [13] and [17] planning is modeled as search through a directedgraph of world-states, and the di�culty of a problem is measured in terms ofhow hard it is to break it up into subproblems and use these subproblems toguide the search for a �nal solution.We wish to analyze the e�ect of reformulating problems as plan-statesearches. In order to compare the di�erent search spaces of our plannerswe need to consider them in the context of solving problems. We start bydiscussing subgoals and how they decompose world-state searches and plan-state searches. Next we review and extend Korf's subgoal hierarchy. Finallywe de�ne example domains and show how the classi�cation of subgoals variesfrom planner to planner.3.1 SubgoalsLike [13] and [17] we are concerned with analyzing the e�ect of using varioussubgoals on the speed of planning algorithms. In the simplest case a subgoalis an intermediate state on the path from initial state to goal. Intuitively, it isclear that searching from the initial state to the subgoal and then again fromthe subgoal to the goal might be faster than searching all the way in one step.Korf presents a broader de�nition of subgoal, which we adopt for this paper.In general, a subgoal is not a single state but rather a propertythat is true of a number of states. For example, if we establish asubgoal for the Eight Puzzle of correctly positioning a particulartile, this subgoal is satis�ed by any state in which that tile is inits goal position, regardless of the position of the remaining tiles.Therefore, we formally de�ne a subgoal to be a set of states, withthe interpretation that a state is an element of a subgoal set if andonly if it has properties that satisfy the subgoal [17, page 68].It is frequently awkward to refer to subgoals explicitly as sets of states. Acommon technique used in [13] and [17] is to use elements of 
 to specify sub-goals. A world-state is in a subgoal if the subgoal's associated goal propositionis true in the world-state. This supposes that world-states with more elementsof 
 are closer to a goal world-state than those with less elements of 
.The conceptual shift to planning with plan-states a�ects this technique forspecifying a subgoal. When planning with plan-states we think in terms ofthe satis�ability of various elements of 
. We can do this with the followingformal de�nition. 14



De�nition 4 Let �O;�;
� be a STRIPS planning problem and let P 2 
denote one of the goal propositions. The subgoal specified by P withrespect to �O;�;
� is a set, U , of plan-states such that every �S;O;B�2U satis�es:1. S contains a step s0 which only adds �.2. S contains a step s1 which only requires 
.3. Every total order of S consistent with O has s0 and s1 as the �rst andlast steps, respectively.4. P is necessarily true in the input situation of s1.Proving that a proposition P is necessarily true can be done using Chap-man's modal truth criterion [5]. Certain properties of our algorithms makethis proof process easier. For example, in TOPI the operator selection stephas the restriction that added steps cannot delete open goals. This and thefact that TOPI can only add steps to the beginning of an incomplete planensures that a proposition is necessarily true when it is either in the initialconditions or it is added by a step and all of that step's preconditions arenecessarily true. Thus a goal proposition P is necessarily true once all of theopen preconditions of steps added to solve P are in the initial conditions.The causal-link protection step of TOCL and POCL makes it easy to provethe necessary truth of a proposition. A goal proposition P is necessarily trueif it has an associated causal link si P!s1, and all of the preconditions of stepsi are necessarily true. The causal-link protection step ensures that no stepsever interfere with the truth of P . Thus P is necessarily true once all ofpreconditions of all of the steps involved in solving P have associated causallinks.3.2 Subgoal HierarchyFrequently, a problem is di�cult enough to make it necessary to specify severalsubgoals in the e�ort to guide search. Korf classi�es a set of subgoals in termsof how the members interact with each other. These interactions de�ne aproblem's complexity in terms of its subgoals. Figure 6 summarizes Korf'shierarchy.Independent subgoals are the rare ideal case | progress toward one has noe�ect on another. Korf de�nes independent subgoals in terms of the distancebetween two states, d(u; v), which denotes the length of the shortest path15



�� ��independent'& $%serializablearbitrary = nonserializable [ serializableU
Figure 6: Korf's Hierarchy of Subgoal Collections.from u to v. This primitive distance function allows de�nition of the distancebetween two subgoals U and V with the equationD(U; V ) = maxu2U minv2V d(u; v)Using D(U; V ), Korf de�nes and motivates independent subgoals with thefollowing statements.A collection of subgoals are independent if each operator onlychanges the distance to a single subgoal. : : :One of the impor-tant properties of independent subgoals, which is clear from thede�nition, is that an optimal global solution can be achieved bysimply concatenating together optimal solutions to the individualsubproblems in any order [17, page 71].Solving a single independent subgoal might be nontrivial, but the com-plexity of problems with independent subgoals increases only linearly with thenumber of subgoals. Korf de�nes serializable subgoals, those that do interactin a limited manner, with the following statements.We de�ne a set of subgoals to be serializable if there exists anordering among the subgoals such that the subgoals can alwaysbe solved sequentially without ever violating a previously solvedsubgoal in the order [17, page 71].Thus, serializability means that for every state in the intersection of the�rst n subgoals there exists a path to a state in the n + 1st subgoal thatlies wholly within the intersection. Since these paths are ways to reach latersubgoals without interfering with those previously achieved, the complexityof problems with serializable subgoals is linear, with the number of subgoals,16



if the subgoals are solved in the correct order. Each subgoal only has to beestablished once. Using the wrong order can lead to exponential complexitybecause solving a set of subgoals in the wrong order can require having toviolate and reestablish a subgoal an exponential number of times.Korf labels all sets of subgoals that aren't serializable as nonserializable:It is often the case that given a collection of subgoals, previ-ously satis�ed subgoals must be violated in order to make furtherprogress towards the main goal, regardless of the solution order.Such a collection of subgoals will be called non-serializable [17,pages 72{73].Since nonserializable subgoals may need to be violated and reestablishedmany times, they o�er little guidance to a planner: solution time will likelyrise superlinearly with the number of subgoals.This completes our review of Korf's subgoal hierarchy. We will be usingthis hierarchy to analyze our planners' performances in various domains, but�rst we observe several limitations. First, while it may be possible to determineif a set of subgoals is independent, little work has been done on the problemof determining that a set of subgoals is serializable and �nding the order [3,4, 15]. The obvious method for verifying the serializability of a set of subgoalsis harder than simply solving the problem without subgoals. Second, theknowledge that a set of subgoals is serializable just indicates that there existsan order such that they can be solved monotonically, but provides no guidancein the task of �nding the order. Third, the knowledge that a set U of subgoalsis serializable says little about the properties of subsets of U . We make thisprecise withProposition 1 Let U be a set of subgoals and let V � U .1. If U is independent then V is independent.2. If U is serializable but not independent, then V may be independent,serializable, or nonserializable.3. If U is nonserializable, then V may be independent, serializable, or non-serializable.In some sense, the only surprising aspect of this result is that a subsetof a set of serializable subgoals may be nonserializable. In fact, the proof ofthis is due to an observation of Korf's [17] regarding the Sussman Anomaly.He showed that the goal set f(on A B), (on B C)g is nonserializable (in the17



space of world states), but the superset f(on A B), (on B C), (on C Table)gis serializable.8Our experiments showed that Korf's hierarchy is by no means complete| there are a number of interesting classes of subgoals between independentcollections and arbitrary serializable collections. Recall that a set of subgoalsis independent when progress towards one subgoal implies that the distancetowards all others is unchanged; this is an extremely restricted de�nition. Inthe e�ort to provide a more re�ned taxonomy, we de�ne the following term.De�nition 5 A set of subgoals is trivially serializable if they can besolved in any order without ever violating a previously solved subgoal.We note the following important properties:Proposition 2 Let U be a set of subgoals.1. If U is trivially serializable and V � U , then V is trivially serializable.2. If U is independent, then U is trivially serializable.3. The converse of property 2 does not hold.Trivial serializability is more general than independence because it is strictlya topological property while independence is metric (i.e., de�ned in terms ofa distance function). In particular, two trivially serializable subgoals are notindependent if some operator helps to achieve both of them. Of course thereis a price for the extra generality | trivial serializability does not carry thecompositional properties that are entailed by independence. In particular, so-lutions to the separate subgoals cannot be concatenated to achieve a solutionto the conjunct. Nevertheless, trivial serializability is much more commonthan independence and it appears to make the complexity of planning close tolinear in the number of subgoals.Just as trivially serialized subgoals represent an ideal collection, it is nat-ural to consider collections of subgoals that are pathological while still beingserializable. For such a collection of subgoals, it is di�cult to determine thecorrect order. Solving problems with laboriously serializable subgoals, withoutprior knowledge of the order, may take time exponential in the number ofsubgoals.8When mapped into the search space of partially-ordered plans, both f(on A B), (on BC)g and its superset are serializable. 18



De�nition 6 A set of n subgoals is laboriously serializable if there ex-ists at least one serializable ordering yet at least 1n of the subgoal orders cannot be solved sequentially without possibly violating a previously solved subgoal.Even if the majority of subgoal orderings are �ne, the exponential costof backtracking on the few pathological cases will dominate average planningtime. After all, when a planner chooses a bad subgoal ordering, the result ise�ective nonserializability | the planner will be forced to repeatedly resolvethe subgoals listed early in the ordering as subsequent subgoals induce back-tracking. Since bad orderings can require exponentially more time than goodorderings, tractability requires that the number of bad orderings be exponen-tially decreasing in the number of orderings. But if 1n (or any only polynomi-ally decreasing percentage) of the orderings are bad, then intractability willdominate.3.3 Experiments with Independent SubgoalsTo test our algorithms on problems consisting of independent subgoals wecreated a domain, called D0S1, with �fteen operators. A template for suchan operator is illustrated below. In general, we named our domains DxSybecause they contain x entries in each operator's delete set and it takes ysteps to achieve a goal.(defoperator :action Ai :precond fIig :add fGig:delete fg)Note that each operator adds a di�erent goal condition Gi when its indi-vidual initial condition Ii is present. The operators are independent | neitherpreconditions nor add lists overlap, and every operator's delete set is empty.As a result, both the order in which a problem's goal conditions were handledand the eventual order of the steps were irrelevant to the performance of everyalgorithm.Given this domain, we generated 75 solvable problems each consisting of 15randomly permuted initial conditions and between 1 and 15 randomly selectedand permuted goal conditions such that for each number of goal conditions, 5problems were generated. Each problem was given to all three algorithms; theresults are shown in �gure 7. Each point on the graph represents the averageof �ve random tests with that number of goal conditions; 90% con�denceintervals are included, but are often too small to discern. Performance wasmeasured in seconds of Dec 5000 CPU time.19
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Figure 7: The causal-link algorithms appear to exhibit linear time complex-ity when given problems consisting of independent subgoals (as with D0S1),but the prior-insertion algorithm requires time that appears quadratic in thenumber of goals.It is clear from the graph that both causal-link planning algorithms haveclose to linear time complexity in the number of goals9 for this unconstraineddomain, and that the prior-insertion algorithm has close to quadratic timecomplexity. Graphs showing the number of incomplete plans created duringthe search were all linear. TOPI's quadratic performance was caused by itstermination step. It must be noted that the performance shown depends onthe fact that only solvable problems were generated. While POCL wouldhave quickly quit attempting to achieve an impossible goal, the total-orderalgorithms might have explored an exponential number of plans in a futileattempt to �nd a satisfactory order. Similarly, the performance of the total-order planners depends on the use of a bounded depth-�rst search strategy.3.4 Experiments with Serializable SubgoalsOur investigation of serializable subgoals consisted of two domains, DmS1and D1S1, with large and small delete sets respectively. Elements of delete9In this discussion and in subsequent analyses, we assume that each planner can suc-cessfully solve individual subgoals in a �xed amount of time. In other words, we describeperformance in terms of the complexity of integrating the solutions to the subgoals, assumingthat the cost of solving these isolated subgoals is �xed.20



sets cause steps in each domain to interact, however detecting the extent ofinteraction is easier in the �rst domain than the second. This caused TOCL toperform as well as POCL in the �rst domain,DmS1, while it degraded terriblyin the harder D1S1. We show that each planner performs well if the domainis trivially serializable and poorly otherwise.3.4.1 Goal Interactions are Manifest in DmS1The DmS1 domain resembles D0S1 except that the temporal order of plansteps is tightly constrained by the delete sets of each operator. The Dm partof DmS1 signi�es that there are many entries in each operator's delete set. Atemplate for an operator is illustrated below.(defoperator :action Ai :precond fIig :add fGig:delete fIjjj < ig)Note that operator Ai deletes the preconditions of operators Aj for all jless than i. This implies that for any set of goals, there exists a single orderingof steps that will achieve that set of goals. The reason is illustrated in �gure8. For a real world analog to this domain, consider sealing a set of di�erentlysized boxes such that box i �ts inside box i+ 1. Once one box is sealled, allof the boxes inside of it are not accessible. The accessibility of a box bi isrepresented by initial condition Ii, operator Ai seals the box, and its beingsealled is represented by goal condition Gi. The di�culty of problems in thisdomain is summarized by proposition 3.s0:I1I2I3...In����- - - -mA1 mA2 mA3 mAn ---- s1:G1G2G3...Gn����-TimeFigure 8: The causal structure of solutions to problems in DmS1 and D1S1.Time progresses to the right and each step deletes the preconditions of allsteps above it or the immediate step above it respectively.21
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Figure 9: A total-order planner can excel in a domain, such as DmS1, in whichtight ordering constraints result in trivial serializability.Proposition 3 The problems in DmS1 have laboriously serializable subgoalsfor TOPI, and trivially serializable subgoals for TOCL and POCL.The proof of this proposition follows directly from lemmas 13 and 15 (Seeappendix A).We generated 75 solvable problems in the same fashion as the previousexperiment: 5 random problems for each number of goal conditions between1 and 15. Figure 9 illustrates the results of this experiment. Both causal-link planners appear to have linear time complexity, but TOPI was incapableof solving even moderately sized problems before the resource cuto�. Weattribute this di�erence to the fact that the domain is laboriously serializablefor TOPI, but trivially serializable for the causal-link planners.3.4.2 Goal Interactions are More Subtle in D1S1To show the e�ect of the arbitrary ordering decisions made by TOCL's lin-earization step we created a domainD1S1 similar to DmS1. Operators inD1S1contain only one entry in their :delete �elds, but that entry makes solutionsto problems in D1S1 identical to those in DmS1. However, this successfulordering can only be discovered by looking at numerous steps together andconsidering their combined constraints. In contrast, the redundant deletes inDmS1 made the correct placement of a step clear in isolation. In �gure 8,22



where a step in DmS1 deleted all of the preconditions of steps above it, a stepin D1S1 only deletes the precondition of the step immediately above it.(defoperator :action Ai :precond fIig :add fGig:delete fIi�1g)The blocks world is a familiar analog to this arti�cial domain. Considerbuilding a tower of N blocks from an initial state where all blocks are on thetable. The initial condition Ii represents that block bi is clear, action Ai putsblock bi on top of block bi�1, and the goal Gi represents that block bi is on topof block bi�1.Proposition 4 shows that eliminating the redundant delete constraintsmakes this domain considerably harder for TOCL, transforming it from triv-ially to laboriously serializable:Proposition 4 The problems in D1S1 have laboriously serializable subgoalsfor TOPI and TOCL. They have trivially serializable subgoals for POCL.The proof of this proposition follows directly from lemmas 13, 16, and 17in appendix A.We generated 390 solvable problems in the same fashion as the earlier ex-periments: 30 random problems for each number of goal conditions between1 and 13. As shown in �gure 10, POCL maintained its near-linear perfor-mance, while both total-order planners exhibited apparently exponential timecomplexity. Because this domain is laboriously serializable for TOCL, the al-gorithm branched intractably when considering arbitrary ordering constraintsbetween steps Ai�1 and Ai+1 before adding step Ai, which gives the correctordering constraint.3.5 Experiments with Nonserializable SubgoalsIn this section we explore the performance of our algorithms on three domains,all of which are nonserializable when considered in terms of either the space ofworld states or the search space of TOPI, but are serializable for the causal-link planners. The �rst two are readily solved by POCL, but the last one ismore di�cult.3.5.1 POCL Finds DmS2 and D1S2 Trivially SerializableTo experiment with nonserializable subgoals we created two di�erent domains,DmS2 and D1S2, by modifyingDmS1 and D1S1. The di�erence, of course, liesin the S2 superscript which signi�es that subgoals require subplans of length 223
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Figure 10: Some domains, such asD1S1, give all total-order planners problems,but are easily solved by partial-order planners.unlike the singleton subplans of the S1 domains. The pattern of the delete setsof the new domains force the planners to interleave the steps introduced foreach subgoal, and (as in the previous section) determining the correct orderingis easier for Dm due to the redundant constraints.As a concrete example of the domains, templates for the operators neededto achieve goal condition Gi in domain DmS2 are shown below.(defoperator :action A1i :precond fIig :add fPig:delete fIjjj < ig)(defoperator :action A2i :precond fPig :add fGig:delete fIjj8jg [ fPj jj < ig)A step in DmS2 deletes the preconditions of all prior steps, while a stepin D1S2 deletes the preconditions of the only the immediately prior step.Templates for the operators needed to achieve goal condition Gi in domainD1S2 are shown below.(defoperator :action A1i :precond fIig :add fPig:delete fIi�1g)(defoperator :action A2i :precond fPig :add fGig:delete fIjj8jg [ fPi�1g)24



Thus, there exists a single ordering of steps that will achieve a set of goalconditions. The causal structure of a solution to a problem in these domainsappears in �gure 11.s0:I1I2I3...In����- - - -mA11 mA12 mA13 mA1n - - - -mA21 mA22 mA23 mA2n ---- s1:G1G2G3...Gn����-TimeFigure 11: The causal structure of solutions to problems in D1S2 and DmS2.For each domain we generated 120 problems. Each problem type consistedof 16 initial conditions and between 1 and 8 goal conditions. 15 problemswere generated for each problem type. As in previous sections, the initialconditions and goal conditions were randomly permuted, and performance wasmeasured in seconds of Dec 5000 CPU time. The di�culties of these domainsare summarized in propositions 5 and 6, and the results of the experimentsappear in �gures 12 and 13.Proposition 5 The problems in D1S2 have subgoals that are nonserializ-able for TOPI, laboriously serializable for TOCL, and trivially serializable forPOCL.The proof is derived simply from lemmas 14, 16, and 17 in appendix A.Proposition 6 The problems in DmS2 have subgoals that are nonserializablefor TOPI and trivially serializable for TOCL and POCL.The proof follows directly from lemmas 14 and 15 in appendix A.3.5.2 Ordering Decisions in DmS2* are Di�cultSo far, in all our experiments, the set of subgoals was trivially serializablefor POCL. In order to create a harder domain for POCL we created DmS2*.The subgoals in this domain are laboriously serializable for POCL. Once again,there is only one way to achieve a subgoal, and �nding it is trivial. The problem25
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Figure 12: In D1S2 POCL outperformed all other planners.
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Figure 13: Solving problems inDmS2 was easy for both causal-link algorithms.26



comes in �tting the solutions together. There are two types of subgoals. The�rst is speci�ed by Gi and templates to achieve this type appear below.(defoperator :action A1i :precond fIig :add fPig:delete fPjjj < ig)(defoperator :action A2i :precond fPig :add fGig:delete fPjjj < ig)There are an exponential number of solutions to problems that solely con-sist of subgoals like Gi, but the number reduces to one when subgoal G� isincluded in the problem. Solving subgoal G� only requires an instance of thefollowing operator.(defoperator :action A� :precond fI�g :add fG�g:delete fIij8ig [ fGij8ig)The causal structure of the solution to a problem in DmS2* appears in�gure 14. The step A� a�ects all the causal links that do not appear directlybelow it, and the steps A1i and A2i a�ect the middle link of the causal chainsabove them. The di�culty of this domain is summarized in the followingproposition:Proposition 7 The problems in DmS2* have subgoals that are nonserializablefor TOPI and laboriously serializable for POCL and TOCL.The proof follows from lemmas 14 and 18 in appendix A.s0:I�I1I2...In���� ---- mA�mA11mA12mA1n - - -mA21 mA22 mA2n ---- s1:G�G1G2...Gn����-TimeFigure 14: The causal structure of solutions to problems in DmS2*.Given this domain we generated 60 solvable problems in the same fashionas the earlier experiments: 20 randomly generated problems for each number27
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Figure 15: Some simple domains, such as DmS2*, give all planners problems.of goal conditions between 1 and 6. Figure 15 plots the results: all plan-ners exhibited exponential degradation when confronted with more goal con-juncts; this con�rms the expectation that laborious serializability results inintractability. When solving problems with 6 goals, the mean performances ofTOCL and POCL were quite variable, resulting in large 90% con�dence inter-vals. This was caused by the fact that in a third of the problems the plannerswere lucky, chanced upon a good serialization orderings, and thus took onlya linear amount of time. For the majority of problems, however, the plannersrequired exponential time which dominated the average problem solving time.See the proof of lemma 18 for further elaboration.3.6 Experiments with Operator Selection DecisionsThe domains considered in previous sections are much simpler than thoseencountered in many real planning problems because the arti�cial domainsprovided only one way to achieve each subgoal. This meant that step order-ing decisions were the only source of combinatorial search since the operatorselection decision was always trivial. Because the complexity due to operatorselection is important for most planning tasks, this section explores the inter-action between the selection and ordering decisions in the three planners. Tomake this analysis, we introduce a general transformation �n for the previouslyde�ned domains and scrutinize several illuminating instances.We illustrate this transformation by taking DmS1 and constructing the28



new domain �2DmS1. Our construction begins by taking each operator inDmS1 (section 3.4.1) and creating the following two10 operators for the newdomain by adding the precondition P� or P�.(defoperator :action A�i :precond fIi; P�g :add fGig:delete fIjjj < ig)(defoperator :action A�i :precond fIi; P�g :add fGig:delete fIjjj < ig)When the terms P� and P� are in a problem's initial conditions, there aretwo ways to achieve any subgoal Gi. One uses operator A�i and the other usesoperator A�i . The construction is completed by adding the following operatorA� to the domain.(defoperator :action A� :precond fg :add fG�g:delete fP�g [ fGij8ig)Problems with goal G� require adding a step of type A� to the plan, butthis step threatens the causal link Axi Gi!s1 which was created while achieving agoal Gi with either step A�i or A�i . This threat can be resolved by ordering stepA� before step Axi , but when x is �, A� also threatens the causal link s0P�!A�i .This latter threat cannot be resolved. Thus, complete solutions cannot containA�i steps, but no planner can determine this until it plans for goal G�. Thismeans that any serializable ordering in the �2DmS1 domain must begin withthe subgoal for G�. The following proposition describes the general case:Proposition 8 For POCL and TOCL, the ratio of orderings that are seri-alizable for an M goal problem in a �n transformed domain (n � 2)is R=M ,where R is the ratio of orderings that are serializable for an M�1 goal problemin the original domain.This proposition has interesting consequences:Corollary 9 For POCL and TOCL, problems with 2 or more subgoals arelaboriously serializable in any domain which has been transformed by �n (forn � 2).10To increase the complexity of step selection further one can replace with an arbitrarynumber of new operators, but setting n = 2 su�ces to complicate planning by an exponentialfactor. 29



The corollary makes intuitive sense: since �n domains have multiple waysto achieve each subgoal and the di�erent methods interfere, backtracking isrequired for most subgoal orderings. The proof is straightforward. Since Rcan never exceed 1 and M�1M � 1M for M � 2, the corollary follows directlyfrom proposition 8 and de�nition 6.Since TOPI does not use causal links, the above arguments do not directlyapply. Still, just like POCL and TOCL, TOPI cannot know which step touse in achieving a subgoal Gi until it achieves the subgoal for G�. At thispoint we note that G� has to be achieved last to make step A� appear �rst inthe plan. This leads to proposition 10.Proposition 10 For TOPI, all problems in �n transformed domains havenonserializable subgoals.Empirically, we explore the interaction of step ordering decisions with op-erator selection decisions by constructing the domains �2DmS1 and �2D0S1from DmS1 and D0S1 respectively. For each of these domains we generated300 solvable problems. Each problem type consisted of 17 initial conditions,and between 1 and 10 goal conditions. Performance was measured in secondsof Dec 5000 CPU time. The results are shown in �gures 16 and 17. Each datapoint represents a planner's average performance over 30 randomly generatedproblems. The 90% con�dence intervals show how much the the performancevaried from one problem to another.In the �2DmS1 domain, only one step ordering is legal, and TOCL couldinfer this ordering early in the planning process. As a result, TOCL avoidedpointless backtracking over equivalent step ordering decisions and exhibitedthe same performance as POCL in this domain.In the �2D0S1 domain, any step ordering beginning with A� is legal. Sincethe placement of A� is easily determined from all of its delete conditions, thedi�culty of these problems is solely caused by the operator selection decisions.The main lesson learned from this experiment is that arbitrary step orderingdecisions interact with arbitrary operator selection decisions. All plannersexhibited exponential performance, but the early commitment on step orderingresulted in a higher branching factor for the total order planners. Althoughthe order of the steps was immaterial to the success or failure of the plan underconsideration, more 
awed plans were considered on average leading to poorperformance.These experiments are interesting because the �2 transformation had dif-ferent e�ects on the relative performance of the planners in the two cases.Although POCL and TOCL performed equally in D0S1 and DmS1, theirperformance di�ered in the �2 derivatives. This shows that a partial order30
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Figure 16: In domain �2DmS1, TOCL's performance mimicked that ofPOCL.planner can have a performance advantage which is solely due to operatorselection issues.The phenomena can be explained by realizing that the �2 domains causeboth planners to make mistakes and eventually backtrack. But since eachPOCL plans corresponds to many totally ordered plans, TOCL requires moresearch to regain the path after each mistake.3.7 Experiments with Heterogeneous Sets of SubgoalsUntil this point we have been concentrating on problems that contain sets ofrelated subgoals. In order to explore how the di�culty of a problem behaveswhen it contains two unrelated sets of subgoals, we constructed a test thatcontained subgoals from DmS2* and D0S1.In this domain we generated 1620 solvable problems. Each problem typeconsisted of 12 initial conditions, between 0 and 8 D0S1 goal conditions, andbetween 0 and 5 DmS2* goal conditions. 30 problems were generated for eachproblem type. Each problem had its initial and goal conditions randomlypermuted. Performance was measured in seconds of Dec 5000 CPU time. Theresults are shown in �gure 18.The main lesson learned from this experiment is that the di�culty of solv-ing problems with heterogeneous subgoals is not simply additive because thenumber of plan-states which need violated subgoals to reach a solution can31
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Figure 17: In domain �2D0S1, TOCL took as long as TOPI.increase dramatically when combining di�erent sets of subgoals. The mostillustrative example of this occurs in the graph for TOCL where the numberof DmS2* goals is held at three and the number of D0S1 goals varies fromzero to eight. The complexity appears to rise exponentially with the numberof independent goals.The behavior of TOCL can be explained by noting that there are twoplan-states, [A11, A21, A12, A22] and [A12, A22, A11, A21], in three goal problemsof DmS2* that cannot be modi�ed into a solution without violating previoussubgoals. The number of such plan-states rises exponentially with the numberof independent goals. TOPI has a similar problem. In this example, POCLavoids the problem because the number of such minimal plan-states only riseslinearly with the number of independent goals. This is not the case in general.3.8 Application to Real DomainsPreviously, we argued that real world domains typically include many di�erenttypes of subgoal interaction which impedes any understanding of the source ofcomputational intractability. By restricting our attention to arti�cial domains,we've teased apart the di�erent aspects of domain complexity and comparedthe scaling properties of di�erent planning algorithms. However, our theorycan also be applied to more complex domains as we now illustrate.We focus on the Tyre world domain which encodes repair actions on aBritish automobile. While not completely \real," Tyre world's 14 operators32
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4Figure 18: For total-order planners the di�culty of solving a problem can riseexponentially with the number of independent subgoals.make it fairly complex. We selected the domain for several reasons. First, itwas written independently by Stuart Russell at Berkeley and thus representedan independent test for our theory. Second, Russell had posed a di�cultplanning problem for the domain (replacing a 
at tire by jacking the wheel,unbolting the lugs, etc., eventually restoring all tools to the trunk) whoseoptimal solution required 19 steps and took six hours to solve (e.g., requiredexploring 3 million partial plans) even when using extremely e�cient searchtechniques (in fact, Russell invented the problem to test his bounded-memoryIE search technique [28]). We took as our challenge, the problem of renderingthis problem tractable.Our theory predicted that the eight subgoals of the problem were nonse-rializable for TOPI yet laboriously serializable for POCL and TOCL. Con-centrating on the causal link planners, we noted four constraints on subgoalordering that would render the problem trivially serializable for POCL.11 Anal-ysis showed that only 940840320 = 23:3% of the possible orderings denoted correctserializations for POCL. Two extra constraints were needed to render the prob-lem trivially serializable for TOCL so only 157640320 = 3:91% of all orderings werecorrect serializations for TOCLTo test if our theory of subgoal interactions could lead to signi�cant per-formance improvement in this domain, we generated three sets of planning11For example, three conditions force a planner to generate steps that use a tool prior toconsidering goals to put that tool away (e.g., the planner must consider how it will in
atethe spare before determining how and when the pump will be put in the trunk). Spacerestrictions preclude a detailed description of this domain and our experiments, but thecomplete encoding, source code for the planners, and our data is available by anonymousFTP. Send mail to bug-snlp@cs.washington.edu for details.33



problems. All planning problems encoded Russell's tire changing task withthe same eight goal conjuncts | the only di�erence was the order of the con-juncts. The �rst ten problem were randomly chosen serializations for bothTOCL and POCL. The second ten problems were serializations for POCLbut not for TOCL. Finally, the last ten problems weren't serializations foreith planner. As Table 2 shows, the performance we measured correspondsperfectly with our theory.Serializations POCL TOCLfor Completed Mean Time Completed Mean TimeTOCL & POCL 100% 123 100% 863Just POCL 100% 102 50% > 6769Neither 0% > 10323 0% > 11594Table 2: Summary of the three experiments with Tyre world problems. Timesare in CPU seconds; the \>" appears when the mean includes time spentplanning before failure induced by resource cuto�.These experiments suggest that our theory of subgoal interactions doesprovide useful insight about the performance of planners on real world do-mains. When given a serializable ordering, both partial and total order plan-ners exhibit comparable performance. The challenge is �nding a serializationordering. A partial order planner's ability to delay step ordering decisions of-ten increases the number of serializable orderings, sometimes quite drastically(i.e., trivial serializability).
34



4 DiscussionOne of the major advances of Sacerdoti's NOAH [29] was the shift from search-ing through a space of world-states to searching through a space of partiallyordered, plan-states. This paper analyzed that contribution by comparing theperformance of three di�erent planning algorithms on a variety of domains.The �rst planner, POCL, delays the ordering of steps in a plan until theyinteract in a way that a�ects the plan's correctness. The second planner,TOCL, is a modi�cation of POCL that restricts generated plans to contain to-tally ordered steps. This restriction makes TOCL add premature step-orderingconstraints that POCL avoids.Although the �rst two planners add steps anywhere in a plan, the thirdplanner, TOPI, only adds steps prior to existing steps. This last algorithmis radically di�erent from the previous two: although it uses plan-states, itstructures the search space in a way that makes it equivalent to a backwardchaining world-state search such as the regression planner of [25].The performance of each algorithm is determined by the number of plan-states that it visits to �nd a solution and the complexity of visiting eachplan-state. We �rst compared the three algorithms in terms of the complexityof visiting a plan-state. TOCL is the most e�cient at visiting a plan-state:its cost is linear in the number of existing steps. The use of partial orderingsmade POCL'cost per step be quadratic in the number of steps. Finally, TOPI'scomplexity did not depend on the number of steps, but it was exponentialin terms of the number of open goal conditions (assuming P 6= NP). Thiscost applies to any backward chaining state-space search that uses a leastcommitment binding strategy for variables.To compare the number of plan-states each planner visited, we had toclassify the di�culty of problems for the various planners. We made this char-acterization by considering the set of subgoals speci�ed by a problem's goalconjuncts, and classifying that set in Korf's subgoal hierarchy. Since Korf'ssubgoal hierarchy is overly general, we extended it to include the trivial and la-borious subclasses of serializable subgoals (�gure 19). Solving problems withindependent or trivially serializable subgoals required visiting a number ofplan-states that was linear in the number of subgoals, but problems with labo-riously serializable or nonserializable subgoals required visiting an exponentialnumber of plan-states.To explore this re�ned hierarchy, we generated several arti�cial domainsand compared the di�erent planners. We observed that the partial-orderplanner never took signi�cantly longer than either total-order planner, andsometimes the partial-order planner performed much better. In all cases theplanners only performed well when given a problem with trivially serializable35



�� ��independent'& $%trivially serial. '& $%laboriously serial.'& $%arbitrarily serializablearbitrary = nonserializable [ serializable
U
Figure 19: An Extended Hierarchy of Subgoal Collections.subgoals. With one simplifying assumption this result can be proven true:Proposition 11 Assuming that a problem's subgoals can be achieved in con-stant time, the expected time to solve a problem rises linearly with the numberof subgoals if the problem is trivially serializable, but rises exponentially if theproblem is laboriously serializable or nonserializable.The proof follows easily from the fact that a subgoal only has to be achievedonce given a serialization ordering, but may have to be solved an exponentialnumber of times when given some other ordering.A close examination of our experiments reveals even more interesting regu-larities as summarized in table 3. Notice that the di�culty of a set of subgoalswas never harder for POCL than it was for the total order planners, and thatit was always hardest for TOPI.Attempting to prove these observations are guaranteed leads us to propo-sition 12 which implies that solving a set of subgoals is never more di�cultfor POCL than it is for TOCL (our experiments show that it is often mucheasier).Proposition 12 Any serializable subgoal ordering for TOCL is also a serial-izable subgoal ordering for POCL.The proof follows from lemma 19 in section A.2.Perhaps suprisingly, a similar domination result for POCL and TOPI can-not be made. There exist problems with subgoals that are trivially serializable36



AlgorithmDomain POCL TOCL TOPID0S1 I I I�2D0S1 L L ND1S1 T L LDmS1 T T L�2DmS1 L L ND1S2 T L NDmS2 T T NDmS2� L L NTyre L L NTable 3: Summary of the subgoal classi�cations of each domain for each plan-ner. Subgoals are independent (I), trivially serializable (T), laboriously seri-alizable (L), or nonserializable (N).for TOPI and laboriously serializable for the causal link algorithms. For ex-ample, consider the following domain which we call D�S1C2:(defoperator :action A1i :precond fIig :add fGig:delete fG�g)(defoperator :action A2i :precond fIig :add fGig:delete fg)Problems inD�S1C2 have initial conditions fG�; I1; :::; Ing and goals fG�; G1; :::; Gng.For the causal link algorithms, all serializable subgoal orderings have to startwith the subgoal for G�. For TOPI, the operator selection step ensures thatany subgoal ordering is a serializable ordering.Finally, although one might expect that the partial order representationprovides no bene�t when planning complexity results from the need to choosewhich operator should be used to achieve open conditions, we showed that thisintuition is false. In some domains, a partial order planner can rule out badcombinations of operator selection decisions more e�ciently than can a totalorder planner. In our last experiment, we explored the interaction of di�erentsets of subgoals. We discovered that even though two sets are independentwith respect to each other, solving problems with both sets together is harderthan solving each set separately. 37



5 Related WorkIn previous work [2, 30] we reported on preliminary experiments regarding thee�ect of step-order representations on planning. Besides an increased num-ber of experiments, this paper analyzes the results in terms of an extendedversion of Korf's [17] taxonomy of subgoals and domain complexity. Joslinand Roach [13] extend Korf's analysis of nonserializable subgoals12 with atopological analysis of subgoals in terms of their connected components. Ourextensions to Korf's taxonomy are independent of Joslin and Roach's con-tribution since they do not consider the number of viable subgoal orderingswhile this is the key concept underlying our notions of trivial and laboriousserializability.Besides our earlier papers, there has been little other work comparing theperformance of partial-order and total-order planners. A notable exceptionis the excellent work of Minton et al. [22]. This paper considers the to andua algorithms which resemble propositional versions of our TOCL and POCLalgorithms with one di�erence: unlike our planners, to and ua are not sys-tematic. Minton et al. demonstrate the existence of an isomorphism L whichmaps from nodes in the ua's search space into nonempty equivalence classesthat partition the search space of to. The existence of L proves that the searchspace of their partial-order planner is no larger than that of the total-orderalgorithm, and that it is possibly exponentially smaller. Systematicity andour proof of lemma 19 proves that L also exists between POCL and TOCL.Minton et al. argue that since ua's cost to evaluate a search space nodeis only slightly more than that of to, the partial-order planner should runfaster. They also report on experiments that suggest that ua's advantage in-creases with a decreasing number of interactions between plan steps, but thisis the only domain characteristics they consider. Minton et al. also show thatpartial-order planners can exploit certain types of heuristics more e�ectivelythan their total-order siblings; given the crucial need for heuristics to guidesearch through the exponential spaces of real problems, this result is of greatimportance. In a recent extension to their earlier work, Minton et al. [23] con-sider the e�ects of di�erent search strategies and the distribution of solutionson performance.12Unfortunately, Joslin and Roach did not phrase their work in these terms, appearingunaware of Korf's work. 38



6 Future WorkThere are several other limitations to this work that point to future researchdirections. We need a way to analyze the di�culty of solving a single sub-goal and techniques for analyzing domains which contain subgoals of varyingdi�culty. Also, characterizing serializable subgoals as trivial or laborious isstill too coarse. There is room for more re�nement in Korf's hierarchy, espe-cially in the critical cases where there are only a few (perhaps an exponentiallydecreasing percentage) of bad subgoal orderings.Our conclusion that domains with laboriously serializable subgoals are in-tractable is based on the assumption that good serializations can't be pre-dicted before planning commences. If it were possible to construct some sortof domain theory compiler which identi�ed good and bad orderings, then thebene�ts would be considerable. In fact, much of the work on abstraction inplanning can be viewed as doing exactly this. Perhaps it might be possibleto generalize the techniques in ALPINE [15, 16] or the subgoal interactionanalysis of STATIC [9] in this direction.A major weakness in our work is its dependence on the STRIPS represen-tation. We plan to use UCPOP [27] to explore whether partial-order represen-tations are useful given more expressive domains, such as ADL [26], which in-clude conditional e�ects and universally quanti�ed e�ects. Also using UCPOP,we hope to replicate the experiments of Minton [21] to see if explanation basedlearning can speed up a partial-order planner as much as it has PRODIGY[24].All of the experiments reported in this paper challenged planners only withsolvable problems. A natural extension would be to investigate the perfor-mance of the algorithms when confronted with impossible goals. Our intuitionis that the advantage of POCL would be ampli�ed. Another research directionthat begs for attention is consideration of other subgoal focusing mechanisms.In this paper we assumed that each subgoal was completely solved before at-tempting the next, but there are numerous other control strategies. Forexample, it would be interesting to consider iterative sampling techniques de-scribed in [18, 23].On a more basic level, it is unclear that our de�nition of subgoals for plan-state searches is the best one. Our work, as well as [13] and [17], de�nessubgoals using elements of 
, but such need not be the case. Our causal linkalgorithms focused on reaching subgoals, as we de�ned them, by using a FILOstrategy for selecting open goals to resolve. Just as there are other strategiesfor selecting open goals, there are other ways to de�ne a subgoal.For example, one selection strategy prioritizes open goals based on predi-cate type and leads to a form of abstraction [19]. A plan-state is in a subgoal39



when it contains an abstract solution to a problem, and the next less abstractsolution is the next subgoal. We have performed some preliminary experi-ments using POCL with di�erent strategies for selecting open goals and notedthat the di�culty of problems is strongly in
uenced by the strategy. Morework needs to be done to relate strategies with de�nitions of subgoals and tocharacterize which strategy is best for a problem.
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7 ConclusionsIn this paper we have evaluated the e�ect of a partial-order plan representationon planning performance both empirically and in terms of the e�ect of repre-sentation on subgoal structure. Our paper makes several major contributions:� We demonstrate that Korf's [17] subgoal taxonomy fails to di�erentiatebetween classes that have vastly di�erent computational properties. Inparticular, we argue that some serializable sets are easy to solve whileothers are di�cult. We conclude that the distinguishing feature is thenumber of feasible serialization orderings and this leads to our de�nitionsof trivially serializable and laboriously serializable subgoals.Since all orderings of trivially serializable subgoals lead to a global solu-tion, this class is computationally tractable. We note that pure trivialand pure laborious serializability are but two points on a continuum ofarduousness and many real problems may be intermediate in di�culty.� We present and analyze three planning algorithms on eight arti�cial do-mains, which were created to illustrate di�erent types of subgoal inter-actions. From the results of our experiments, we make the followingobservations:1. The total-order planners never performed signi�cantly better thanthe partial-order planner.2. In domains with complex ordering interactions the partial-orderplanner performed exponentially better than either total-order plan-ner. In particular, the D1S1 and D1S2 domains (sections 3.4.2 and3.5) have ordering interactions that involve numerous steps in apairwise fashion; only POCL was able to deduce a successful order-ing e�ciently.3. Planning problems which involved operator selection decisions (i.e.,multiple, interacting ways to achieve open conditions) were easierfor a partial order planner | even when the corresponding single-operator problems (e.g., D0S1 and �2D0S1) were easy for plannerswith either representation.4. The performance di�erence of the planners correlates perfectly withthe subgoal classi�cation of the domains. Since the algorithms usedi�erent plan representations, they have di�erent search spaces.Thus the natural subgoal decomposition of a D1S2 problem wastrivially serializable for POCL, laboriously serializable for TOCLand nonserializable for TOPI. As as predicted by proposition 11, all41



three planners performed well only when confronted with triviallyserializable subgoals.� We prove (proposition 12) that compared to TOCL, the partial orderPOCL planner renders a strictly greater number of problems triviallyserializable.
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A ProofsThere is one feature of our planners (used in all the proofs) that needs tobe discussed prior to proving the lemmas of this section. All of our plannersperform bounded depth �rst searches. This search interacts with the subgoalclassi�cation of a problem to a�ect the planners' performances. For instance,solving a set of serializable subgoals in the correct order ensures that a previ-ously solved subgoal need never be violated. This a�ects the depth �rst searchby limiting the amount of backtracking that needs to be performed. Once aplan-state in a subgoal is found, the search will never need to backtrack backthrough it.We can use this feature to prove that a certain subgoal ordering is not aserializable ordering. An ordering is not a serializable ordering when a plannerreaches a plan-state where it will have to backtrack and violate a previoussubgoal.A.1 Prior Insertion Algorithm (TOPI)As mentioned in section 3.1, plan-states for TOPI are in the subgoal for aproposition P when all of the open conditions of steps added to solve P are inthe initial conditions. There are two ways to violate this subgoal. One is tobacktrack, delete a step, and make one of the open conditions for P not be inthe initial conditions. The other is to add a step for one of the open conditionswhere one of that step's preconditions is not in the initial conditions. We willfocus our proofs on the �rst way to violate a subgoal; the second does nothappen in our domains.The two main features of TOPI that we will use in the following proofsare that steps are only added prior to existing steps, and no steps that deleteopen conditions can be added.Lemma 13 Problems in D1S1 and DmS1 domains have laboriously serializ-able subgoals for TOPI.Proof: The subgoals of problems in these domains are obviously serializablebecause it only takes the addition of one step, Ai, to achieve a subgoal,Gi. Thus, ordering the subgoals to add the steps in the right orderassures that TOPI never needs to violate a previous subgoal. The actualserializable order is Gn, Gn�1, ..., G1.Consider any subgoal ordering other than the above serializable ordering.In this order there is a case whereGi comes beforeGj when i < j. In sucha case there exists a reachable plan-state in Gi and all of its preceding43



subgoals that does not contain step Aj. Since Aj deletes a preconditionof Ai, TOPI cannot add Aj to the beginning of the plan-state until stepAi is removed, but this would violate subgoal Gi.Thus any serializable ordering other than the actual ordering cannotensure that some goal Gj can be solved without violating a previoussubgoal Gi. This means that for a problem with n subgoals only one ofn! orderings assures that the subgoals can be solved sequentially withoutever violating a previous subgoal. 2Lemma 14 The problems in D1S2, DmS2, and DmS2� domains have subgoalsthat are nonserializable for TOPI.Proof: From the de�nitions of these domains there is only a single orderingof steps that can achieve the goal. Take any ordering of the subgoals andconsider plan-states in all subgoals except the last subgoal, for Gx. Oneof the steps required for achieving Gx is A2x. Since A2x has to appear aftersteps A1y, for all y, these steps have to be deleted before TOPI can addA2x to the plan, but this violates all of the previous subgoals. Therefore,the subgoals of problems in S2 domains are nonserializable for TOPI. 2A.2 Causal-Link Algorithms (TOCL and POCL)Unlike TOPI, the causal-link algorithms can add steps into the middle of aplan, but they have other features that we can use in our proofs. The �rstsuch feature is that at each point in the planning process the planners focuson a single subgoal. They solve that subgoal and then move on to the nextin the subgoal ordering. Solving the subgoal for Gx is a two step process forproblems in the S1 domains and a three step process for the S2 domains. Ineach problem, the planners perform these processes for the current subgoaland later move onto the next.� Achieving a subgoal in S1 domains.1. Add step Ax and AxGx!s1. Protecting existing causal links fromstep Ax can add ordering constraints to the plan-state.2. Add s0 Ix!Ax. Protecting s0 Ix!Ax from any existing step Aj can addordering constraints to the plan-state.� Achieving a subgoal in S2 domains.1. Add step A2x and A2xGx!s1. Protecting existing causal links fromstep A2x can add ordering constraints to the plan-state.44



2. Add step A1x and A1xPx!A2x. Protecting existing causal links fromstep A1x can add ordering constraints to the plan-state.3. Add s0 Ix!A1x. Protecting s0 Ix!A1x from any existing step A1j can addordering constraints to the plan-state.The second feature comes from the causal-link-protection step. This stepensures that the necessary truth of a solved subgoal is never violated while therelevant causal links exist. Thus, the only way to violate a previously solvedsubgoal is to get rid of a causal link through backtracking.Lemma 15 Problems in Dm domains have trivially serializable subgoals forboth POCL and TOCL.Proof: Consider an arbitrary ordering of the subgoals for a problem in theDmS1 domain. The �rst subgoal is achievable from the null plan byperforming the S1 subgoal achievement process. No protection is nec-essary because there are no other steps in the plan. Now consider theplan-state reached by focusing on the �rst m subgoals. Suppose thatits m steps are ordered such that Ai precedes Aj when i < j. This istrivially true of the plan-state reached when focusing on the �rst sub-goal. Reaching the m+1st subgoal involves performing the S1 subgoalachievement process, and protecting causal links ensures that all m+ 1steps in the new plan-state are ordered such that Ai precedes Aj wheni < j. Since this ordering is consistent, POCL can always achieve thenext subgoal without violating a previous subgoal.The same argument used for POCL works for TOCL because the orderingof a plan-state's steps upon achieving the mth subgoal, for any m, is atotal ordering. This argument can also be extended to cover the DmS2domain because of the similarity or the domain steps and the subgoalachievement processes. 2Lemma 16 Problems in D1 domains are trivially serializable for POCL.Proof: Consider an arbitrary ordering of the subgoals for a problem in theD1S1 domain. The �rst subgoal is achievable from the null plan by per-forming the S1 subgoal achievement process. No protection is necessarybecause there are no other steps. Now consider the plan-state reachedby focusing on the �rst m subgoals. Suppose that its m steps are or-dered such that Ai�1 precedes Ai. This is trivially true of the plan-statereached when focusing on the �rst subgoal. Reaching them+1st subgoal45



involves performing the two step process, and protecting causal links en-sures that all m + 1 steps in the new plan-state are ordered such thatAi�1 precedes Ai. Since this ordering is consistent, POCL can alwaysachieve the next subgoal without violating a previous subgoal.This argument extends to the D1S2 domain by replacing the subgoalachievement process. Both steps added to achieve the next subgoal getordering constraints similar to those in the D1S1 domain. 2Lemma 17 Problems in D1 domains are laboriously serializable for TOCL.Proof: Consider orderings of n subgoals that start with a subgoal Gi inD1S1.The next subgoal in the ordering must be Gi�1 or Gi+1. Otherwise,the steps Ai and Aj, for the second subgoal Gj , are not ordered withrespect to each other because they do not a�ect each other. The lack ofan ordering constraint gives the linearization step license to choose anarbitrary order. Since the steps in the �nal solution are totally ordered,only one of these arbitrary orders is the correct one. This means thatsubgoal Gj will have to be violated, via backtracking, several times to�nd the order.In general the valid serializable orders are those where a subgoal Gi onlyappears at the beginning or after the appearance of Gi�1 or Gi+1. Anyother ordering would have a case like the one described above. Thereare � n� 1k � 1 � such orders that start with Gk, and the total number ofsuch orders is 2n�1. But this means that the number of bad orderings isn!�2n�1n! which is greater than or equal to 1n for n � 3. Thus, problems inD1S1 are laboriously serializable for TOPI.This same argument holds for D1S2. 2Lemma 18 Problems in the DmS2� domain are laboriously serializable forPOCL and TOCL.Proof: Consider any ordering where G� and Gi are the �rst two subgoals.The only plan-state found while focusing on these subgoals contains thetotally ordered plan [A1i ,A�,A2i ]. Now consider plan-state reached byfocusing on the �rst m subgoals. Suppose that its 2m � 1 steps areordered as shown in �gure 14. This is trivially true for the �rst twosubgoals. Focusing on the m+ 1st subgoal Gx involves adding steps A1xand A2x. Protecting links s0 Ix!A1x and A2xGx!s1 forces A� between A1x andA2x. Protecting link A1xPx!A2x from existing steps A1y and A2y, where x < y,forces steps A1x and A2x between steps A1y and A2y. Finally, protecting46



existing links A1yPy!A2y from the new steps A1x and A2x, where y < x,forces steps A1y and A2y between steps A1x and A2x. Thus the resultantordering of the plan for m + 1 subgoals is ordered as shown in �gure14, and any ordering where G� and Gi are the �rst two subgoals is aserializable ordering. Since the ordering of steps in a plan for the �rst msubgoals is always a total ordering, these serializable orderings are alsovalid for TOCL.Consider any ordering where G� is not one of the �rst two subgoals. BothPOCL and TOCL can generate a totally ordered plan-state [A1i ,A2i ,A1j ,A2j]where Gi and Gj are the �rst two subgoals and i < j. This plan-statecannot be modi�ed to include step A� and achieve subgoal G� withoutdeleting A1j and adding it before A1i . Since this deletion involves vio-lating subgoal Gj , any ordering that does not include G� as the �rst orsecond subgoal is not a serializable ordering.So, since only 2n of the orderings are good serialization orderings, at least1n are bad for large n. We conclude that problems in the DmS2� domainare laboriously serializable for POCL and TOCL. 2De�nition 7 Suppose O denotes a set of consistent constraints specifying apartial ordering on a set S of steps, and suppose the set fO1; :::; Ong con-tains all total orderings which are consistent with O. Let L denote a func-tion from invocations of POCL to a set of invocations of TOCL such thatL(POCL(�S;O;B�; G; L)) = ft1; :::; tng where ti = TOCL(�S;Oi; B�; G; L).Lemma 19 Given that both POCL and TOCL use the same goal selectionstrategy, for every invocation p that POCL can make, TOCL can (nondeter-ministically) make any of the invocations in L(p).Proof: The lemma is trivially true for the initial calls to POCL and TOCL. Asan induction hypothesis, consider an invocation p = POCL(�S;O;B�,G,L)at depth n of the recursion, and assume that TOCL can make all invoca-tions in L(p). We prove by contradiction that this remains true at depthn+ 1.Suppose that a sequence of nondeterministic choices leads p to make therecursive invocation p0 = POCL(�S;Op0; B�; G; L), but there exists at0 2 L(p0) which cannot be called from any ti 2 L(p). Since we areassuming that the lemma holds at depth n and since POCL and TOCLmanipulate the sets S, B, G, and L in an identical manner, the onlypossible di�erence between p0 and t0 concerns their respective orderingconstraints, Op0 and Ot0. We now consider possible di�erences betweenthese orderings. 47



case 1: Suppose p does not add a new step. Then Op0 is a simple re-�nement of O. By de�nition of L, O0t is a linearization of Op0, soOt0 must be a linearization of O. But this means that there existsa depth n invocation in L(p) with the same ordering and it couldcall t0.case 2: If p does add a step, Sadd, then Ot0 is a total ordering of S [fSaddg. Removing references to Sadd from Ot0 results in a totalordering Ot of S that is consistent with O. Thus 9t 2 L(p) withordering Ot. But TOCL's construction of range R mirrors POCL'sre�nement of Op0 so t can call t0.Since these cases are exhaustive, we have veri�ed the inductive hypoth-esis at depth n+ 1. 2Proposition 12 Any serializable subgoal ordering for TOCL is also a serial-izable subgoal ordering for POCL.Proof: Suppose that both TOCL and POCL use the same goal selection strat-egy, and there exists a serializable subgoal ordering for TOCL that is nota serializable subgoal ordering for POCL. This implies that there existsan invocation p = POCL(�S;O;B�,G,L) where L contains just thosecausal links needed to achieve the �rst n subgoals, and �S;O;B�cannotbe further extended to achieve the �rst n+ 1 subgoals.Consider an invocation TOCL(�S;Oi; B�,G,L) 2 L(p). From Lemma19 we know that this invocation can be made by TOCL. Since the subgoalordering is serializable for TOCL, the plan-state �S;Oi; B � can beextended to achieve the �rst n+1 subgoals, but since�S;O;B�has fewerconstraints, it too can be extended to achieve the �rst n + 1 subgoals.But this contradicts our hypothesis so any serializable subgoal orderingfor TOCL must be a serializable subgoal ordering for POCL. 2
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