
Feature Extraction Using Genetic Algorithms

M. Pei1, E. D. Goodman1, W. F. Punch2
1 Case Center for Computer-Aided Engineering and Manufacturing

2 Department of Computer Science
Genetic Algorithms Research and Applications Group (GARAGe)

Michigan State University, 2325 Engineering Building, East Lansing, MI 48824
e-mail: pei@egr.msu.edu

Abstract. This paper summarizes our research on feature selection and extrac-
tion from high-dimensionality data sets using genetic algorithms. We have
developed a GA-based approach utilizing a feedback linkage between feature
evaluation and classification. That is, we carry out feature selection or feature
extraction simultaneously with classifier design, through “genetic learning and
evolution.” This approach combines a GA with a classifier system. The classi-
fier can be a standard K-Nearest-Neighbor decision rule, a production rule or
another classifier. Here we use a K-Nearest-Neighbor classifier as an example
to introduce this general method. We apply this approach on a series of artifi-
cial test data and on real-world biological data to show the utility of this
approach.

1  Introduction

The growing glut of data in the worlds of science, business and government create an
urgent need for a new generation of automated and intelligent tools and techniques
which can analyze, summarize, and extract “knowledge” from raw data [1]. Most
knowledge discovery or data mining tools and techniques are based on statistics,
machine learning, pattern recognition or artificial neural networks. The great challenge
for data mining comes from huge databases of noisy, high-dimensionality data.
Genetic algorithms (GAs) are good candidates for attacking this challenge since GAs
are very useful for extracting patterns in multiclass, high-dimensionality problems
where heuristic knowledge is sparse or incomplete [2] [3].

The data mining approach normally includes the three major steps in the knowl-
edge discovery process: selection, cleaning, transformation and projection of data;
mining the data to extract patterns; and evaluating and interpreting the results. The first
step is data preprocessing, which is important before any learning or discovery algo-
rithms of data mining are carried out. The key operation of data preprocessing is fea-
ture selection and extraction. Mining is only one step in the overall process. The
quality of mined information depends not only on the effectiveness of the data mining
technique used, but also on the quality and quantity of the data preprocessed. All of
these steps are usually treated as independent on the path from data to knowledge, but
any one step can result in changes in preceding or succeeding steps, often requiring
starting from scratch with new choices and settings.



In this paper, we take classification as the main data mining task to show the gen-
eral model of our approach. The data mining approach we have developed is based on
a genetic algorithm which combines the preprocessing step of feature selection and
extraction and the classification step into an automated loop.

In a decision-theoretic or statistical approach to pattern recognition, the classifica-
tion or description of data is based on the set of data features used. Therefore, feature
selection and extraction are crucial in optimizing performance, and strongly affect
classifier design. Defining appropriate features often requires interaction with experts
in the application area. In practice, there is much noise and redundancy in most high-
dimensionality, complex patterns. Therefore, it is sometimes difficult even for experts
to determine a minimum or optimum feature set. The “curse of dimensionality”
becomes an annoying phenomenon in statistical pattern recognition, artificial neural
network and other data-mining learning techniques. Researchers have discovered that
many learning procedures lack the property of “scalability” -- i.e., these procedures
either fail or produce unsatisfactory results when applied to problems of larger size[6]
[7] [8].

To address this scalability problem, we present an approach for automatic feature
selection and extraction using genetic algorithms (GA’s). The basic operation of this
approach utilizes a feedback linkage between feature evaluation and classification.
That is, we carry out feature transformation and classifier design simultaneously,
through “genetic learning and evolution.” The objective of this approach is to find a
reduced subset among the original N features such that useful class discriminatory
information is included and redundant class information and/or noise is excluded. We
take the following general approach. The data’s original feature space is transformed
into a new feature space with fewer features that (potentially) offer better separation of
the pattern classes, which, in turn, improves the performance of the decision-making
classifier. The criterion for optimality of the feature subset selected is usually the prob-
ability of misclassification. Since the number of different subsets of N available fea-
tures can be very large, exhaustive search is computationally infeasible and other
methods must be examined. In the field of pattern recognition, a number of heuristic
techniques have been used, but it is not clear under what circumstances any one heuris-
tic should be applied, as each has its good and bad points.

In order to apply a GA to classification/discrimination tasks and work out feature
transformations, we combine the GA with a K Nearest Neighbor decision rule, calling
the result theGA/KNN hybridapproach. Here the GA defines a population of weight
vectorsw*, where the dimension of eachw* is the dimension of the data patternx for
each example. Eachw* from the GA is multiplied with every sample’s data pattern
vectorx, yielding a new feature vectory for the given data. The KNN algorithm then
classifies the entirey-transformed data set. The results of the classification for a known
“training” sample set are fed back as part of the fitness function, to guide the genetic
learning/search for the best transformation. The GA result is the “best” vectorw*
under the (potentially conflicting) constraints of the evaluation function. For example,
the “best”w* might be both parsimonious (have the fewest features) and give the few-
est misclassifications. Thus, the GA searches for an optimal transformation from the
original pattern space to feature space for improving the performance of the KNN clas-



sifier[3].
In the following sections, we describe the basic concepts of our approach; present

the GA/KNN approach in more detail; show the results of several experiments; then
finally propose some brief conclusions and offer areas of future study.

2  GA/KNN Hybrid Approach

2.1  Basic Concept of the Approach

In the design of automatic pattern classifiers, ideally the problem of feature selection
and extraction on the one hand and the classifier design on the other should not be con-
sidered independently. Yet, for practical considerations, most researchers make the
simplifying assumption that the feature selection/extraction stage and the classification
stage are independent. However the ultimate goal is correct classification with a corre-
sponding feature pattern extracted and the intermediate step of feature extraction and
dimensionality reduction is, in a sense, subservient to that goal and is not an end in
itself. It would be better to couple feature selection/extraction with effective classifica-
tion techniques[4]. This implies some sort of classification decision feedback mecha-
nism to modify or adapt the feature extractor. Our research follows this direction.

The approach which adopt the above idea is a supervised induction,i.e. “genetic
learning and evolution,” as shown in Figure 1.

Figure 1.Feature Extractor and Classifier with Feedback Learning System

In the GA/KNN hybrid approach, as mentioned above, a genetic algorithm using a
K Nearest Neighbor decision rule searches for a “best” diagonal matrix [W] or weight
vector w* -- i.e., a “best” transformation from pattern space to feature space for
improving the performance of the KNN classifier [3] -- under potentially conflicting
constraints of the evaluation function. The whole structure of the GA/KNN hybrid
approach is shown in Figure 2.

2.2  Different Transformations Using a GA

Based on the above discussion of a GA approach to feature extraction, we formally

Feature
Extractor

  Classifier

Classification
Space

N=Finite
      dimensional

K = number
      of classes

Genetic learning
         and
    Evolution Feedback

Pattern
Space

Feature
Space



describe the problem by defining the mapping function M() and criterion function J().

.

Figure 2. The structure of GA/KNN approach

We definew*, the weight vector, to be a N = |x| vector (or NxN diagonal matrix
[W]) generated by the GA, to multiply each pattern vectorx, yielding the new feature
vectory. That is,

(1) linear transformation

y = M(x) = Wx
where

• wi ∈{0,1}, 1≤ i ≤Ν.
When we use only binary values forw*, we interpret it as follows: if theith weight

 Initialize Population
(random set of weightsw*)

Training
x data set

y = M(x) = Wx

Evaluate by
KNN Rule

Satisfy?

No

Yes

Best set of

weightsw*

GA Evolution
Selection

Crossover

Mutation

New Population

W

w1 0 ˙ 0

0 w2 0

0 0 0 0 wN

=

 ...
...

  .   .   .  .   .
  .   .   .  .   .

,   or w* = [w1,w2, …, wΝ], x = [x1, x2, ⋅ ⋅ ⋅ , xN]



component is one, then theith feature is preserved in feature space; otherwise, the
feature is discarded from the feature set. Thus we perform feature selection to
define an optimal subset and (potentially) reduce the dimensionality of the original
data pattern[5].

• wi ∈[a, b], such that wi ∈[0.0, 10.0] 1≤ i ≤Ν.
We can instead do feature extraction by allowing the values of the weight compo-
nents to range over some values [a, b], such as 0.0 to 10.0 (presuming that the fea-
tures are first “normalized” to some standard range). That amounts to searching for
a relative weighting of features that gives optimal performance on classification of
the known samples. Thus we are selecting for features in a linearly transformed
space. Those weight components that move towards 0 indicate that their corre-
sponding features are not important for the discrimination task. Essentially, those
features “drop out” of the feature space and are not considered. Any feature that
moves towards the maximum weight indicates that the classification process is sen-
sitive to changes in that feature. That feature’s dimension is elongated, which prob-
ably reflects that an increased separation between the classes gave better resolution.
The resulting weights indicate the usefulness of a particular feature, sometimes
called its discriminatory power.[4][8]

Usually, only feature selection can reduce the overall cost of measurement acquisi-
tion, since feature extraction utilizes all information in the pattern representation vec-
tor x to yield feature vectory of lower dimension. But in the case above, the simple
diagonal transformation certainlycan reduce the cost of measurement.

(2) nonlinear transformation, as, for example:

y = M(x) = Wx*

where x* =  [x1, x2, ⋅ ⋅ ⋅ , xN, (xi•xj)1, (xn•xm)2, ⋅ ⋅ ⋅ , (xr•xs)k], for example,

The previous linear transformation can mainly be used on data patterns with
classes which are linearly separable based on scaling or other linear operations.
However, linear transformations are not necessarily sufficient for effective feature
selection and extraction, so an extended form of the above linear transformation is
used here. We have investigated the use of nonlinear transformations to address the
feature extraction and subsequent classification of data patterns, where those data
patterns have correlations between different feature fields. This approach is based
on ana priori knowledge of possible forms of the relationship of the features and
the use of a GA to discover which of those forms best captures the relationship.

W

w1 0 ˙ 0

0 w2 0

0

0 0

0 0 0 0 wN k+

=

 ...
 ...

  .   .   .  .   .
  .   .   .  .   .

    , or  w* = [w1,w2, …, wΝ, wN+1, …, wN+k ],



The various combinations (xi•xj)1, (xn•xm)2, ⋅ ⋅ ⋅ , (xr•xs)k in x* form a set of new
features which can be constructed and discovered by performing various mathe-
matical or logical operations. Choice of appropriate combinations is obviously
problem dependent. In our experiments, we tested an example data pattern which
consists of 15 features, any feature of which by itself is not discriminatory but
which does contain two combinations of features which are discriminatory.
The search problem is NP hard[5]. Originally, for even moderate numbers of fea-
tures (say between 15 and 30) the problem must be solved with the aid of subopti-
mal heuristic methods. These methods, by definition, do not ensure that the result is
optimal. Genetic algorithms are good candidates for this task, since GAs search
from a population, not a single point, and discover new solutions by speculating on
many combinations of the best partial solutions (called building blocks) contained
within the current population. GAs are most useful in multiclass, high-dimension-
ality problems in which guarantees on the performance of heuristics are sparse or
inadequate. GA’s are considered to be global search methods.There are several
problems in running a GA/KNN approach for feature extraction which must be
addressed, such as: chromosome encoding representation, normalization of train-
ing data, and fitness function design. We do not discuss them in detail here; inter-
ested reader can refer to [9].

There are several problems in running a GA/KNN approach for feature extraction
which must be addressed, such as: chromosome encoding representation, normaliza-
tion of training data, and fitness function design. We do not discuss them in detail here;
interested reader can refer to [9].

3  Test Results of GA/KNN Hybrid Approach

3.1  Artificially Generated Datasets

Our first work used several artificially generated data sets, of which Table 1 is typical.
The table represents a template from which we generated as many examples as needed.
The expression {0.0 - 1.0} representsuniformrandom values generated in the range of

0.0 to 1.0. The expression 0.5+5∗[f3]2 represents a generation expression where [f3]
means that the present value of the f3 field is used in the calculation. Thus field f1 and
f7 - f15 represent uniform random noise generated in the range {0.0 - 1.0}, while f2 -
f6 are fields that can be used to distinguish the eight classes A - H, where fields f4 and
f5 make use of values generated in f3. Note that using uniform random values up to
contiguous field boundaries (in contrast to normally distributed values with a specified
mean and variance) yields a dataset much harder for a KNN to classify than (for exam-
ple) for an algorithm based on discrete thresholds.

The encoding string (chromosome) length for the GA for this data set was (15∗1)
=15 bits for feature selection and (15∗8) = 120 bits for feature extraction. The popula-
tion size used was 50. The parameters used to run the GA were two-point crossover
with probability: 0.60 ~ 0.80, mutation rate: 0.001 per bit.

The GA was “trained” on a set of 30 examples of each of the 8 pattern classes for
a total of 240 examples. The GA was run on the 240 exemplars until the population



converged. This “best” w* was then evaluated on a set of 1200 new examples gener-
ated by the same template. Two typical such w*, in the ranges of {0, 1} and [0.0 - 10.0]
respectively, are shown in Table 2. Note that the irrelevant features were removed (set
to 0) by both feature selection and feature extraction. The performance of the discov-
ered w* on classification of the unknown set is also shown in Table 2. The percentages
listed are averages of 5 runs and compare a number of variations on the basic
approach. Note that in classifying the training data, the KNN evaluation function was
modified so as to not use the point being tested as its own “neighbor”. This “leave-one-
out” strategy was used make the training data resemble the test data more closely, since
a test datum will not have itself as a near neighbor during KNN evaluation. Note the
distinct improvement of the transformed space over the standard and normalized
spaces using a KNN alone. Further note that the results of selection (wi ∈{0,1} weight-
ing) and extraction (wi ∈[0, 10] weighting) are quite similar. The results of the 0-10
weighting would have been better, but appeared to settle at a local minimum. This was
likely due to the small signal/noise ratio of the artificially generated, uniformly random
dataset. This is supported by the experiment in which we ran the 0/1 weighting as a
feature selection filter, followed by the 0-10 weightings, in which we obtained a much
better result (3% error)

.

Table 1.  A template for artificially generated datasets

Table 2.  Results on artificially generated datasets

class field 1 field 2 field 3 field 4 field 5 field 6 field7~15

A 0.0~1.0 0.0~1.0 0.0~0.1 0.2+[f3]0.5∗[f3]2 0.5+5∗[f3]2 0.0~1.0

B 0.0~1.0 0.0~1.0 0.0~0.1 0.2+[f3]0.5∗[f3]2 1.0-25∗[f3]2 0.0~1.0

C 0.0~1.0 0.0~1.0 0.1~0.2 0.3--[f3]0.5∗[f3]2 0.5+5∗[f3]2 0.0~1.0

D 0.0~1.0 0.0~1.0 0.1~0.2 0.3--[f3]0.5∗[f3]2 1.0-25∗[f3]2 0.0~1.0

E 0.0~1.0 0.1~0.2 0.0~0.1 0.2+[f3]0.5∗[f3]2 0.5+5∗[f3]2 0.0~1.0

F 0.0~1.0 0.1~0.2 0.0~0.1 0.2+[f3]0.5∗[f3]2 1.0-25∗[f3]2 0.0~1.0

G 0.0~1.0 0.1~0.2 0.1~0.2 0.3--[f3]0.5∗[f3]2 0.5+5∗[f3]2 0.0~1.0

H 0.0~1.0 0.1~0.2 0.1~0.2 0.3--[f3]0.5∗[f3]2 1.0-25∗[f3]2 0.0~1.0

# of unknown
patterns

Errors
normalized

KNN

Errors 0/1
weighted

KNN

Errors 0~10
weighted

KNN

Errors 0~10 weighted
KNN

after selection

1200 35.93% 6.4% 4.13% 3.0%

Type of w* f1 f2 f3 f4 f5 f6 f7-f15

wi ∈{0,1} 0 1 1 1 0 1 0

wi ∈[0, 10] 0.000 5.154 4.656 7.622 0.000 4.248 0.000



We have compared our approach with Whitney’s method (estimation of k-NN classifi-
cation error by the method of leave-one-out and sequential forward selection) on this
artificially generated data set. The results of that method appear quite poor. The classi-
fication error rate was 95% for the 8-class data set. This suboptimal method is essen-
tially useless in this case.

3.2  A Real-World Problem -- Biological Pattern Classification.

Having established the usefulness of GA feature selection and extraction on various
test data, we explored classification of several real-world datasets exemplifying high-
dimensionality biological data. Researchers in the Center for Microbial Ecology
(CME) of Michigan State University have sampled various agricultural environments
for study. Their first experiments used the Biolog test as the discriminator. Biolog
consists of a plate of 96 wells, with a different substrate in each well. These substrates
(various sugars, amino acids and other nutrients) are assimilated by some microbes and
not by others. If the microbial sample processes the substrate in the well, that well
changes color, which can be recorded photometrically. Thus large numbers of samples
can be processed and characterized based on the substrates they can assimilate. Each
microbial sample described was tested on the 96 features provided by Biolog (for some
experiments, extra taxonomic data were also used); the value of each feature is either 0
or 1.

Using the Biolog test suite to generate data, the test set called2,4-D data set is
used in showing the effectiveness of our approach.

2,4-D Data Set

Soil samples were collected from a site that is contaminated with 2,4-D (dichlo-
rophenoxyacetic acid), a pesticide. There are 3 classes, based on three genetically sim-
ilar microbial isolates which show the ability to degrade 2,4-D. There were are a total
of 232 samples.

The questions to be asked using this experiment were of two types:
1. Classification and prediction -- whether these samples from different environments
could be distinguished.
2. Identification. Which of the available features are most important for the discrimina-
tion and which are acting primarily as “noise” - that is, non-contributing features.

We applied our GA/KNN hybrid method on the type of biological data set
described above. Each data element was a 96-bit vector, in which a positive result was
a represented by a 1 and a negative result, a 0. In other words, the data elements form
dichotomous measurement spaces, or binary pattern spaces. When doing feature selec-
tion, the chromosome was, correspondingly, a 96-bit binary vector, indicating feature
used or not used. When we used a GA to search for a best transformation weight vec-
tor, the length of string (chromosome) was a considerably longer (8*96) = 768. Com-
pared with the large number of features, the available training data were limited, since
there were 241 samples in the data set. All samples were used in leave-one-out train-
ing, then 10 randomly selected subsets of the training data were tested and results aver-



aged.  The classification results of this experiments are listed in Table 3.

Table 3.  Results on 2,4-D data

The results showed that the classification error rate for the ordinary KNN was high
for these complex data patterns. The ordinary KNN is sensitive to noisy data and does
not rate the relative importance of individual features for discrimination. The perfor-
mance of the GA/KNN hybrid approach was significantly better than the unmodified
KNN.

3.3  Finding a Nearly Optimum Feature Set

For the artificially generated dataset of Section IV.1, we found either the minimum or
nearly minimum optimum feature set. However, for the real-world classification prob-
lems just discussed, it is not clear whether the GA/KNN solution is indeed the global
optimal solution. We also noted in repeated runs of the GA/KNN on our biological
datasets that the sets of weights found were not identical from run to run. This may
reflect the fact that the minimum feature set required to distinguish the classes is not
unique. We addressed these problems by further exploring the 2,4-D data using a num-
ber of variations on the original approach. The first of these was to perform 0/1 selec-
tion, then perform extraction on the reduced data set (called Selector-Distributor), in a
two-step process.

The first step, feature selection using wi ∈{0,1}, eliminates some features which
are either noisy or contain insufficient or redundant information. The first step on the
2,4-D dataset reduced the number of features from 96 to 31. The error rate using selec-
tion alone was 0.83%

In the second step, we used feature extraction in the range of [0,10] on the reduced
set. For practical speedup of the GA, we set weight components less than 1 to zero. We
ran the algorithm twice, using wi ∈[0, 10] range on a 31-feature set (based on the first
selection result) and then on a 23-feature set (based on the second selection run). Both
runs achieved an error rate of 0.24%, as shown in Figure 3. The best weight vector is
shown in Table 4. We then examined the stepwise contribution of each element of the
weight vector in their order of importance as indicated by the GA/KNN. Thus, we cal-
culated and plotted the classification error rate of KNN using features x1*w1; x1*w1
and x2*w2; x1*w1, x2*w2 and x3*w3; and so on respectively, in the order of
w1>w2>w3>... .  The result is shown in Figure 3.

number of
patterns

Errors, with
original Knn

Errors, with
0/1 weighted Knn

Errors, with
0-10 weighted Knn

test 10% 8.30% 3.20% 2.00%

training 232 6.64% 1.66% 0.83%



.

Table 4.  Best weight vector for the 2,4-D data set
From the above results we can draw this preliminary conclusion: feature selection

and extraction as performed by the GA/KNN method can be used to find nearly mini-
mum, nearly optimal feature sets for discrimination of at least some types of high-
dimensionality, noisy data.

3.4  Discovering New Features Using Nonlinear Transformation

Having tested the approach on independent features, we examined the search capa-
bilities of GA feature extraction using nonlinear transformations on correlated data.
We investigated ways to use the correlations between fields in improving classifica-
tions. Of course, K nearest neighbor methods are sensitive to some inter-field correla-
tions already, but not in the sharpest sense. If we know theform of some possibly
significant inter-field correlations in advance, we can use that form of non-linear trans-
formation to search for fields with those sorts of correlations. Not only would we do
dimensionality reduction, but also creation of new meaningful features for effective
classification. For example, we wondered whether, given a dataset in which a correla-
tion between two otherwise non-discriminatory fields was important, the GA could
discover the usefulness of that pairing in our scheme. An artificially generated dataset
to test this hypothesis is shown in Table 5
.

Figure 3.2,4-D feature importance analysis

feature # 42 86 53 66 56 63 19 21 27 64 71 82

Weight 1.55 2.07 0.00 3.69 2.78 0.00 1.64 4.29 0.00 0.00 3.11 0.00

feature # 89 51 14 22 11 93 78 6 81 91 9

Weight 1.67 0.00 0.00 2.41 0.00 3.64 4.24 4.15 2.10 1.21 4.10

78

6 9

66
93

71 56

22
81 86 8919

42 91

21



The example data sets created using the template shown in Table 5 imply individual
fields which are not by themselves significant for classification, but taken as pairs and
multiplied together, completely separate the classes. The data consist of 15 indepen-
dent uniform random values in the range [0.0 - 1.0] and two “hidden features” not
appearing in the dataset; that is, the data were sieved to make the products of f1and f2,
and of f3 and f4 significant, but no products actually appear among the data values.

We believed it would be inefficient to create the fields for every combination of
pairs of fields. This is because, for high-dimensionality data sets, the size of the chro-
mosome would be very large (n genes for the features andn (n-1) for the pairs, for
example). Instead, we coded some special fields, termed “index fields”, in the genome,
representing pairs of field indices (instead of some weight) plus additional weight
component fields to apply to these index-pair-generated terms. In this way, the GA can
selectthe pair of fields to test for correlation under the predetermined transformation,
and then weight, as it does all the other fields, the significance of that constructed fea-
ture. The evaluation function was modified such that values in the fields pointed to by
the two indices would be passed through some pre-determined mathematical or logical
operations (in this case, just simple multiplication). This essentially creates the product
of these two fields as a new attribute of the individual to be classified. The GA can then
search for a weight component for that product field. Only a tiny subset of all possible
pairs of fields is being examined by the GA at any point in time, but whenever cross-
over or mutation alters an index pair, the GA essentially begins to search for a weight
component for that new pair. For the runs to be discussed, only two weight values were
possible for each index pair, represented by a single bit in the index part of the chromo-
some. The value of the weight component was set to either 10.0 or 0 depending on
whether the weight component bit was on or off. We have conducted other experiments
in which the GA searches through a large weight space, but this simpler approach
seems to work very well, at least for these artificially generated test data. To allow a
“selector of pairs” capability, if the GA chooses either index to be 0, then that index
pair is not used in the evaluation function, thus allowing the GA to select forno index
pair terms. The fitness function strongly discourages the use of the same index twice in
a pair (e.g. 3,3) or the repetition of a pair in a string (e.g. 2, 5; 5, 2), by assigning a low
fitness to any string with such a pair.

The goal was to see if the GA, using the approach of searching simultaneously for
index pairs and weight components on that pair, would discover the significant nonlin-
ear transformation and work effectively. We modified the evaluation function as
described, and allowed 3 index pairs at the end of each individual string of the popula-
tion. We trained the algorithm on 10 examples from each of the 8 classes (80 total),
then tested the trained algorithm on 1200 newly generated test examples. The results of
running this modification are shown in Table 6. The GA indeed found the “hidden fea-
tures” and therefore could perform classification. The pure KNN alone had an 88%
error rate for the unknowns. The nonlinear transformation index algorithm did indeed
find the appropriate indices in all of several runs and got the error rate down to 0.0% by
finding the two index pairs (1,2) and (3,4), setting their weight components to 10, and
dropping all other weight components to a low level shown on Table 6 and Table 7
respectively.



Table 5. Artificial test data template using hidden features

Table 6. Classification results of different approach

Table 7. Discovering a hidden feature using nonlinear transformation

The goal was to see if the GA, using the approach of searching simultaneously for
index pairs and weight components on that pair, would discover the significant nonlin-
ear transformation and work effectively. We modified the evaluation function as
described, and allowed 3 index pairs at the end of each individual string of the popula-
tion. We trained the algorithm on 10 examples from each of the 8 classes (80 total),
then tested the trained algorithm on 1200 newly generated test examples. The results of
running this modification are shown in Table 6. The GA indeed found the “hidden fea-

class feature1~15 hidden feature 1 hidden feature 2

   1    0.0~1.0   0.42 < (1) * (2) < 0.44   0.54 < (3) * (4) < 0.56

   2    0.0~1.0   0.42 < (1) * (2) < 0.44   0.58 < (3) * (4) < 0.60

   3    0.0~1.0   0.42 < (1) * (2) < 0.44   0.62 < (3) * (4) < 0.64

   4    0.0~1.0   0.42 < (1) * (2) < 0.44   0.66 < (3) * (4) < 0.68

   5    0.0~1.0   0.46 < (1) * (2) < 0.48   0.54 < (3) * (4) < 0.56

   6    0.0~1.0   0.46 < (1) * (2) < 0.48   0.58 < (3) * (4) < 0.60

   7    0.0~1.0   0.46 < (1) * (2) < 0.48   0.62 < (3) * (4) < 0.64

   8    0.0~1.0   0.46 < (1) * (2) < 0.48   0.66 < (3) * (4) < 0.68

Algorithm
population

size
Trials

Error rate
training set

Error rate
1200 test set

GA/KNN with
index

50 25,600 0.0% 0.58%

GA/KNN without
index

50 36,000 6.5% 22.67%

pure KNN 39.25% 86.75%

field
field
1-15

field 16 field 17 field 18
index
pair 1

index
pair 2

index
pair 3

weight
component and

index
0.0 10.0 10.0 0.0 1, 2 3, 4 5, 6



tures” and therefore could perform classification. The pure KNN alone had an 88%
error rate for the unknowns. The nonlinear transformation index algorithm did indeed
find the appropriate indices in all of several runs and got the error rate down to 0.0% by
finding the two index pairs (1,2) and (3,4), setting their weight components to 10, and
dropping all other weight components to a low level shown on Table 6 and Table 7
respectively.

This experiment tells us GA-based methods can be used to discover another trans-
formation type, the definition of new derived attributes by applying mathematical or
logical operators on the value of one or more fields in the data base. This makes it
appear promising for many data mining applications.

4  Conclusions and Future Work

In this paper we have shown that genetic algorithms can play an important role in the
automated loop of feature extraction and of classification. The KNN classifier in the
GA/KNN approach can be replaced by different other classifiers. We have also devel-
oped a GA/Rule for automatic feature extraction and classification using a production
rule system. It has similar functionality and is more time efficient [10]. The basic
model of feature extraction-feedback-classification technique also can be extended to
apply to other data mining tasks such as association discovery, regression, or concep-
tual clustering if we can design appropriate criterion function. We believe genetic algo-
rithms will be a useful tools for data mining in many situations.

Acknowledgments
This work was supported in part by Michigan State University’s Center for Microbial
Ecology and the Beijing Natural Science Foundation of China.

References
[1] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From Data Mining to Knowledge

Discovery: An Overview, Advances in Knowledge Discovery and Data Mining,
1996, p1-34.

[2] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. New York: Addison Wesley, 1989.

[3] W.F. Punch, E.D. Goodman, Min Pei, Lai Chia-shun, P.Hovland, and R. Enbody.
Further Research on Feature Selection and Classification Using Genetic Algo-
rithms.Proc. Fifth Inter. Conf. Genetic Algorithms and their Applications (ICGA),
1993, p.557.

[4] Harry C. Andrew,Introduction to Mathematical Technique in Pattern Recognition.
New York: John Wiley & Sons Inc. 1972.

[5] W. Siedlecki and J. Sklansky, On Automatic Feature Selection Internat.Journal of
Pattern Recognition and Artificial Intelligence. Vol 2, No.2 1988, 197-220.

[6] A. K. Jain and B. Chandrasekaran, Dimensionality and Sample Size Considerations
in Pattern Recognition Practice.Handbook of Statistics, Vol. 2 P. R. Krishnaiah
and L. N. Kanal, eds. North-Holland, Amsterdam, 1982, 835-855

[7] A. Jain, Pattern Recognition.International Encyclopedia of Robotics Applications



and Automation, Wiley & Sons, 1988, 1052-1063.
[8] P. A. Devijverand, J. Kittler,Pattern Recognition: A Statistical Approach, Prentice

Hall, Lodon, 1982.
[9] M. Pei, E.D. Goodman, W.F. Punch, Y. Ding, Genetic Algorithms for Classification

and Feature Extraction. 1995 Annual Meeting, Classification Society of North
America, June 1995.

[10] M. Pei, E.D. Goodman, W.F. Punch, Pattern Discovery From Data Using Genetic
Algorithms. First Pacific-Asia Conference on Knowledge Discovery & Data Min-
ing, Feb. 1997.



Feature Extraction Using Genetic Algorithms

M. Pei1, E. D. Goodman1, W. F. Punch2
1 Case Center for Computer-Aided Engineering and Manufacturing

2 Department of Computer Science
Genetic Algorithms Research and Applications Group (GARAGe)

Michigan State University, 2325 Engineering Building, East Lansing, MI 48824
e-mail: pei@egr.msu.edu

Abstract. This paper summarizes our research on feature selection and extrac-
tion from high-dimensionality data sets using genetic algorithms. We have
developed a GA-based approach utilizing a feedback linkage between feature
evaluation and classification. That is, we carry out feature selection or feature
extraction simultaneously with classifier design, through “genetic learning and
evolution.” This approach combines a GA with a classifier system. The classi-
fier can be a standard K-Nearest-Neighbor decision rule, a production rule or
another classifier. Here we use a K-Nearest-Neighbor classifier as an example
to introduce this general method. We apply this approach on a series of artifi-
cial test data and on real-world biological data to show the utility of this
approach.

1  Introduction

The growing glut of data in the worlds of science, business and government create an
urgent need for a new generation of automated and intelligent tools and techniques
which can analyze, summarize, and extract “knowledge” from raw data [1]. Most
knowledge discovery or data mining tools and techniques are based on statistics,
machine learning, pattern recognition or artificial neural networks. The great challenge
for data mining comes from huge databases of noisy, high-dimensionality data.
Genetic algorithms (GAs) are good candidates for attacking this challenge since GAs
are very useful for extracting patterns in multiclass, high-dimensionality problems
where heuristic knowledge is sparse or incomplete [2] [3].

The data mining approach normally includes the three major steps in the knowl-
edge discovery process: selection, cleaning, transformation and projection of data;
mining the data to extract patterns; and evaluating and interpreting the results. The first
step is data preprocessing, which is important before any learning or discovery algo-
rithms of data mining are carried out. The key operation of data preprocessing is fea-
ture selection and extraction. Mining is only one step in the overall process. The
quality of mined information depends not only on the effectiveness of the data mining
technique used, but also on the quality and quantity of the data preprocessed. All of
these steps are usually treated as independent on the path from data to knowledge, but
any one step can result in changes in preceding or succeeding steps, often requiring
starting from scratch with new choices and settings.



In this paper, we take classification as the main data mining task to show the gen-
eral model of our approach. The data mining approach we have developed is based on
a genetic algorithm which combines the preprocessing step of feature selection and
extraction and the classification step into an automated loop.

In a decision-theoretic or statistical approach to pattern recognition, the classifica-
tion or description of data is based on the set of data features used. Therefore, feature
selection and extraction are crucial in optimizing performance, and strongly affect
classifier design. Defining appropriate features often requires interaction with experts
in the application area. In practice, there is much noise and redundancy in most high-
dimensionality, complex patterns. Therefore, it is sometimes difficult even for experts
to determine a minimum or optimum feature set. The “curse of dimensionality”
becomes an annoying phenomenon in statistical pattern recognition, artificial neural
network and other data-mining learning techniques. Researchers have discovered that
many learning procedures lack the property of “scalability” -- i.e., these procedures
either fail or produce unsatisfactory results when applied to problems of larger size[6]
[7] [8].

To address this scalability problem, we present an approach for automatic feature
selection and extraction using genetic algorithms (GA’s). The basic operation of this
approach utilizes a feedback linkage between feature evaluation and classification.
That is, we carry out feature transformation and classifier design simultaneously,
through “genetic learning and evolution.” The objective of this approach is to find a
reduced subset among the original N features such that useful class discriminatory
information is included and redundant class information and/or noise is excluded. We
take the following general approach. The data’s original feature space is transformed
into a new feature space with fewer features that (potentially) offer better separation of
the pattern classes, which, in turn, improves the performance of the decision-making
classifier. The criterion for optimality of the feature subset selected is usually the prob-
ability of misclassification. Since the number of different subsets of N available fea-
tures can be very large, exhaustive search is computationally infeasible and other
methods must be examined. In the field of pattern recognition, a number of heuristic
techniques have been used, but it is not clear under what circumstances any one heuris-
tic should be applied, as each has its good and bad points.

In order to apply a GA to classification/discrimination tasks and work out feature
transformations, we combine the GA with a K Nearest Neighbor decision rule, calling
the result theGA/KNN hybridapproach. Here the GA defines a population of weight
vectorsw*, where the dimension of eachw* is the dimension of the data patternx for
each example. Eachw* from the GA is multiplied with every sample’s data pattern
vectorx, yielding a new feature vectory for the given data. The KNN algorithm then
classifies the entirey-transformed data set. The results of the classification for a known
“training” sample set are fed back as part of the fitness function, to guide the genetic
learning/search for the best transformation. The GA result is the “best” vectorw*
under the (potentially conflicting) constraints of the evaluation function. For example,
the “best”w* might be both parsimonious (have the fewest features) and give the few-
est misclassifications. Thus, the GA searches for an optimal transformation from the
original pattern space to feature space for improving the performance of the KNN clas-



sifier[3].
In the following sections, we describe the basic concepts of our approach; present

the GA/KNN approach in more detail; show the results of several experiments; then
finally propose some brief conclusions and offer areas of future study.

2  GA/KNN Hybrid Approach

2.1  Basic Concept of the Approach

In the design of automatic pattern classifiers, ideally the problem of feature selection
and extraction on the one hand and the classifier design on the other should not be con-
sidered independently. Yet, for practical considerations, most researchers make the
simplifying assumption that the feature selection/extraction stage and the classification
stage are independent. However the ultimate goal is correct classification with a corre-
sponding feature pattern extracted and the intermediate step of feature extraction and
dimensionality reduction is, in a sense, subservient to that goal and is not an end in
itself. It would be better to couple feature selection/extraction with effective classifica-
tion techniques[4]. This implies some sort of classification decision feedback mecha-
nism to modify or adapt the feature extractor. Our research follows this direction.

The approach which adopt the above idea is a supervised induction,i.e. “genetic
learning and evolution,” as shown in Figure 1.

Figure 1.Feature Extractor and Classifier with Feedback Learning System

In the GA/KNN hybrid approach, as mentioned above, a genetic algorithm using a
K Nearest Neighbor decision rule searches for a “best” diagonal matrix [W] or weight
vector w* -- i.e., a “best” transformation from pattern space to feature space for
improving the performance of the KNN classifier [3] -- under potentially conflicting
constraints of the evaluation function. The whole structure of the GA/KNN hybrid
approach is shown in Figure 2.

2.2  Different Transformations Using a GA

Based on the above discussion of a GA approach to feature extraction, we formally

Feature
Extractor

  Classifier

Classification
Space

N=Finite
      dimensional

K = number
      of classes

Genetic learning
         and
    Evolution Feedback

Pattern
Space

Feature
Space



describe the problem by defining the mapping function M() and criterion function J().

.

Figure 2. The structure of GA/KNN approach

We definew*, the weight vector, to be a N = |x| vector (or NxN diagonal matrix
[W]) generated by the GA, to multiply each pattern vectorx, yielding the new feature
vectory. That is,

(1) linear transformation

y = M(x) = Wx
where

• wi ∈{0,1}, 1≤ i ≤Ν.
When we use only binary values forw*, we interpret it as follows: if theith weight

 Initialize Population
(random set of weightsw*)

Training
x data set

y = M(x) = Wx

Evaluate by
KNN Rule

Satisfy?

No

Yes

Best set of

weightsw*

GA Evolution
Selection

Crossover

Mutation

New Population

W

w1 0 ˙ 0

0 w2 0

0 0 0 0 wN

=

 ...
...

  .   .   .  .   .
  .   .   .  .   .

,   or w* = [w1,w2, …, wΝ], x = [x1, x2, ⋅ ⋅ ⋅ , xN]



component is one, then theith feature is preserved in feature space; otherwise, the
feature is discarded from the feature set. Thus we perform feature selection to
define an optimal subset and (potentially) reduce the dimensionality of the original
data pattern[5].

• wi ∈[a, b], such that wi ∈[0.0, 10.0] 1≤ i ≤Ν.
We can instead do feature extraction by allowing the values of the weight compo-
nents to range over some values [a, b], such as 0.0 to 10.0 (presuming that the fea-
tures are first “normalized” to some standard range). That amounts to searching for
a relative weighting of features that gives optimal performance on classification of
the known samples. Thus we are selecting for features in a linearly transformed
space. Those weight components that move towards 0 indicate that their corre-
sponding features are not important for the discrimination task. Essentially, those
features “drop out” of the feature space and are not considered. Any feature that
moves towards the maximum weight indicates that the classification process is sen-
sitive to changes in that feature. That feature’s dimension is elongated, which prob-
ably reflects that an increased separation between the classes gave better resolution.
The resulting weights indicate the usefulness of a particular feature, sometimes
called its discriminatory power.[4][8]

Usually, only feature selection can reduce the overall cost of measurement acquisi-
tion, since feature extraction utilizes all information in the pattern representation vec-
tor x to yield feature vectory of lower dimension. But in the case above, the simple
diagonal transformation certainlycan reduce the cost of measurement.

(2) nonlinear transformation, as, for example:

y = M(x) = Wx*

where x* =  [x1, x2, ⋅ ⋅ ⋅ , xN, (xi•xj)1, (xn•xm)2, ⋅ ⋅ ⋅ , (xr•xs)k], for example,

The previous linear transformation can mainly be used on data patterns with
classes which are linearly separable based on scaling or other linear operations.
However, linear transformations are not necessarily sufficient for effective feature
selection and extraction, so an extended form of the above linear transformation is
used here. We have investigated the use of nonlinear transformations to address the
feature extraction and subsequent classification of data patterns, where those data
patterns have correlations between different feature fields. This approach is based
on ana priori knowledge of possible forms of the relationship of the features and
the use of a GA to discover which of those forms best captures the relationship.

W

w1 0 ˙ 0

0 w2 0

0

0 0

0 0 0 0 wN k+

=

 ...
 ...

  .   .   .  .   .
  .   .   .  .   .

    , or  w* = [w1,w2, …, wΝ, wN+1, …, wN+k ],



The various combinations (xi•xj)1, (xn•xm)2, ⋅ ⋅ ⋅ , (xr•xs)k in x* form a set of new
features which can be constructed and discovered by performing various mathe-
matical or logical operations. Choice of appropriate combinations is obviously
problem dependent. In our experiments, we tested an example data pattern which
consists of 15 features, any feature of which by itself is not discriminatory but
which does contain two combinations of features which are discriminatory.
The search problem is NP hard[5]. Originally, for even moderate numbers of fea-
tures (say between 15 and 30) the problem must be solved with the aid of subopti-
mal heuristic methods. These methods, by definition, do not ensure that the result is
optimal. Genetic algorithms are good candidates for this task, since GAs search
from a population, not a single point, and discover new solutions by speculating on
many combinations of the best partial solutions (called building blocks) contained
within the current population. GAs are most useful in multiclass, high-dimension-
ality problems in which guarantees on the performance of heuristics are sparse or
inadequate. GA’s are considered to be global search methods.There are several
problems in running a GA/KNN approach for feature extraction which must be
addressed, such as: chromosome encoding representation, normalization of train-
ing data, and fitness function design. We do not discuss them in detail here; inter-
ested reader can refer to [9].

There are several problems in running a GA/KNN approach for feature extraction
which must be addressed, such as: chromosome encoding representation, normaliza-
tion of training data, and fitness function design. We do not discuss them in detail here;
interested reader can refer to [9].

3  Test Results of GA/KNN Hybrid Approach

3.1  Artificially Generated Datasets

Our first work used several artificially generated data sets, of which Table 1 is typical.
The table represents a template from which we generated as many examples as needed.
The expression {0.0 - 1.0} representsuniformrandom values generated in the range of

0.0 to 1.0. The expression 0.5+5∗[f3]2 represents a generation expression where [f3]
means that the present value of the f3 field is used in the calculation. Thus field f1 and
f7 - f15 represent uniform random noise generated in the range {0.0 - 1.0}, while f2 -
f6 are fields that can be used to distinguish the eight classes A - H, where fields f4 and
f5 make use of values generated in f3. Note that using uniform random values up to
contiguous field boundaries (in contrast to normally distributed values with a specified
mean and variance) yields a dataset much harder for a KNN to classify than (for exam-
ple) for an algorithm based on discrete thresholds.

The encoding string (chromosome) length for the GA for this data set was (15∗1)
=15 bits for feature selection and (15∗8) = 120 bits for feature extraction. The popula-
tion size used was 50. The parameters used to run the GA were two-point crossover
with probability: 0.60 ~ 0.80, mutation rate: 0.001 per bit.

The GA was “trained” on a set of 30 examples of each of the 8 pattern classes for
a total of 240 examples. The GA was run on the 240 exemplars until the population



converged. This “best” w* was then evaluated on a set of 1200 new examples gener-
ated by the same template. Two typical such w*, in the ranges of {0, 1} and [0.0 - 10.0]
respectively, are shown in Table 2. Note that the irrelevant features were removed (set
to 0) by both feature selection and feature extraction. The performance of the discov-
ered w* on classification of the unknown set is also shown in Table 2. The percentages
listed are averages of 5 runs and compare a number of variations on the basic
approach. Note that in classifying the training data, the KNN evaluation function was
modified so as to not use the point being tested as its own “neighbor”. This “leave-one-
out” strategy was used make the training data resemble the test data more closely, since
a test datum will not have itself as a near neighbor during KNN evaluation. Note the
distinct improvement of the transformed space over the standard and normalized
spaces using a KNN alone. Further note that the results of selection (wi ∈{0,1} weight-
ing) and extraction (wi ∈[0, 10] weighting) are quite similar. The results of the 0-10
weighting would have been better, but appeared to settle at a local minimum. This was
likely due to the small signal/noise ratio of the artificially generated, uniformly random
dataset. This is supported by the experiment in which we ran the 0/1 weighting as a
feature selection filter, followed by the 0-10 weightings, in which we obtained a much
better result (3% error)

.

Table 1.  A template for artificially generated datasets

Table 2.  Results on artificially generated datasets

class field 1 field 2 field 3 field 4 field 5 field 6 field7~15

A 0.0~1.0 0.0~1.0 0.0~0.1 0.2+[f3]0.5∗[f3]2 0.5+5∗[f3]2 0.0~1.0

B 0.0~1.0 0.0~1.0 0.0~0.1 0.2+[f3]0.5∗[f3]2 1.0-25∗[f3]2 0.0~1.0

C 0.0~1.0 0.0~1.0 0.1~0.2 0.3--[f3]0.5∗[f3]2 0.5+5∗[f3]2 0.0~1.0

D 0.0~1.0 0.0~1.0 0.1~0.2 0.3--[f3]0.5∗[f3]2 1.0-25∗[f3]2 0.0~1.0

E 0.0~1.0 0.1~0.2 0.0~0.1 0.2+[f3]0.5∗[f3]2 0.5+5∗[f3]2 0.0~1.0

F 0.0~1.0 0.1~0.2 0.0~0.1 0.2+[f3]0.5∗[f3]2 1.0-25∗[f3]2 0.0~1.0

G 0.0~1.0 0.1~0.2 0.1~0.2 0.3--[f3]0.5∗[f3]2 0.5+5∗[f3]2 0.0~1.0

H 0.0~1.0 0.1~0.2 0.1~0.2 0.3--[f3]0.5∗[f3]2 1.0-25∗[f3]2 0.0~1.0

# of unknown
patterns

Errors
normalized

KNN

Errors 0/1
weighted

KNN

Errors 0~10
weighted

KNN

Errors 0~10 weighted
KNN

after selection

1200 35.93% 6.4% 4.13% 3.0%

Type of w* f1 f2 f3 f4 f5 f6 f7-f15

wi ∈{0,1} 0 1 1 1 0 1 0

wi ∈[0, 10] 0.000 5.154 4.656 7.622 0.000 4.248 0.000



We have compared our approach with Whitney’s method (estimation of k-NN classifi-
cation error by the method of leave-one-out and sequential forward selection) on this
artificially generated data set. The results of that method appear quite poor. The classi-
fication error rate was 95% for the 8-class data set. This suboptimal method is essen-
tially useless in this case.

3.2  A Real-World Problem -- Biological Pattern Classification.

Having established the usefulness of GA feature selection and extraction on various
test data, we explored classification of several real-world datasets exemplifying high-
dimensionality biological data. Researchers in the Center for Microbial Ecology
(CME) of Michigan State University have sampled various agricultural environments
for study. Their first experiments used the Biolog test as the discriminator. Biolog
consists of a plate of 96 wells, with a different substrate in each well. These substrates
(various sugars, amino acids and other nutrients) are assimilated by some microbes and
not by others. If the microbial sample processes the substrate in the well, that well
changes color, which can be recorded photometrically. Thus large numbers of samples
can be processed and characterized based on the substrates they can assimilate. Each
microbial sample described was tested on the 96 features provided by Biolog (for some
experiments, extra taxonomic data were also used); the value of each feature is either 0
or 1.

Using the Biolog test suite to generate data, the test set called2,4-D data set is
used in showing the effectiveness of our approach.

2,4-D Data Set

Soil samples were collected from a site that is contaminated with 2,4-D (dichlo-
rophenoxyacetic acid), a pesticide. There are 3 classes, based on three genetically sim-
ilar microbial isolates which show the ability to degrade 2,4-D. There were are a total
of 232 samples.

The questions to be asked using this experiment were of two types:
1. Classification and prediction -- whether these samples from different environments
could be distinguished.
2. Identification. Which of the available features are most important for the discrimina-
tion and which are acting primarily as “noise” - that is, non-contributing features.

We applied our GA/KNN hybrid method on the type of biological data set
described above. Each data element was a 96-bit vector, in which a positive result was
a represented by a 1 and a negative result, a 0. In other words, the data elements form
dichotomous measurement spaces, or binary pattern spaces. When doing feature selec-
tion, the chromosome was, correspondingly, a 96-bit binary vector, indicating feature
used or not used. When we used a GA to search for a best transformation weight vec-
tor, the length of string (chromosome) was a considerably longer (8*96) = 768. Com-
pared with the large number of features, the available training data were limited, since
there were 241 samples in the data set. All samples were used in leave-one-out train-
ing, then 10 randomly selected subsets of the training data were tested and results aver-



aged.  The classification results of this experiments are listed in Table 3.

Table 3.  Results on 2,4-D data

The results showed that the classification error rate for the ordinary KNN was high
for these complex data patterns. The ordinary KNN is sensitive to noisy data and does
not rate the relative importance of individual features for discrimination. The perfor-
mance of the GA/KNN hybrid approach was significantly better than the unmodified
KNN.

3.3  Finding a Nearly Optimum Feature Set

For the artificially generated dataset of Section IV.1, we found either the minimum or
nearly minimum optimum feature set. However, for the real-world classification prob-
lems just discussed, it is not clear whether the GA/KNN solution is indeed the global
optimal solution. We also noted in repeated runs of the GA/KNN on our biological
datasets that the sets of weights found were not identical from run to run. This may
reflect the fact that the minimum feature set required to distinguish the classes is not
unique. We addressed these problems by further exploring the 2,4-D data using a num-
ber of variations on the original approach. The first of these was to perform 0/1 selec-
tion, then perform extraction on the reduced data set (called Selector-Distributor), in a
two-step process.

The first step, feature selection using wi ∈{0,1}, eliminates some features which
are either noisy or contain insufficient or redundant information. The first step on the
2,4-D dataset reduced the number of features from 96 to 31. The error rate using selec-
tion alone was 0.83%

In the second step, we used feature extraction in the range of [0,10] on the reduced
set. For practical speedup of the GA, we set weight components less than 1 to zero. We
ran the algorithm twice, using wi ∈[0, 10] range on a 31-feature set (based on the first
selection result) and then on a 23-feature set (based on the second selection run). Both
runs achieved an error rate of 0.24%, as shown in Figure 3. The best weight vector is
shown in Table 4. We then examined the stepwise contribution of each element of the
weight vector in their order of importance as indicated by the GA/KNN. Thus, we cal-
culated and plotted the classification error rate of KNN using features x1*w1; x1*w1
and x2*w2; x1*w1, x2*w2 and x3*w3; and so on respectively, in the order of
w1>w2>w3>... .  The result is shown in Figure 3.

number of
patterns

Errors, with
original Knn

Errors, with
0/1 weighted Knn

Errors, with
0-10 weighted Knn

test 10% 8.30% 3.20% 2.00%

training 232 6.64% 1.66% 0.83%



.

Table 4.  Best weight vector for the 2,4-D data set
From the above results we can draw this preliminary conclusion: feature selection

and extraction as performed by the GA/KNN method can be used to find nearly mini-
mum, nearly optimal feature sets for discrimination of at least some types of high-
dimensionality, noisy data.

3.4  Discovering New Features Using Nonlinear Transformation

Having tested the approach on independent features, we examined the search capa-
bilities of GA feature extraction using nonlinear transformations on correlated data.
We investigated ways to use the correlations between fields in improving classifica-
tions. Of course, K nearest neighbor methods are sensitive to some inter-field correla-
tions already, but not in the sharpest sense. If we know theform of some possibly
significant inter-field correlations in advance, we can use that form of non-linear trans-
formation to search for fields with those sorts of correlations. Not only would we do
dimensionality reduction, but also creation of new meaningful features for effective
classification. For example, we wondered whether, given a dataset in which a correla-
tion between two otherwise non-discriminatory fields was important, the GA could
discover the usefulness of that pairing in our scheme. An artificially generated dataset
to test this hypothesis is shown in Table 5
.

Figure 3.2,4-D feature importance analysis

feature # 42 86 53 66 56 63 19 21 27 64 71 82

Weight 1.55 2.07 0.00 3.69 2.78 0.00 1.64 4.29 0.00 0.00 3.11 0.00

feature # 89 51 14 22 11 93 78 6 81 91 9

Weight 1.67 0.00 0.00 2.41 0.00 3.64 4.24 4.15 2.10 1.21 4.10

78

6 9

66
93

71 56

22
81 86 8919

42 91

21



The example data sets created using the template shown in Table 5 imply individual
fields which are not by themselves significant for classification, but taken as pairs and
multiplied together, completely separate the classes. The data consist of 15 indepen-
dent uniform random values in the range [0.0 - 1.0] and two “hidden features” not
appearing in the dataset; that is, the data were sieved to make the products of f1and f2,
and of f3 and f4 significant, but no products actually appear among the data values.

We believed it would be inefficient to create the fields for every combination of
pairs of fields. This is because, for high-dimensionality data sets, the size of the chro-
mosome would be very large (n genes for the features andn (n-1) for the pairs, for
example). Instead, we coded some special fields, termed “index fields”, in the genome,
representing pairs of field indices (instead of some weight) plus additional weight
component fields to apply to these index-pair-generated terms. In this way, the GA can
selectthe pair of fields to test for correlation under the predetermined transformation,
and then weight, as it does all the other fields, the significance of that constructed fea-
ture. The evaluation function was modified such that values in the fields pointed to by
the two indices would be passed through some pre-determined mathematical or logical
operations (in this case, just simple multiplication). This essentially creates the product
of these two fields as a new attribute of the individual to be classified. The GA can then
search for a weight component for that product field. Only a tiny subset of all possible
pairs of fields is being examined by the GA at any point in time, but whenever cross-
over or mutation alters an index pair, the GA essentially begins to search for a weight
component for that new pair. For the runs to be discussed, only two weight values were
possible for each index pair, represented by a single bit in the index part of the chromo-
some. The value of the weight component was set to either 10.0 or 0 depending on
whether the weight component bit was on or off. We have conducted other experiments
in which the GA searches through a large weight space, but this simpler approach
seems to work very well, at least for these artificially generated test data. To allow a
“selector of pairs” capability, if the GA chooses either index to be 0, then that index
pair is not used in the evaluation function, thus allowing the GA to select forno index
pair terms. The fitness function strongly discourages the use of the same index twice in
a pair (e.g. 3,3) or the repetition of a pair in a string (e.g. 2, 5; 5, 2), by assigning a low
fitness to any string with such a pair.

The goal was to see if the GA, using the approach of searching simultaneously for
index pairs and weight components on that pair, would discover the significant nonlin-
ear transformation and work effectively. We modified the evaluation function as
described, and allowed 3 index pairs at the end of each individual string of the popula-
tion. We trained the algorithm on 10 examples from each of the 8 classes (80 total),
then tested the trained algorithm on 1200 newly generated test examples. The results of
running this modification are shown in Table 6. The GA indeed found the “hidden fea-
tures” and therefore could perform classification. The pure KNN alone had an 88%
error rate for the unknowns. The nonlinear transformation index algorithm did indeed
find the appropriate indices in all of several runs and got the error rate down to 0.0% by
finding the two index pairs (1,2) and (3,4), setting their weight components to 10, and
dropping all other weight components to a low level shown on Table 6 and Table 7
respectively.



Table 5. Artificial test data template using hidden features

Table 6. Classification results of different approach

Table 7. Discovering a hidden feature using nonlinear transformation

The goal was to see if the GA, using the approach of searching simultaneously for
index pairs and weight components on that pair, would discover the significant nonlin-
ear transformation and work effectively. We modified the evaluation function as
described, and allowed 3 index pairs at the end of each individual string of the popula-
tion. We trained the algorithm on 10 examples from each of the 8 classes (80 total),
then tested the trained algorithm on 1200 newly generated test examples. The results of
running this modification are shown in Table 6. The GA indeed found the “hidden fea-

class feature1~15 hidden feature 1 hidden feature 2

   1    0.0~1.0   0.42 < (1) * (2) < 0.44   0.54 < (3) * (4) < 0.56

   2    0.0~1.0   0.42 < (1) * (2) < 0.44   0.58 < (3) * (4) < 0.60

   3    0.0~1.0   0.42 < (1) * (2) < 0.44   0.62 < (3) * (4) < 0.64

   4    0.0~1.0   0.42 < (1) * (2) < 0.44   0.66 < (3) * (4) < 0.68

   5    0.0~1.0   0.46 < (1) * (2) < 0.48   0.54 < (3) * (4) < 0.56

   6    0.0~1.0   0.46 < (1) * (2) < 0.48   0.58 < (3) * (4) < 0.60

   7    0.0~1.0   0.46 < (1) * (2) < 0.48   0.62 < (3) * (4) < 0.64

   8    0.0~1.0   0.46 < (1) * (2) < 0.48   0.66 < (3) * (4) < 0.68

Algorithm
population

size
Trials

Error rate
training set

Error rate
1200 test set

GA/KNN with
index

50 25,600 0.0% 0.58%

GA/KNN without
index

50 36,000 6.5% 22.67%

pure KNN 39.25% 86.75%

field
field
1-15

field 16 field 17 field 18
index
pair 1

index
pair 2

index
pair 3

weight
component and

index
0.0 10.0 10.0 0.0 1, 2 3, 4 5, 6



tures” and therefore could perform classification. The pure KNN alone had an 88%
error rate for the unknowns. The nonlinear transformation index algorithm did indeed
find the appropriate indices in all of several runs and got the error rate down to 0.0% by
finding the two index pairs (1,2) and (3,4), setting their weight components to 10, and
dropping all other weight components to a low level shown on Table 6 and Table 7
respectively.

This experiment tells us GA-based methods can be used to discover another trans-
formation type, the definition of new derived attributes by applying mathematical or
logical operators on the value of one or more fields in the data base. This makes it
appear promising for many data mining applications.

4  Conclusions and Future Work

In this paper we have shown that genetic algorithms can play an important role in the
automated loop of feature extraction and of classification. The KNN classifier in the
GA/KNN approach can be replaced by different other classifiers. We have also devel-
oped a GA/Rule for automatic feature extraction and classification using a production
rule system. It has similar functionality and is more time efficient [10]. The basic
model of feature extraction-feedback-classification technique also can be extended to
apply to other data mining tasks such as association discovery, regression, or concep-
tual clustering if we can design appropriate criterion function. We believe genetic algo-
rithms will be a useful tools for data mining in many situations.

Acknowledgments
This work was supported in part by Michigan State University’s Center for Microbial
Ecology and the Beijing Natural Science Foundation of China.

References
[1] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From Data Mining to Knowledge

Discovery: An Overview, Advances in Knowledge Discovery and Data Mining,
1996, p1-34.

[2] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. New York: Addison Wesley, 1989.

[3] W.F. Punch, E.D. Goodman, Min Pei, Lai Chia-shun, P.Hovland, and R. Enbody.
Further Research on Feature Selection and Classification Using Genetic Algo-
rithms.Proc. Fifth Inter. Conf. Genetic Algorithms and their Applications (ICGA),
1993, p.557.

[4] Harry C. Andrew,Introduction to Mathematical Technique in Pattern Recognition.
New York: John Wiley & Sons Inc. 1972.

[5] W. Siedlecki and J. Sklansky, On Automatic Feature Selection Internat.Journal of
Pattern Recognition and Artificial Intelligence. Vol 2, No.2 1988, 197-220.

[6] A. K. Jain and B. Chandrasekaran, Dimensionality and Sample Size Considerations
in Pattern Recognition Practice.Handbook of Statistics, Vol. 2 P. R. Krishnaiah
and L. N. Kanal, eds. North-Holland, Amsterdam, 1982, 835-855

[7] A. Jain, Pattern Recognition.International Encyclopedia of Robotics Applications



and Automation, Wiley & Sons, 1988, 1052-1063.
[8] P. A. Devijverand, J. Kittler,Pattern Recognition: A Statistical Approach, Prentice

Hall, Lodon, 1982.
[9] M. Pei, E.D. Goodman, W.F. Punch, Y. Ding, Genetic Algorithms for Classification

and Feature Extraction. 1995 Annual Meeting, Classification Society of North
America, June 1995.

[10] M. Pei, E.D. Goodman, W.F. Punch, Pattern Discovery From Data Using Genetic
Algorithms. First Pacific-Asia Conference on Knowledge Discovery & Data Min-
ing, Feb. 1997.


