
Preimage Attacks on 41-Step SHA-256 and 46-Step SHA-512

Yu Sasaki1, Lei Wang2, and Kazumaro Aoki1

1 NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

sasaki.yu@lab.ntt.co.jp
2 The University of Electro-Communications

1-5-1 Choufugaoka, Choufu-shi, Tokyo, 182-8585 Japan

Abstract. In this paper, we propose preimage attacks on 41-step SHA-256 and 46-step SHA-512,
which drastically increase the number of attacked steps compared to the best previous preimage attack
working for only 24 steps. The time complexity for 41-step SHA-256 is 2253.5 compression function
operations and the memory requirement is 216 × 10 words. The time complexity for 46-step SHA-512
is 2511.5 compression function operations and the memory requirement is 23 × 10 words. Our attack
is a meet-in-the-middle attack. We first consider the application of previous meet-in-the-middle attack
techniques to SHA-2. We then analyze the message expansion of SHA-2 by considering all previous
techniques to find a new independent message-word partition. We first explain the attack on 40-step
SHA-256 whose complexity is 2249 to describe the ideas. We then explain how to extend the attack.

keywords: SHA-256, SHA-512, hash, preimage attack, meet-in-the-middle

1 Introduction

Cryptographic hash functions are important to build secure systems. SHA-1 and SHA-2 (SHA-224,
SHA-256, SHA-384, and SHA-512) [14] are hash functions standardized by the National Institute of
Standards and Technology (NIST), and widely used all over the world. However, regarding SHA-1,
a collision attack has already been discovered by Wang et al. [16]. Because the structure of SHA-
2 is similar to SHA-1, some attack might be discovered on SHA-2 in the future. To avoid such a
situation, NIST is currently conducting a competition to determine the new hash function standard
called SHA-3 [13]. From engineering viewpoint, migration from SHA-1 to SHA-3 will take a long
time. SHA-2 will take an important role during that period. Hence, rigorous security evaluation of
SHA-2 using the latest analytic techniques is important.

In the SHA-3 competition, 51 algorithms were accepted as candidates. Currently, researches on
SHA-3 candidates are very active, in particular, security evaluation on SHA-3 candidates. NIST
requires SHA-3 candidates of n-bit hash length to satisfy the several security properties [13], e.g.,

– Preimage resistance of n bits,
– Second-preimage resistance of n− k bits for any message shorter than 2k blocks,
– Collision resistance of n/2 bits.

NIST claims that security of each candidate is evaluated in the environment where they are tuned
so that it runs as fast as SHA-2 [15]. It is obvious that NIST tries to evaluate each candidate
by comparing with SHA-2. However, the security of SHA-2 is not well understood yet. Hence,
evaluating the security of SHA-2 with respect to the security requirements for SHA-3 candidates is
also important.

SHA-256 and SHA-512 consist of 64 steps and 80 steps, respectively. There exist some analyses
on the reduced steps of SHA-2. The first analysis on SHA-2 with respect to SHA-3 requirements was
done by Mendel et al. [6], which presented the collision attack on SHA-2 reduced to 19 steps. After

that, several researches have improved the result. To the best of our knowledge, the best collision
attacks so far are the one proposed by Indesteege et al. [3] and the one proposed by Sanadhya and
Sarkar [10], which present collision attacks on 24 steps. Apart from the collision attack, the only
analysis we know is the one proposed by Isobe and Shibutani [4], which presented preimage attacks
on SHA-2 reduced to 24 steps. One may note the work announced at the rump session by Yu and
Wang [17], which claimed to have found a non-randomness property of SHA-256 reduced to 39
steps. Since the non-randomness property is not included in the security requirements for SHA-3,
we do not discuss it in this paper. In summary, the current best attacks on SHA-2 with respect to
the security requirements for SHA-3 work for only 24 steps.

After Saarinen [9] and Leurent [5] showed preimage attacks, the techniques for preimage attack
have been developed very rapidly. These attacks are based on the framework of the meet-in-the-
middle and have been reported for various hash functions, for example MD5 [8], SHA-1, HAVAL
[18], and so on [1, 12, 2, 11]. Due to the complex message schedule in SHA-2, these recently developed
techniques are not fully applied for SHA-2. Thus, it is interesting to evaluate the security of SHA-2
against these techniques.

Our contribution. We propose preimage attacks on 41-step SHA-256 and 46-step SHA-512 which
drastically increase the number of attacked steps compared to the previous preimage attack on 24
steps. We first explain the attack on 40-step SHA-256 to simply describe ideas of our attack. This
attack requires 2249 SHA-256 computation and 216 · 10 words of memory. Because SHA-256 and
SHA-512 have the similar structure, this attack is also applied to 40-step SHA-512. Due to the
double word size of SHA-512 compared to SHA-256, the attack becomes much faster than the
brute force attack in SHA-512; 2497 SHA-512 operations, but requires much more memory; 232 · 10
words. We then explain how to extend the attack to work for more steps. This is achieved with
so-called partial-fixing technique proposed by Aoki and Sasaki [1]. It is interesting that SHA-512
can be attacked more steps than SHA-256. This is due to the difference of word size. σ and Σ
functions in SHA-2 mix the data X by applying the XOR of three different rotations/shifts of X.
This mixes 32-bit variables in SHA-256 rapidly, but cannot mix double-size variables in SHA-512
rapidly.

Our attacks are based on the meet-in-the-middle attack. We first consider the application of
the previous meet-in-the-middle techniques to SHA-2. We then analyze the message expansion of
SHA-2 by considering all previous techniques and construct the attack by finding new independent
message-word partition, which is a very fundamental part of this attack.

Results of our attacks and others are summarized in Table 1.

Outline. In Section 2, we describe the specification of SHA-2 and previous meet-in-the-middle
preimage attacks. In Section 3, we consider an application of previous techniques to SHA-2. In
Section 4, we analyze the message expansion to identify a new message-word partition. In Section
5, we explain the attack procedure and complexity evaluation. In Section 6, we conclude this paper.

2 SHA-2 Specification and Related Works

2.1 Description of SHA-256 and SHA-512

In this section, we first describes the specification of SHA-256, then we explain the differences of
SHA-256 and SHA-512. Please refer to the original specifications [14] for details.

2

Table 1. Comparison of preimage attacks on reduced SHA-2

Reference Target Steps Complexity Memory

Pseudo-preimage Preimage

[4] SHA-256 24 2240 2240 216 · 64 bits

Ours Section 5.1 SHA-256 40 2240 2249 216 · 10 words

Ours Section 5.2 SHA-256 41 2249 2253.3 216 · 10 words

[4] SHA-512 24 2480 2480 not given

Ours Section 5.3 SHA-512 40 2480 2497 232 · 10 words

Ours Section 5.3 SHA-512 41 2484 2499 228 · 10 words

Ours Section 5.3 SHA-512 42 2488 2501 224 · 10 words

Ours Section 5.3 SHA-512 43 2501 2507.5 211 · 10 words

Ours Section 5.3 SHA-512 44 2504 2509 28 · 10 words

Ours Section 5.3 SHA-512 45 2505 2509.5 27 · 10 words

Ours Section 5.3 SHA-512 46 2509 2511.5 23 · 10 words

Description of SHA-256. SHA-256 adopts the Merkle-Damg̊ard structure [7, Algorithm 9.25].
The message string is first padded to be a 512-bit multiple, and divided into 512-bit blocks,

(M0, M1, . . . , MN−1) (Mi ∈ {0, 1}512).

The hash value hN is computed by iteratively using the compression function CF, which takes a
512-bit message string and a 256-bit chaining variable as input and an updated 256-bit chaining
variable as output. {

h0 ← IV,
hi+1 ← CF(hi,Mi) (i = 0, 1, . . . , N − 1),

(1)

where IV is the constant number defined in the specification.
The compression function is based on the Davies-Meyer mode [7, Algorithm 9.42]. It consists

of a message expansion and a data processing. Let Àx and ox denote the x-bit right shift and
x-bit right rotation, respectively. First, the message block is expanded using the message expansion
function. {

Wj ←mj , (0 ≤ j < 16)
Wj ← σ1(Wj−2) + Wj−7 + σ0(Wj−15) + Wj−16, (16 ≤ j < 80)

(2)

where (m0,m1, . . . ,m15) ← Mi (mj ∈ {0, 1}32) and “+” denotes the wordwise addition. In SHA-
256 and SHA-512, the word-size is 32 bits and 64 bits respectively. σ0(X) and σ1(X) are defined
as follows: {

σ0(X)← (Xo7)⊕ (Xo18)⊕ (XÀ3),
σ1(X)← (Xo17)⊕ (Xo19)⊕ (XÀ10).

(3)

where “⊕” denotes bitwise XOR operation.
The data processing computes hi+1 as follows. Here, we use pj to denote a 256-bit value con-

sisting of the concatenation of eight words Aj , Bj , Cj , Dj , Ej , Fj , Gj and Hj .





p0 ← hi,
pj+1 ← Rj(pj ,Wj), (j = 0, 1, . . . , 63)
hi+1 ← hi + p64,

(4)

3

Step function Rj is defined as given hereafter:





T
(j)
1 ← Hj + Σ1(Ej) + Ch(Ej , Fj , Gj) + Kj + Wj ,

T
(j)
2 ← Σ0(Aj) + Maj(Aj , Bj , Cj),

Aj+1 ← T
(j)
1 + T

(j)
2 , Bj+1 ← Aj , Cj+1 ← Bj , Dj+1 ← Cj ,

Ej+1 ← Dj + T
(j)
1 , Fj+1 ← Ej , Gj+1 ← Fj , Hj+1 ← Gj .

(5)

where Kj is a constant number for each step and Ch(X, Y, Z),Maj(X, Y, Z), Σ0(X), and Σ1(X)
are defined as follows.





Ch(X, Y, Z)← (X ∨ Y)⊕ (¬X ∨ Z),
Maj(X, Y, Z)← (X ∨ Y)⊕ (X ∨ Z)⊕ (Y ∨ Z),

Σ0(X)← (Xo2)⊕ (Xo13)⊕ (Xo22),
Σ1(X)← (Xo6)⊕ (Xo11)⊕ (Xo25).

(6)

Description of SHA-512. The structure of SHA-512 is basically the same as SHA-256. In SHA-
512, the word size is double of SHA-256, hence, the message-block size is 1024 bits and the size of
chaining variable pj is 512 bits. The compression function consists of 80 steps. Rotation numbers in
σ0, σ1, Σ0, and Σ1 are different from SHA-256 so that double-size variables can be mixed rapidly.

2.2 Previous meet-in-the-middle preimage attacks

This section gives a high-level description of the previous meet-in-the-middle preimage attacks
on hash functions. Usually a preimage attack on a Merkle-Damg̊ard hash function is based on
a pseudo-preimage attack on its underlying compression function, where a pseudo-preimage is a
preimage of the compression function with an appropriate padding. Many compression functions
adopt Davis-Meyer mode, which is designed based on a block cipher E as follows: EA(B) ⊕ B,
where A and B are either intermediate hash values or messages. First we recall the attack strategy
on a compression function, which has been explained in Fig. 1. Denote by h the given target hash
value. The high-level description of the attack for the simplest case is as follows.

1. Divide key A of block cipher E into two independent parts: A1 and A2. Hereafter, independent
parts are called “chunks,” and independent inputs A1 and A2 are called “neutral words.”

2. Randomly determine the other input value B of the block cipher E.
3. Carry out the forward calculation utilizing B and all possible values of A1, and store all the

obtained intermediate values in a table denoted as TF .
4. Carry out the backward calculation utilizing h⊕ B and all possible values of A2, and store all

the obtained intermediate values in a table denoted as TB.
5. Check whether there exists a collision between TF and TB. If a collision exists, a pseudo-preimage

of h has been generated. Otherwise, go to Step 2.

� �� �

�������
	��
����	������
	��
�

� �

Fig. 1. Attack strategy on compression function EA(B)⊕B

4

The main novelty of the meet-in-the-middle preimage attacks is, by utilizing independence of
A1 and A2 of the key input, transforming the problem of finding a preimage of h to the problem of
finding a collision on the intermediate values, which has a much lower complexity than the former
one. Suppose there are in total 2t possible values for each of A1 and A2. Then with a complexity
of 2t compression function computations, the attacker obtain 2t elements in each of TF and TB.
The collision probability is roughly 22t−n, where n denotes the bit length of h. This is better than
a probability of finding a preimage with a complexity of 2t using brute force attack.

Various techniques. This section describes the techniques used in the previous meet-in-the-
middle attacks [1, 11, 12]. An applications of these techniques on SHA-2 is described in Section 3.

Splice-and-cut: the meet-in-the-middle attack in Section 2.2 starts with dividing the key input
into two independent parts. Aoki and Sasaki [1] point out that the last and first steps of E can
be regarded as consecutive, by considering the feedforward addition. This technique was named
splice-and-cut. Following this technique, the attacker can regard any step as a starting step of the
meet-in-the-middle, which helps the attacker to find more suitable independent chunks. This tech-
nique can find only pseudo-preimages of given hash value instead of preimages. However, pseudo-
preimages can be converted to preimages with a conversion algorithm explained in the following
paragraph.

Conversion from pseudo-preimages to preimages: In x-bit iterated hash functions, a pseudo-
preimage attack whose complexity is 2y, y < x − 2 can be converted to a preimage attack with a
complexity of 2

x+y
2

+1 [7, Fact9.99]. The idea is applying the unbalanced meet-in-the-middle attack
with generating 2(x−y)/2 pseudo-preimages and generating 2(x+y)/2 1-block chaining variables start-
ing from IV.

Partial-matching: the example in Fig. 1 is the simplest and optimistic case. In fact, in the pre-
vious attacks, the key input cannot be divided into just two independent chunks. Usually besides
the two independent chunks A1 and A2, there is another part, which depends on both A1 and A2.
Hence, the stored intermediate values in TF and TB are ones at different steps. This arise a prob-
lem: how the values in TF and TB can be compared. In many hash functions including SHA-2, the
intermediate values is only updated partially in each step. In other words, a part of intermediate
values do not change during several steps. Therefore, the attacker can check the match of two values
partially. This technique is denoted as partial-matching technique.

Partial-fixing: this is an extension of the partial-matching technique. It increases the number of
steps that can exist between two independent chunks. Assume that the attacker is carrying out the
computation using A1 and he is facing a step whose key input depends on both A1 and A2. Because
the computation cannot go ahead without the knowledge of A2, the chunk for A1 must stop at this
step. The partial-fixing technique is partially fixing the values of A1 and A2 so that we can obtain
partial knowledge even if the computation depends on both A1 and A2.

Initial structure: in some case, the two independent chunks A1 and A2 will overlap with each
other. The typical example is that the order of the input key of E is A1A2A1A2. This arises a prob-
lem: how should the attacker carry out the forward and backward computations independently.
The Initial Structure technique was proposed by [12] to solve such a problem. Previous attacks
usually set a certain step as the starting step, then randomly determine the intermediate value at
that step, and carry out the independent computations. However, the initial structure technique

5

sets all the steps of A2A1 in the middle of A1A2A1A2 together as the starting point. Denote the
intermediate values at the beginning and last step of A2A1 as I1 and I2 respectively. For each pos-
sible value of A1, the attacker can derive a corresponding value I1. Similarly, for each possible value
of A2, the attacker can derive a corresponding value I2. Moreover, any pair (I1, A1) and (I2, A2)
can be matched at the steps of A2A1 of A1A2A1A2. Thus, the attacker can carry out independent
computations utilizing (I1, A1) and (I2, A2).

2.3 Revisiting the previous attack on SHA-2 reduced to 24 steps

Isobe and Shibutani [4] presented the first preimage attack on SHA-2 reduced to 24 steps. Their
attack was meet-in-the-middle attack. The partial-matching technique was used in the attack.
Following the previous attack procedure, the attacker found two independent chunks A1 and A2. We
emphasize that in their attack procedure the starting step of forward and backward computations
was exactly the beginning step of the block cipher E. Besides the two independent chunks, there
were another chunk depending on both A1 and A2. As a result, the stored values in the two tables
TF and TB are ones at different steps. The attacker adopted the partial-matching technique, so the
distance between the steps for values in TF and the steps for values in TB can be at most 7. Finally
the attack works on SHA-2 reduced to 24 steps.

3 Applying Previous Techniques to SHA-2

Our attack basically takes the same approach as Isobe and Shibutani [4], i.e. use the meet-in-the-
middle attack. They could attack only 24 steps of SHA-2, hence the application to SHA-2 seems to
be very limited. However, we found that the number of attacked steps could drastically increases
by searching for a better neutral-word partition with considering various techniques on the meet-
in-the-middle preimage attack. This section identifies how those techniques work on SHA-2 so that
we can consider them when we search for a neutral-word partition.

3.1 Splice-and-cut technique.

The attack by Isobe and Shibutani [4] found 1-block preimages. In contrast, the splice-and-cut
technique enables attackers to find 1-block pseudo-preimages. Then, they are converted to preim-
ages with the conversion algorithm [7, Fact 9.99] by adding another message block. Therefore, by
considering the splice-and-cut technique, the number of attacked steps may be extended because
finding pseudo-preimages is usually easier than finding preimages.

3.2 Partial-matching technique

The partial-matching technique on SHA-2 was implied (but not explicitly mentioned) by Isobe and
Shibutani [4]. Assume one chunk produces the value of pj and the other chunk produces the value
of pj+s. The attacker wants to efficiently check whether or not pj and pj+s match without the
knowledge of Wj , Wj+1, . . . , Wj+s−1. In SHA-2, the maximum number of s is 7.

Assume the value of pj+7 = Aj+7‖Bj+7‖ · · · ‖Hj+7 is known and Wj+6 is unknown. By backward
computation, we can obtain the values of Aj+6, Bj+6, . . . , Gj+6. This is because Aj+6, Bj+6, Cj+6,
Ej+6, Fj+6, and Gj+6 are just copies of corresponding values in pj+7 and Dj+6 is computed as
follows.

Dj+6 ← Ej+7 − (Aj+7 − (Σ0(Bj+7) + Maj(Bj+7, Cj+7, Dj+7))). (7)

By repeating the similar computation, in the end, Aj is computed from pj+7 without the knowledge
of Wj ,Wj+1, . . . , Wj+6.

6

3.3 Partial-fixing technique

The partial-fixing technique on SHA-2 has not been considered in the previous work. Assume we
can fix the lower x bits of the message word in each step. Under this assumption, 8 steps can be
partially computed. Let us consider the step function of SHA-2 in the forward direction. Equations
using Wj is as follows.

{
T

(j)
1 ← Hj + Σ1(Ej) + Ch(Ej , Fj , Gj) + Kj + Wj ,

Aj+1 ← T
(j)
1 + T

(j)
2 , Ej+1 ← Dj + T

(j)
1 .

(8)

If the lower x bits of Wj are fixed, the lower x bits of Aj+1 (and Ej+1) can be computed indepen-
dently of the upper 32 − x bits of Wj . Let us consider to skip another step in forward direction.
The equation for Aj+2 is as follows:

Aj+2 ← T
(j+1)
1 + Σ0(Aj+1) + Maj(Aj+1, Bj+1, Cj+1). (9)

We know only the lower x bits on Aj+1. Hence, we can compute Maj function for only the lower x
bits. How about the Σ0 function? We analyzed the relationship of the number of consecutive fixed
bits from LSB in the input and output of σ0, σ1, Σ0, and Σ1. This is summarized in Table 2.

Table 2. Relationship of number of consecutive fixed bits from LSB in input and output of σ and Σ

SHA-256 SHA-512
Σ0 Σ1 σ0 σ1 Σ0 Σ1 σ0 σ1

Input x x x x x x x x
output x− 22 x− 25 x− 18 x− 19 x− 39 x− 41 x− 8 x− 61

When x agrees with the word size, the output is x. When the number described in the output is minus, the output
is 0.

From Table 2, if x is large enough, we can compute the lower x − 22 bits of Aj+2 in SHA-256
and the lower x − 39 bits in SHA-512, though the number of fixed bits greatly reduced after the
Σ0 function. This fact also implies that we cannot obtain the value of Aj+3 since the number of
fixed bits will be 0. In the end, we can conclude that the partial-fixing technique can be applied up
to 2 steps in forward direction. Similarly, we considered the partial-fixing technique in backward
direction, and found that it can be applied up to 6 steps. Hence the maximum number of steps
that we can partially compute is 8 for both SHA-256 and SHA-512.

However we have another problem in the first assumption; the lower x bits of each message
word can be fixed. This is difficult to achieve because the fixed bits in message words are mixed
by the σ function in the message expansion. In fact, we could apply the partial-fixing technique
for computing 1 step in forward, and 2 steps in backward for SHA-256. However, in SHA-512, the
bit-mixing speed of σ is relatively slow due to the double word size. In fact, we could compute 2
steps in forward, and 6 steps in backward. Finally, 10 steps in total can be skipped by the partial-
matching and partial-fixing techniques for SHA-256, and 15 steps for SHA-512. (These numbers of
steps are explained in Section 5.)

3.4 Initial structure

We apply the initial structure technique proposed by Sasaki and Aoki [12] to SHA-2. They intro-
duced the concept of the initial structure but did not give the details of how to construct it. We

7

manually found initial structures for skipping 2 steps and 3 steps. In Section 4, we search for a
new neutral-word partition by considering both initial structures. As a result, we use the initial
structure for skipping 2 steps in our attack. We show the initial structure for 2 steps in Fig. 2 and
explain how it works in the below. We show the initial structure for 3 steps in Fig. 4 in Appendix
A. In these figures, the order of additions is changed by equivalent transformation, addition of Kj

is omitted for simplicity, and NW is an abbreviation of neutral word for a chunk.

Initial structure for 2 steps. The purpose of the initial structure shown in Fig. 2 is to guarantee
that the change of a neutral word Wj does not impact the value of pj , and the change of another
neutral word Wj+1 does not impact the value of pj+2. This is achieved as follows.

M
aj

ΣΣΣΣ0000

ΣΣΣΣ1111

C
h

Wj

Aj Bj Cj Dj Ej Fj Gj Hj

Aj+1 Bj+1 Cj+1 Dj+1 Ej+1 Fj+1 Gj+1 Hj+1

Aj+2 Bj+2 Cj+2 Dj+2 Ej+2 Fj+2 Gj+2 Hj+2

M
aj

ΣΣΣΣ0000

ΣΣΣΣ1111

C
h

Wj+1

NW

Vj

Vj+1

NW

IS2step.eps

pj+1

pj+2

pj

Fig. 2. Initial structure for 2 steps of SHA-2

Absorb Wj+1: Fix the values of Vj and Vj+1 indicated in Fig. 2 to randomly chosen values. Every
time we change the value of Wj+1, we change the value of Hj+1 so that Vj+1 will not change.
Namely, we compute Hj+1 ← Vj+1 − Wj+1. The change of Hj+1 will propagate through Ch
function in Step j. We change the value of Hj to absorb the change of output of Ch function.
Namely, we compute Hj ← Vj − Ch(Ej , Fj , Gj)−Σ1(Ej).

Absorb Wj: Every time we change the value of Wj , T
(j)
1 and T

(j+1)
1 in the step function are

computed using the value of Vj and Vj+1, respectively. Namely, T
(j)
1 ← Vj + Kj + Wj or

T
(j+1)
1 ← Σ1(Ej+1) + Ch(Ej+1, Fj+1, Gj+1) + Vj+1 + Kj+1. In two steps, the change of Wj will

propagate to Aj+2, Bj+2, Ej+2, and Fj+2.

Finally, we can make pj independent of Wj and pj+2 independent of Wj+1.
As used in the above, fixing the value between two additions in different chunks, such as Vj and

Vj+1, is useful to separate the computation into two independent parts. In fact, we use the similar
method to analyze the independence of message words in Section 4.

8

4 Neutral-Word Partition

We search for neutral words that can attack as many steps as possible by considering techniques
explained in Section 3. We consider the following properties when we search for the neutral words.

– The first and last steps can be regarded as consecutive by the splice-and-cut technique.
– 2 or 3 steps can be skipped at the begging of the two independent chunks by the initial structure.
– Up to 15 steps can be skipped at the last of the two independent chunks by the partial-matching

and partial-fixing techniques.

The message expansion for SHA-2 is invertible. In other words, if consecutive intermediate 16
message words are fixed, all other message words are uniquely fixed. Hence, we focus on consecutive
intermediate 16 message words Wj , . . . ,Wj+15 and next 16 expanded words Wj+16, . . . , Wj+31. We
separate these 32 steps into two independent chunks as shown in Fig. 3.

Wj Wj+1 Wj+2 Wj+3 Wj+4 Wj+5 Wj+6 Wj+7 Wj+8 Wj+9Wj+10Wj+11Wj+12Wj+13Wj+14Wj+15

Wj+16Wj+17Wj+18Wj+19Wj+20Wj+21Wj+22Wj+23Wj+24Wj+25Wj+26Wj+27Wj+28Wj+29Wj+30Wj+31

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 3. Neutral word partition of SHA-2

In Fig. 3, message words for 31 steps ranging from Wj to Wj+30 make two independent parts. We
choose Wj+15 and Wj+16 as neutral words. The analysis of the message expansion is similar to that
of the initial structure. When we change the value of Wj+16, we change the value of Wj+7 so that
the change of Wj+16 does not impact Wj+23. This can be done by fixing the value of Wj+7 +Wj+16

in advance as explained in Section 3.4. Then, the change of Σ0(Wj+7) is absorbed by changing
Wj+6 accordingly. Similarly, as shown in Fig. 3, the change of Wj+16 can be absorbed by changing
(Wj ,Wj+1, . . . , Wj+7). Analysis on the neutral word Wj+15 is the same. See Fig. 3 for details.

We applied the initial structure shown in Fig. 2 for Steps j + 15 and j + 16. Therefore, when
we update the chaining variables using the step function, the change of Wj+15 only gives influence
to Step 17 and latter steps but never to Step 14 and the previous steps. Similarly, the change of
Wj+16 only gives influence to Step 14 and previous steps but never to Step 17 and the latter steps.

9

In the end, we can conclude that backward computation for Steps j + 16, j + 14, j + 13, . . . , j and
forward computation for steps j + 15, j + 17, j + 18, . . . , j + 30, in total 31 steps can be computed
independently.

As explained in Section 3, partial-matching and partial-fixing techniques can skip 10 steps in
SHA-256 and 15 steps in SHA-512. Hence, 41 steps of SHA-256 and 46 steps of SHA-512 can be
attacked. To apply the partial-fixing technique for SHA-256, we need to guarantee that several
lower n bits of Wj+31, Wj−1, and Wj−2 must be fixed. This can be achieved as follows:

– Due to the message expansion, as shown in Fig. 3, the change of Wj+16 impacts Wj+31. We
need to fix the lower n bits of Wj+31 regardless of the value of Wj+16. To achieve this, we fix
the lower n bits of X(= σ0(Wj+16)), and choose all possible values for higher 32−n bits. Then,
compute σ−1

0 (X), and use them as values of Wj+16
3.

– Equations for Wj−1 and Wj−2 can be obtained by inverse of message expansion as follows.

Wj−1 ← Wj+15 − σ1(Wj+13)−Wj+8 − σ0(Wj), (10)
Wj−2 ← Wj+14 − σ1(Wj+12)−Wj+7 − σ0(Wj−1). (11)

We need to fix the lower several bits of Wj−1 and Wj−2 regardless of the value of Wj+15. If we
fix the lower n bits of Wj+15, the lower n bits of Wj−1 are fixed. Furthermore, from Table 2,
the lower n− 18 bits of Wj−2 are fixed.

5 Preimage Attack on SHA-2

For simplicity, we first explain the attack procedure for 40 steps of SHA-256. Then, we explain how
to extend the attack to 41 steps and how to attack SHA-512. Due to the space limitation, we omit
the details on SHA-512.

5.1 Attack procedure for 40-step SHA-256

The attack target is Steps 0 to 39 of SHA-256. We apply the message analysis shown in Fig. 3 to
W1 to W31. In other words, we choose j = 1 in Fig. 3. This attack generates 2-block preimages.
The procedure for a given hash value Hash is as follows.

Set up
1. Set up the initial structure shown in Fig. 2 to Steps 16 to 17, i.e. fix the values of A16, B16, C16,

D16, E16, F16, V16, and V17 to randomly chosen values.
2. Set up the neutral word partition shown in Fig. 3, i.e. fix the values of W9,W10,W11,W12, and

values between two additions for different chunks to randomly chosen values. Fix the values of
W13,W14, and W15 to satisfy the padding string for a 2-block message.

3. For the partial-fixing technique, fix the lower 16 bits of W16 and X(= σ0(W17)) to randomly
chosen values.

Forward computation
4. For all the higher 16 bits of W16,

(a) Compute the values of W18,W20,W22,W23, . . .W31 by following the neutral word partition
in Fig. 3. Then, compute the lower 16 bits of W32 by using the fixed lower 16 bits of X.

(b) Compute p17 and p18 by following Fig. 2.
3 How to compute σ−1 was described by Isobe and Shibutani [4, Appendix A].

10

(c) For j=18 to 31, compute pj+1 ← Rj(pj ,Wj).
(d) Partially compute p33 ← R32(p32,W32) by partial-fixing technique, i.e. compute the lower

16 bits of A33.
(e) Store the obtained (p32, A33,W16) in a list L.

Backward computation
5. For all the higher 16 bits of X,

(a) Compute W17 ← σ−1
0 (X).

(b) Compute the values of W8,W7, . . . W1 by following the neutral word partition in Fig. 3.
Then, compute the lower 16 bits of W0 by using the fixed lower 16 bits of W16.

(c) Compute p17 and p16 by following Fig. 2.
(d) For j=15 to 1, compute pj ← R−1

j (pj+1,Wj).
(e) Partially compute p0 ← R−1

0 (p1,W0) by partial-fixing technique, i.e. compute the lower 16
bits of H0.

(f) Use the splice-and-cut technique, i.e. compute p40 ← Hash−p0 for partially known p0. Then,
we obtain the values of A40, B40, . . . , G40 and the lower 16 bits of H40.

(g) From the partially known p40, compute the lower 16 bits of A33 by the partial-matching
technique and check whether or not the values match the items in the list L.

Matching test
(h) If A33 is matched, compute W32 to W39 and W0 following the message expansion and compute

all bits of H40(= Hash−H0) with the corresponding message.
(i) Compute pj ← R−1

j (pj+1,Wj) for j = 39, 38, . . . , 32. Check whether or not the obtained p32

match those stored in the list L.
(j) If a match is found, the corresponding message and p0 is a pseudo-preimage of Hash. Oth-

erwise, repeat the attack until a pseudo-preimage is found.

Complexity evaluation. We assume that the speed of memory access is negligible compared to
computation time of compression function and message expansion. The cost for set up is negligible.
Step 4a costs roughly 216 · 13

40 message expansion operations. In Step 4b, p17 is obtained by increment
of two variables, which requires negligible cost. Hence, this step costs 216 · 1

40 compression function
operation to update p18. Steps 4c and 4d cost 216 · 15

40(= 216 · (14
40 + 1

40)) SHA-256 compression
function operations. Step 4e requires a memory of 216 · 10 words. Steps 5a and 5b cost roughly
216 · 9

40 message expansion operations. Step 5c costs 216 · 1
40 compression function operation as

similar to Step 4b. Steps 5d, 5e, and 5f cost 216 · 17
40(= 216 · (15

40 + 1
40 + 1

40)) compression function
operations. In Step 5g, because the value of A33 is a copy of D36, the cost for this step is 216 · 4

40
compression function operation.

In Step 5g, 232(= 216 · 216) pairs are compared and we obtain 216(= 232 · 2−16) pairs that match
16 bits out of 256 bits. Step 5h costs roughly 216 · 9

40 message expansion operations. Step 5i can
be performed step by step. Namely, we first compute unknown 16 bits of p32 for 216 pairs and
check the match of these 16 bits. This costs 216 · 1

40 compression function operation and we obtain
1(= 216 ·2−16) matched pair. Since the number of remaining pair is enough reduced, the complexity
for following steps is negligible. In the end, in Step 5i, we check whether the remaining 240 bits
match or not. Hence, we obtain 2−224(= 216 ·2−240) matched pair. Therefore, by repeating the above
procedure 2224 times, we expect to obtain a pseudo-preimage. The time complexity for one iteration

11

is 216 · 39
40(= 216 · (1

40 + 15
40 + 1

40 + 17
40 + 4

40 + 1
40)) and 216 · 31

40(= 216 · (13
40 + 9

40 + 9
40)) message expansion

operations, which is approximately 216 SHA-256 operations. This is repeated 2224 times, hence, the
total time complexity of this pseudo-preimage attack is 2240 SHA-256 operations. The dominant
memory complexity is 216 · 10 words for Step 4e. Finally, this attack is converted to a preimage
attack with a complexity of 2249 by using the conversion algorithm explained in Section 2.2. Since
216 · 10 words of memory is quite practical, we do not discuss the memoryless attack in this paper.

5.2 Attack on SHA-256 reduced to 41 steps

In the attack on 40 steps, 2 steps are skipped by the partial-fixing technique. To attack 41 steps,
we skip one more step in backward direction. The attack target is steps 0 to 40, in total 41 steps of
SHA-256. We choose j = 2 for neutral-word partition in Fig. 3. The initial structure and partial-
fixing in forward are exactly the same. Hence, we apply initial structure to Steps 17 and 18.

All we have to do now is fixing the lower several bits of W1 and W0 regardless of the values of
the neutral words for the other chunk. Equations for W1 and W0 are as follows. Here, underlined
values are neutral word for other chunk and variables impacted by it. The small numbers besides
the underline in parentheses represent the number of the lower fixed bits.

W1(25)
← W17(25)

− σ1(W15)−W10 − σ0(W2), (12)

W0(7)
← W16 − σ1(W14)−W9 − σ0(W1(25)

)
(7)

. (13)

W17 is the neutral word for the other chunk. Fixing the lower 25 bits of W17, fix the lower 25 bits
of W1. From Table 2, this fixes the lower 7 bits of σ0(W1), hence the lower 7 bits of W0 are fixed.

Whole attack procedure for 41 steps is almost the same as that for 40 steps. Because we fix
25 bits of the neutral word W17, the free bits in the chunk is only 7. Hence, the required memory
is reduced to 27 · 10 words, instead, the time complexity can be reduced from the brute force
attack only by a factor of 27. Hence, the time complexity for pseudo-preimage attack is 2249. This
can be converted to preimage attack with a complexity of 2253.5 with the conversion algorithm in
Section 2.2. Note that the number of fixed bits 25 was chosen so that the number of free bits in
each neutral word and the number of match bits in the partial-fixing technique would be balanced.

5.3 Attacks on SHA-512

The attack on SHA-256 can be applied to SHA-512 as it is. Since the word size of SHA-512 is double
of SHA-256, free bits in each chunk is also doubled. Hence each chunk has 32 free bits. This changes
the required memory of the pseudo-preimage attack to 232 ·10 words, and the attack becomes faster
than the brute force attack by a factor of 232. In the end, time and memory complexity for the
pseudo-preimage attack are 2480 and 232, respectively. This can be converted to a preimage attack
with a complexity of 2497 by the conversion algorithm in Section 2.2.

We can extend the attack for 46 steps of SHA-512 by the partial-fixing technique, which partially
compute 2 steps in forward and 6 steps in backward. For message-word partition, we choose j = 6
in Fig. 3. In forward direction, we want to fix the lower several bits of Wj+31 and Wj+32 regardless
of the value of Wj+16. We found that by fixing the lower 56 bits of Wj+16, we can fix the lower 48
bits of Wj+31 and the lower 56 bits of Wj+32. These message words enable us to compute the lower
48 bits of Aj+32 and the lower 9 bits of Aj+33. In backward direction, we want to fix the lower
several bits of Wj−1,Wj−2,Wj−3, Wj−4,Wj−5, and Wj−6 regardless of the free bits of Wj+15. We
found that by fixing the lower 61 bits of Wj+15, we can fix the lower 61 bits of Wj−1, the lower

12

53 bits of Wj−2, the lower 45 bits of Wj−3, the lower 37 bits of Wj−4, the lower 29 bits of Wj−5,
and the lower 21 bits of Wj−6. These message words enable us to compute the lower 61 bits of
Hj−1, the lower 53 bits of Hj−2, the lower 45 bits of Hj−3, the lower 20 bits of Hj−4, the lower
12 bits of Hj−5, and the lower 4 bits of Hj−6. Finally, we confirmed that these partially computed
values can yield the lower 4 bits of Aj−13 by the partial-matching technique. The number of free
bits in the neutral word Wj+15 is 3 bits and we can check the match of 4 bits by the partial-fixing
technique. The time complexity for a pseudo-preimage attack on 46 steps SHA-512 is 2509, and this
is converted to a preimage attack with a complexity of 2511.5. The memory requirement is 23 · 10
words. Satisfying message padding is also possible. Since j is 6, W14 and W15 can be fixed to any
value. To satisfy the 1 bit of W13 we need to fix the MSB of W13. This is achieved by fixing the
higher 2 bits of W22 and constant values in neutral-word partition appropriately.

We also considered the attack complexity on SHA-512 reduced to 45, 44, . . . , 41 steps. These
results are listed in Table 1.

6 Conclusions

In this paper, we presented preimage attacks on 41 steps SHA-256 and 46 steps SHA-512. The time
complexity of the attack for 41-step SHA-256 is 2253.5 and it requires 216 ·10 words of memory. The
time complexity of the attack for 46-step SHA-512 is 2511.5 and it requires 23 · 10 words of memory.
The number of attacked steps is greatly improved from the best previous attack, in other words,
the security margin of SHA-256 and SHA-512 is greatly reduced. Because SHA-256 and SHA-512
have 64 and 80 steps, respectively, they are currently secure. However, considering that the attack
may be improved more in the future, we should pay attention to the security of SHA-2.

References

1. Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step MD5 and more. In Workshop
Records of SAC 2008, pages 82–98, Sackville, Canada, 2008.

2. Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1. In Shai
Halevi, editor, Advances in Cryptology — CRYPTO 2009, Lecture Notes in Computer Science, Berlin, Heidelberg,
New York, 2009. Springer-Verlag. to appear.

3. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian Rechberger. Collisions and other non-random
properties for step-reduced SHA-256. In Workshop Records of SAC 2008, pages 257–274, 2008.

4. Takanori Isobe and Kyoji Shibutani. Preimage attacks on reduced Tiger and SHA-2. In Fast Software Encryption
2009 Preproceedings, pages 141–158, 2009.

5. Gaëtan Leurent. MD4 is not one-way. In Kaisa Nyberg, editor, Fast Software Encryption (FSE 2008), volume
5086 of Lecture Notes in Computer Science, pages 412–428, Berlin, Heidelberg, New York, 2008.

6. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of step-reduced SHA-
256. In Matt Robshaw, editor, Fast Software Encryption — 13th International Workshop, FSE 2006, volume
4047 of Lecture Notes in Computer Science, pages 126–143, Berlin, Heidelberg, New York, 2006. Springer-Verlag.

7. Alfred John Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography. CRC
Press, 1997.

8. Ronald L. Rivest. Request for Comments 1321: The MD5 Message Digest Algorithm. The Internet Engineering
Task Force, 1992. (http://www.ietf.org/rfc/rfc1321.txt).

9. Markku-Juhani O. Saarinen. A meet-in-the-middle collision attack against the new FORK-256. In Kannan
Srinathan, Chanrasekharan Pandu Rangan, and Moti Yung, editors, Progress in Cryptology – INDOCRYPT
2007, volume 4859 of Lecture Notes in Computer Science, pages 10–17, Berlin, Heidelberg, New York, 2007.
Springer-Verlag.

10. Somitra Kumar Sanadhya and Palash Sarkar. New collision attacks against up to 24-step SHA-2 (extended
abstract). In Vincent Rijmen, Abhijit Das, and Dipanwita Roy Chowdhury, editors, Progress in Cryptology –
INDOCRYPT 2008, volume 5365 of Lecture Notes in Computer Science, pages 91–103, Berlin, Heidelberg, New
York, 2008. Springer-Verlag.

13

11. Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL. In Josef Pawel Pieprzyk, editor,
Advances in Cryptology - ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer Science, pages 253–271,
Berlin, Heidelberg, New York, 2008. Springer-Verlag.

12. Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than exhaustive search. In Antoine Joux,
editor, Advances in Cryptology — EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
134–152, Berlin, Heidelberg, New York, 2009. Springer-Verlag.

13. U.S. Department of Commerce, National Institute of Standards and Technology. Federal Register /Vol. 72, No.
212/Friday, November 2, 2007/Notices, 2007. (http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_
Nov07.pdf).

14. U.S. Department of Commerce, National Institute of Standards and Technology. Secure Hash Standard (SHS)
(Federal Information Processing Standards Publication 180-3), 2008. (http://csrc.nist.gov/publications/
fips/fips180-3/fips180-3_final.pdf).

15. U.S. Department of Commerce, National Institute of Standards and Technology. NISTfs Plan for Handling
Tunable Parameters, February 2009. Presentation by Souradyuti Paul at The First SHA-3 Candidate Conference.
(http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/Feb2009/).

16. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In Victor Shoup, editor,
Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 17–36,
Berlin, Heidelberg, New York, 2005. Springer-Verlag.

17. Hongbo Yu and Xiaoyun Wang. Non-randomness of 39-step SHA-256, 2008. http://www.iacr.org/

conferences/eurocrypt2008v/index.html.
18. Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. HAVAL — one-way hashing algorithm with variable length

of output. In Jennifer Seberry and Yuliang Zheng, editors, Advances in Cryptology — AUSCRYPT’92, volume
718 of Lecture Notes in Computer Science, pages 83–104. Springer-Verlag, Berlin, Heidelberg, New York, 1993.

A Other initial structures for SHA-2

A.1 Initial structure for 3 steps.

Construction of the initial structure for 3 steps shown in Fig. 4 is similar to that for 2 steps.
However, we need additional effort in Step j + 1. One of the input variables to Ch function in Step
j + 1, i.e. Gj+1, changes depending on the value of Wj+2 and another input variable Ej+1 changes
depending on the value of Wj . Hence, in the straightforward manner, the output of Ch function
depends on both Wj and Wj+2. To make independence on this Ch function, we change Wj so that
the lower n bits of Ej+1 is always fixed. Similarly, we change Wj+2 so that the higher 32−n (64−n
for SHA-512) bits of Gj+1 is always fixed. Due to this, the lower n bits of the output of the Ch
function depend on only Wj+2 and the higher 32−n bits depend on only Wj . In details, we compute
Hj+1 and T

(j+1)
1 as shown below. Let ChH‖ChL be the output of Ch(Ej+1, Fj+1, Gj+1) and ChL is

n-bit long.

T
(j+1)
1 ← Vj+1 + Σ1(Ej+1) + 0‖ChL, (14)

Hj+1 ← Vj+1 −Wj+1 −Kj+1 − ChH‖0. (15)

Finally, we can separate Step j + 1 into two independent parts.

A.2 Initial structure for 4 steps or more.

We found skipping 4 steps or more seems to be difficult. To construct the initial structure for 4
steps, we have to make independent part in Ch function in both Steps j + 1 and j + 2. Let us fix
the lower n bits of Wj , and this fixes the lower n bits of Ej+1. This can fix the lower n bits of Ch
function in Step j +1, however, fixed positions are mixed when it goes through Σ1 function. Hence,
we cannot efficiently control the fixed bit positions of Ej+2 and Ch in Step j + 2. As a result, we
cannot construct initial structure for 4 steps or more.

14

M
aj

ΣΣΣΣ0000

ΣΣΣΣ1111

C
h

Wj

Aj Bj Cj Dj Ej Fj Gj Hj

Aj+1 Bj+1 Cj+1 Dj+1 Ej+1 Fj+1 Gj+1 Hj+1

Aj+2 Bj+2 Cj+2 Dj+2 Ej+2 Fj+2 Gj+2 Hj+2

M
aj

ΣΣΣΣ0000

ΣΣΣΣ1111

C
h

Wj+1

NW

Vj

Vj+1

IS3step.eps

Aj+3 Bj+3 Cj+3 Dj+3 Ej+3 Fj+3 Gj+3 Hj+3

M
aj

ΣΣΣΣ0000

ΣΣΣΣ1111

C
h

Wj+2

Vj+2

Fix low n

Fix high 32-n

NW

pj+1

pj+2

pj

pj+3

Fig. 4. Initial structure for 3 steps of SHA-2

15

