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Abstract

In this paper we give a completeness theorem

of an inductive inference rule inverse entail-

ment proposed by Muggleton. Our main result

is that a hypothesis clause H can be derived

from an example E under a background the-

ory B with inverse entailment i� H subsumes

E relative to B in Plotkin's sense. The theory

B can be any clausal theory, and the example

E can be any clause which is neither a tautol-

ogy nor implied by B. The derived hypothe-

sis H is a clause which is not always de�nite.

In order to prove the result we give declara-

tive semantics for arbitrary consistent clausal

theories, and show that SB-resolution, which

was originally introduced by Plotkin, is com-

plete procedural semantics. The completeness

is shown as an extension of the completeness

theorem of SLD-resolution. We also show that

every hypothesis H derived with saturant gen-

eralization, proposed by Rouveirol, must sub-

sume E w.r.t. B in Buntine's sense. Moreover

we show that saturant generalization can be ob-

tained from inverse entailment by giving some

restriction to its usage.

1. Introduction

In this paper we identify the class of hypotheses which

can be generated with inverse entailment. Inverse entail-

ment is an inductive inference rule proposed in

[

Muggle-

ton, 1995

]

. It is used to learn a clause H from a positive

example E under a background theory B. Any consis-

tent clausal theory (conjunctions of clauses) is allowed

to be the theory B, and any clause which is neither a

tautology nor logically implied by B can be given as the

�
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example E. The hypothesis H generated with the rule

is not always de�nite. Because the conditions on B, E,

and H are weaker than those for most other inference

rules for ILP, we expect inverse entailment should be

applied to areas to which ILP techniques have not been

applied yet. However, inverse entailment is not given its

logical foundations enough. In this paper we construct

the logical foundations of inverse entailment.

We say a hypothesis H is correct if B ^ H j= E and

B^H is consistent. It was proposed in

[

Muggleton, 1995

]

that every hypothesis derived with inverse entailment is

correct and that every correct hypothesis H can be de-

rived. In the terminology in

[

Rouveirol, 1991

]

he said

inverse entailment is complete as an inductive inference

rule. We showed in

[

Yamamoto, 1996

]

that his proposi-

tion does not hold in general, by giving a case in which

some correct hypotheses cannot be derived with inverse

entailment. We also show that every correct hypothe-

sis H can be derived if B is a ground reduced de�nite

program and E is a ground unit clause. Another con-

dition for B was given by

[

Furukawa et al., 1997

]

under

the same assumptions on E and H. These conditions

are not su�cient when we apply inverse entailment to

areas the knowledge of which is not represented as de�-

nite programs. In order to �nd more relaxed conditions,

we clarify in this paper which hypotheses can be de-

rived with inverse entailment in general. If the class of

derivable hypotheses is identi�ed, we could make inverse

entailment complete by giving some conditions on hy-

pothesis space so that it is subsumed by the identi�ed

class.

Our main result is that a hypothesis H is derived with

inverse entailment i� H subsumes E relative to B when-

ever E is not a tautology and B 6j= E. The relative

subsumption was de�ned in

[

Plotkin, 1971

]

. If H sub-

sumes E relative to B, it holds that B ^H j= E. This

means that the de�nition of completeness in

[

Rouveirol,

1991

]

is too restricted to represent the ability of inverse

entailment. In this paper we revise the de�nition so that

we can represent the abilty in the form of a completeness

theorem.

Every hypothesis H derived with inverse entailment

subsumes a ground clause K which is a disjunction of



literals in a set

Bot(E;B) = f:L j L is a ground literal and B ^E j= Lg:

The formula E is obtained from :E by replacing each

variable in it with a Skolem constant symbol. The set

Bot(E;B) is called the bottom set of E under B

1

. In our

theory we use the set LC(B ^ E) = fL j B ^ E j= Lg

in stead of Bot(E;B), because LC(B ^ E) can be re-

garded as declarative semantics of B^E. As procedural

semantics we adopt SB-resolution, which was introduced

in

[

Plotkin, 1971

]

with the name C-derivation. We prove

a theorem between the two semantics by extending the

completeness theorem of SLD-resolution, with the sub-

sumption theorem

[

Kowalski, 1970

]

and a property on

relative subsumption given in

[

Plotkin, 1971

]

.

Inverse entailment is not the �rst inference rule based

on the strategy that every hypothesis is generated by

generalizing highly speci�ed clauses. Another inference

rule based on the strategy was given in

[

Rouveirol, 1992

]

which we call the saturant generalization rule. She as-

sumed that the background theory B is a de�nite pro-

gram and the positive examples E are de�nite clauses.

Every hypothesis H generated with the rule is a de�-

nite clause. Saturant generalization derives hypotheses

by generalizing clauses called saturants. We show that

saturant generalization can be obtained from inverse en-

tailment if we represent inverse entailment with SOLDR-

resolution

[

Yamamoto, 1997

]

. SOLDR-resolution is an

extension of SLD-resolution and is also a restricted ver-

sion of SOL-derivation

[

Inoue, 1992

]

. We also prove the

completeness of saturant generalization w.r.t. the gen-

eralized subsumption relation

[

Buntine, 1988

]

.

This paper is organized as follows: In the next section

we make some preparation on logic, inverse entailment,

and saturation. We give a new de�nition of completeness

of inductive rules in Section 3. In Section 4 we introduce

SB-derivation and give its properties, give a relation be-

tween inverse entailment and relative subsumption, and

prove the completeness of inverse entailment. In Sec-

tion 5 we compare saturant generalization with inverse

entailment. We also show the completeness of saturant

generalization. In Section 6 we give some concluding

remarks.

2. Preliminaries

2.1. Terminology in Logic

We assume the readers are familiar with the concepts on

�rst-order logic and logic programming. We �x a �rst-

order language L. HB(L) and GL(L) denote the set of

all ground atoms of L and the set of all ground literals,

respectively.

A clausal theory is a �nite conjunction of clauses. In

this paper we de�ne a clause as a formula of the form

F = 8x

1

: : : x

k

(A

1

_ A

2

_ : : : _A

n

_ :B

1

_ : : : _ :B

m

)

1

In

[

Muggleton, 1995

]

a disjunction of all literals in

Bot(E;B) is used and called the bottom clause, but we do

not use it because it may consists of in�nitely many literals.

where n � 0, m � 0, A

i

's and B

j

's are all atoms, and

x

1

; : : : ; x

k

are all variables occurring in the atoms. We

represent the formula in the form of implication:

A

1

; A

2

; : : : ; A

n

 B

1

; : : : ; B

m

:

F

+

and F

�

respectively denote A

1

; A

2

; : : : ; A

n

 and

 B

1

; B

2

; : : : ; B

m

. The complement of F is a clausal

theory

F = (:A

1

^ :A

2

^ : : : ^ :A

m

^B

1

^ : : : ^B

m

)�

F

where �

F

is a substitution which replaces each variable

in F with a Skolem constant symbol.

A de�nite clause is a clause of the form A

0

 

A

1

; : : : ; A

n

and a goal clause is a clause of the form

 A

1

; : : : ; A

n

: A clausal theory consisting of de�nite

clauses is called a de�nite program.

De�nition. Let A be a ground atom and I be an

Herbrand interpretation. A de�nite clause A

0

 

A

1

; : : : ; A

m

covers A in I if there is a substitution � such

that A

0

� = A and A

i

� is true in I for every i = 1; : : : ; n.

Covering is used in de�ning the T

P

operator

[

Lloyd,

1987

]

.

De�nition. For a de�nite program P and an Herbrand

interpretation I, we de�ne T

P

(I) as

T

P

(I) = fA 2 HB(L) j A is covered by a clause in Pg:

We will often use the subsumption relation between

two clauses.

De�nition. A clause D subsumes a clause C if there is

a substitution � such that every literal in D� occurs in

C.

Two well-known extensions of the subsumption relation

have been proposed: the relative subsumption relation

in

[

Plotkin, 1971

]

, and the generalized subsumption re-

lation de�ned in

[

Buntine, 1988

]

.

De�nition (

[

Plotkin, 1971

]

) . Let H and E be two

clauses. H subsumes E relative to B, written as H �

P

E (B), if there is a clause F such that B j= 8(E $ F )

and H subsumes F .

De�nition (

[

Buntine, 1988

]

) . Let H and E be two

de�nite clauses. H subsumes E w.r.t. B, written as

H �

B

E (B), if T

H

(M) � T

E

(M ) for every Herbrand

model M of B.

2.2. Inverse entailment and saturation

We give a formal de�nition of the inverse entailment rule

in

[

Muggleton, 1995

]

.

De�nition. Let B be a clausal theory and E be a

clause. The bottom set of E under B is a set of liter-

als Bot(E;B) = fL 2 GL(L) j B ^ E j= :Lg:

De�nition. A clause H is derived by the inverse entail-

ment rule from E under B if H subsumes some ground

clause K which is a disjunction of literals in Bot(E;B).



Example 1 (

[

Muggleton, 1995

]

). Let us de�ne B

1

and E

1

as follows:

B

1

=

(pet(x) cat(x))^

(cuddly-pet(x) small(x); u�y(x); pet(x));

E

1

= cuddly-pet(x) u�y(x); cat(x):

The complement of E

1

is

E

1

= (u�y(c

x

) ) ^ (cat(c

x

) ) ^ ( cuddly-pet(c

x

))

where c

x

is a Skolem constant symbol for the variable x.

The bottom set of E

1

under B

1

is

Bot(E

1

; B

1

) = fsmall(c

x

);:u�y(c

x

);:cat(c

x

);:pet(c

x

)g:

A clause H

1

= small(x)  u�y(x); cat(x) is derived

with inverse entailment because H

1

subsumes a clause

K

1

= small(c

x

) u�y(c

x

); cat(c

x

):

No procedure with which we can generate all elements

of the bottom set is given in

[

Muggleton, 1995

]

, but we

showed in

[

Yamamoto, 1997

]

they can be generated with

SOLDR-resolution when B is a de�nite program and E

is a de�nite clause.

For the saturant generalization rule proposed in

[

Rou-

veirol, 1992

]

it is assumed that every background theory

B is a de�nite program and that every example E is a

de�nite clause. The rule consists of two sub-rules: sat-

uration and generalization. Every hypothesis generated

by the rule is a de�nite clause.

De�nition. Let E be a de�nite clauses, and B a de�nite

program. A de�nite clause K is a saturant of E under

B if

1. K

+

= E

+

, and

2. K

�

is a disjunction of literals in a set

Bot

�

(E;B) = f:A j A 2 HB(L) and B^E

�

j= Ag:

Note that, for a de�nite clause E, E

�

is a de�nite pro-

gram.

De�nition. Let B be a de�nite program and E be a

de�nite clause. A hypothesisH is derived by the saturant

generalization rule from E under B if H subsumes some

saturant K of E.

Our de�nition is di�erent from the original one in two

points: In the original de�nition it is assumed that B

and E are attened before saturation, while we do not

assume it. The set Bot

�

(E;B) is de�ned with the op-

erator T

B^E

�

in the orignal de�nition, while we de�ne

it with logical consequence. We need not mind the �rst

di�erence because attening is used to make the imple-

mentation of generalization easier and have no theoret-

ical e�ect. The second change is justi�ed by the well

known fact that, for any A 2 HB(L), B ^ E

�

j= A i�

there is m � 0 such that A 2 T

B^E

�

m

(;)

[

Lloyd, 1987

]

.

3. Completeness of Inductive Inference

Rules

Generally speaking an inductive inference rule is a rule

with which hypotheses are derived from a given example

E under a background theory B. Each hypothesis H

must be correct, that is, it explains E with the support

of B. We de�ne the correctness in logical terminology.

De�nition. Let B be a background theory and E an

example. A hypothesis H is a correct for E under B if

B ^H is consistent and B ^H j= E.

De�nition. Let B be a background theory, E an ex-

ample. An inductive inference rule R is correct if every

hypothesis derived from E under B with R is correct for

E under B.

In order to de�ne the completeness of an inductive

inference rule, we introduce generalization relations.

De�nition. Let B and H be sets of formulas. A triary

relation �2 B�H�H is a generalization relation on H

parameterized with B if � (B;H;E) implies B ^ H j=

E. In the following we write H � E (B) instead of

� (B;H;E).

Directly from the de�nition, the implication relation �

I

de�ned as H �

I

E (B) () B ^H j= E is a general-

ization relation.

De�nition. An inductive inference rule R is complete

w.r.t. a generalization relation � if R is correct and

every hypothesis H such that H � E (B) can be derived

from E under B with R.

The completeness de�ned in

[

Rouveirol, 1991

]

can be re-

garded as the completeness w.r.t. the implication rela-

tion �

I

in our de�nition. We can show, with an example

used in

[

Yamamoto, 1996

]

, that neither inverse entail-

ment nor saturant generalization is complete w.r.t. the

implication relation.

Example 2. Let us consider the following B

2

and E

2

:

B

2

= (even(0) ) ^ (even(s(x)) odd(x));

E

2

= odd(s(s(s(0)))) :

We can show that Bot(B

2

; E

2

) = fodd(s(s(s(0))));

:even(0)g: A correct hypothesis H

2

= odd(s(y))  

even(y) cannot be derived with inverse entailment be-

cause H

2

subsumes none of the clauses consisting of el-

ements in Bot(B

2

; E

2

). We can also show that H

2

sub-

sumes none of the saturants of E

2

.

4. Completeness of Inverse Entailment

In this section we show that the inverse entailment rule

is complete w.r.t. Plotkin's relative subsumption.

At �rst we introduce SB-resolution and give a useful

theorem on it proved by Plotkin.

De�nition. Let T be a clausal theory and C a clause.

An SB-derivation of (T;C) is a sequence of clauses C

0

=

C, C

1

, : : :, C

n

such that



1. each C

i

(i � 1) is a binary resolvent of D

i1

and D

i2

where each D

ij

is C

k

for some k < i or is a clause

in T , and

2. C

0

is used exactly once as D

ij

.

If C

n

is an empty clause, the sequence is called an SB-

refutation of (T;C).

Theorem 1 (

[

Plotkin, 1971

]

). Let H and E be

clauses and B a clausal theory. Then H �

P

E (B) i�

one of the following three holds:

1. E is a tautology.

2. B j= E.

3. There is an SB-refutation of (B ^ E;H).

Corollary 1. The relation �

P

is a generalization rela-

tion.

We can show that SLD-resolution, which is famous in the

logic programming theory, is a special type of the SB-

resolution. Let P be a de�nite clause and G be a goal

clause. Without loss of generality, we can assume that

G is used exactly once in an SLD-refutation of P ^ G.

It is easy to construct an SB-derivation of (P;G) from

such an SLD-refutation.

Now we give declarative semantics of an arbitrary

clausal theory w.r.t. which SB-resolution is complete, by

referring the completeness theorem of SLD-resolution.

Theorem 2 (

[

Lloyd, 1987

]

). For a de�nite program

P and a goal clause G = A

1

; : : : ; A

n

, the following

three are equivalent:

1. There is an SLD-refutation of P ^G.

2. There is a substitution � such that fA

1

�; A

2

�; : : : ;

A

n

�g � M (P ) where M(P ) is the least Herbrand

model of P .

3. P ^G is unsatis�able.

Since the least Herbrand modelM(P ) coincides with the

set LC(P ) = fA 2 HB(L) j P j= Ag; the condition 2 is

equivalent to the following condition 2':

2' There is a substitution � such that fA

1

�; A

2

�; : : : ;

A

n

�g � LC(P ):

We extend the de�nition of LC(T ) so that it may be

de�ned for any clausal theory T .

De�nition. For a clausal theory T we de�ne LC(T ) =

fL 2 GL(L) j T j= Lg:

For a de�nite program P , the two de�nitions of LC(P )

are identical because no negative ground literal is a log-

ical consequence of P . If a clausal theory T is unsatis-

�able, LC(T ) = GL(L). Otherwise, no pair of literals

in LC(T ) is complementary. Since no ground literal is a

tautology, LC(T ) = ; i� T is a tautology. When T is a

consistent and C is an arbitrary clause, we get a theorem

which is an extension of the equivalence of 1 and 2' in

Theorem 2.

Theorem 3. Let T be a consistent clausal theory and

C = L

1

_ L

2

_ : : : _ L

n

be a clause. There is an SB-

refutation of (T;C) i� there is substitution � such that

f:L

1

�;:L

2

�; : : : ;:L

n

�g � LC(T ).

Now we show that the relation between inverse entail-

ment and Plotkin's relative subsumption.

Lemma 1. Let H and E be clauses and B be a clausal

theory. Assume that E is not a tautology and that B 6j=

E. Then H is derived from E under B with inverse

entailment i� H �

P

E (B).

By Corollary 1 and Lemma 1, we get the completeness

of inverse entailment.

Theorem 4. Inverse entailment is complete w.r.t.

Plotkin's relative subsumption if E is not a tautology and

that B 6j= E.

From the soundness of resolution principle, it holds

that T ^C is unsatis�able if there is an SB-refutation of

(T;C). However, the converse does not hold in general,

that is, we cannot extend the implication 3) 1 of The-

orem 2. This is the reason why the inverse entailment

rule is not complete w.r.t. �

I

.

5. Comparing Saturant Generalization

with Inverse Entailment

In order to compare saturant generalization with inverse

entailment, we analyze the structure of LC(P ^G) for a

de�nite clause P and a goal G.

At �rst we put LC

+

(T ) = LC(T ) \ HB(L) and

LC

�

(T ) = LC(T )�LC

+

(T ). The following lemma can

be proved easily.

Lemma 2. Let P be a de�nite program and G a goal.

If P ^ G is consistent, LC

+

(P ^G) = LC(P ) = M(P ).

Since E

�

is a de�nite program and E

+

is a goal clause,

we get the following.

Theorem 5. Let B be a de�nite program and E be a

de�nite clause. Assume that E is not a tautology and

that B 6j= E. Then it holds that Bot

�

(E;B) = f:A j A 2

LC

+

(B ^ E)g where Bot

�

(E;B) is the set used in the

de�nition of saturants.

Since E

+

belongs to the set LC

�

(B^E), it is clear that

every hypothesis generated with saturant generalization

can be generated with inverse entailment.

By using SOLDR-resolution introduced in

[

Ya-

mamoto, 1997

]

, we give a more precise relation between

the two rules. We have shown in

[

Yamamoto, 1997

]

that,

if P ^ G is consistent, every element in LC

�

(P ^ G)

is a ground instance of some consequence of SOLDR-

derivation of (P;G). The converse also holds. In other

words, every positive literals in Bot(E;B) can be gener-

ated by using SOLDR-resolution.

Let us consider an SOLDR-derivation of (B^E

�

; E

+

).

The literal E

+

can be obtained if the skip operation at

the �rst step of the SOLDR-derivation. If we represent a

procedure of inverse entailment with SOLDR-resolution,

a procedure of saturant generalization can be obtained

by restricting the usage of the skip operation in SOLDR-

resolution.

The di�erence of the two rules can also be represented

by the completeness theorem of saturant generalization.



The following theorem proved by

[

Buntine, 1988

]

is help-

ful.

Theorem 6 (

[

Buntine, 1988

]

). Let H and E be de�-

nite clauses, and B be a de�nite program. Then H �

B

E (B) i�, for some substitution �, H

+

� = E�

E

and

B ^ E

�

j= :(H

�

�).

Corollary 2. The relation �

B

is a generalization rela-

tion.

From the discussion above and the logic programming

theory, B ^ E

�

j= :(H

�

�) i� H

�

subsumes some dis-

junction of literals in Bot

�

(E;B). This is followed by

the completeness of saturant generalization.

Theorem 7. Saturant generalization is complete w.r.t.

Buntine's generalized subsumption.

6. Concluding Remarks

In this paper we showed that inverse entailment is com-

plete w.r.t. Plotkin's relative subsumption and saturant

generalization is complete w.r.t. Buntine's generalized

subsumption. We also showed that saturant generaliza-

tion can be obtained from inverse entailment. In order to

get the results, we used the set LC(T ) as declarative se-

mantics of a consistent clausal theory T , and showed that

SB-resolution, which is an extension of SLD-resolution,

can be a complete procedural semantics for T .

Some learnability of de�nite programs was shown

in

[

Cohen, 1995a; 1995b

]

by using the same strategy that

inverse entailment is founded on. He gave a class of def-

inite clauses which is learnable in polynomial time. For

every hypothesis H in the class, the predicate symbol

of H

+

does not occur in H

�

. He also showed that it is

di�cult to learn any class of de�nite clauses if the pred-

icate symbol of H

+

is allowed to occur in H

�

. Because

the �rst condition implies that H subsumes an exam-

ple E relative to B, we are now interested in extending

his result so that we can treat non-de�nite clauses as

hypotheses.

From the new proof of the subsumption theorem

in

[

Nienhuys-Cheng and de Wolf, 1994

]

, the set LC(T )

can be represent with an same operator as T

P

. Let us

de�ne GR

n

as follows:

GR

0

(T ) =

�

C

�

�

�

�

C is a ground instance

of a clause in T

�

;

GR

n

(T ) = GR

n�1

(T ) [

�

C

�

�

�

�

C is a resolvent of

C

1

and C

2

2 GR

n�1

(T )

�

;

GR

!

(T ) = [

n�0

GR

n

(T ):

Then it holds that LC(T ) = GR

!

(T ) \ GL(L). For a

de�nite program P , GR

!

(P ) \ GL(L) = T

P

!

(;) since

T

P

!

(;) = LC(P ). From this observation we conjecture

that covering for non-de�nite clauses should be de�ned

with some three-valued logic.
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