
Searching Across Paths
Thomas D. LaToza

Institute for Software Research
Carnegie Mellon University
tlatoza@cs.cmu.edu

Brad A. Myers
Human Computer Interaction Institute

Carnegie Mellon University
bam@cs.cmu.edu

ABSTRACT
Observations of developers indicate that developers try to answer
a variety of questions by searching across control flow paths
through a program for statements matching search criteria. We
believe that tools that better support this activity can help devel-
opers answer these questions more easily, quickly, and accurately.

Categories and Subject Descriptors
D.2.6 [Programming Languages]: Programming Environments;
D2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

Keywords
Code navigation, program comprehension, developer questions,
software maintenance

1. INTRODUCTION
While working on this paper, the first author was interrupted by a
friend looking for advice. She was considering several possible
alternative changes and was wondering which was the best design.
In the midst of this discussion, a question emerged: would an
object with a null constituent part break some existing code? If
not, then a simple solution was possible. Breaking from the dis-
cussion, she went off to explore the code. From experience, she
knew the method usually used to create such objects, which it did
by calling into a factory used to create one of many possible sub-
types. Much of the work of these methods was to set up the con-
stituent parts. She hypothesized that maybe objects already could
be created with a null constituent part, but since such objects do
not need this initialization, were created by a different path. She
searched for references to constructors of the subtypes. Unfortu-
nately, there were many subtypes that were mostly called by the
paths from the factory that she already knew. Searching for paths
to the constructors that were not through the factory was difficult.
This question is an example of a reachability question. A reach-
ability question is a search for statements across feasible control
flow paths through a program for statements that match search
criteria. Conventional search tools let developers use a variety of
search criteria such as strings and statement attributes (e.g., field
accesses, method calls) to locate matching statements globally in a
program. Conventional code exploration tools such as slicing let
developers traverse various types of paths through a program
(e.g., dependencies, control flow graphs). Reachability questions

fundamentally differ from both of these approaches by intersect-
ing statements along paths with statements matching search crite-
ria. A reachability question includes both a specification of paths
downstream (after) or upstream (before) a set of statements and a
set of search criteria describing statements to find along these
paths. By specifying both paths and search criteria, reachability
questions are much more specific, potentially resulting in a far
smaller set of target statements found. Our studies indicate that
many of the questions developers ask or should have asked are
reachability questions containing both a specification of paths to
search and search criteria describing statements for which to
search [10].
We believe that a better understanding of how developers are
trying to search their code, and the specific questions and strate-
gies they have, can provide inspiration and guidance for novel
types of tools that more effectively support answering these ques-
tions. During coding activities, developers refine high-level ques-
tions into lower level questions that they can answer using their
tools or other strategies. At the highest level, developers ask fac-
tual questions about design decisions, such as, which design
should I choose [9]? Developers often decompose these questions
into searches for statements describing the code’s behavior [10].
At the lowest level, developers ask questions about individual
elements or relationships and explore the code around those ele-
ments [11]. To answer these questions, developers use today’s
tools to read code snippets, perform conventional searches, and
traverse paths of method calls.
Tools targeting higher-level questions that developers ask have
the potential to make a large impact by replacing the low-level
actions developers must do now. While the highest-level ques-
tions are inherently conceptual and will require decomposition by
a developer to answer, middle-level questions are often about
searching for statements in a program. These questions are cur-
rently hard to answer because tools do not directly support them.
Several important design decisions must be made in designing
tools for exploring paths through programs. All such tools explic-
itly or implicitly generate a graph of statements in a program. For
example, a static slicer (e.g., [1]) builds edges between statements
when statement a may influence statement b. In contrast, our pro-
posed technique, which we call static traces, builds edges when
statement b could feasibly follow a in some execution. This deci-
sion determines the paths through the statement graph that can be
searched or traversed. Tools must also decide the types of
searches that can be performed and how the results are depicted.
In this paper, we first describe how developers translate many
common questions into searches across paths. We then discuss
three important considerations in designing tools to help develop-
ers more effectively answer these questions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SUITE ‘10, May 2-8, 2010, Cape Town, South Africa
Copyright © 2010 ACM 978-1-60558-962-6/10/05... $10.00

2. DEVELOPER ACTIVITIES
Developers often ask reachability questions in the context of two
different activities. As developers propose changes and consider
their implications, they often wonder if something might break.
When debugging, developers often search from a known method
before a fault across downstream paths for statements causing the
bug to occur. We [10] and others [6][11] have looked at the ques-
tions developers ask during these activities. An interesting finding
is that developers spend much of these activities searching for
statements across paths [10]. In the following sections, we de-
scribe how developers make use of both a specification of paths to
search and search criteria specifying statements to find.

2.1 Debugging questions
Another friend tried to debug a bug involving both code he wrote
and code included in his project from a framework. For some
reason, his code computed incorrect results. After narrowing the
problem down to a single Java Collection object, which contained
the incorrect values, he tried to understand where the collection
was being accessed and how it was being used. But, control
flowed back and forth between his code and the framework, and
finding the correct corresponding method in each case was both
tedious and made keeping track of the path challenging. He
wished to search downstream across this path for places where the
collection was being mutated.
Developers often begin debugging tasks with a method in code
that they believe immediately precedes the bug and try to search
for statements causing the bug to occur. Much of the debugging
process consists of locating these statements. In some situations,
they read the code and use source browsing tools to traverse

across calls. In other situations, developers guess the location of
statements that might be relevant to the bug and use print state-
ments or breakpoints to check if they are executed. Bugs can be
challenging to debug when developers have difficulty locating
relevant statements because they are located far away or when
developers cannot determine which method calls to traverse.
Examples of debugging activities [10] suggest both that develop-
ers usually have search criteria in mind for the statements they are
seeking, and that developers are trying to search over control flow
paths from a particular starting location. For example, in our stud-
ies, a developer debugging a deadlock searched for statements
acquiring resources. Another developer began at a method he
knew corresponded to a command that just executed and searched
downstream for the statement which caused an error to be gener-
ated to try to understand what was causing the error.

2.2 Implication questions
Developers also search when trying to determine the implications
of a proposed change to the code. Before committing the time to
implement a change, developers try to determine if it will work
[6][9][10][11]. To answer this question, developers often attempt
to understand how the code works now to determine how it would
work differently after the change. We have seen that many of the
strategies used for this understanding involve searching for state-
ments across control flow paths.
For example, in our lab study [10], developers tried to determine
if they could remove a call to a method. In order to understand
what the call did, developers searched for side effects and calls
into a framework that occurred downstream from the call. As
existing tools do not directly support this kind of search (there are

Question Related downstream search
What parts of this data structure are accessed in this code? Search downstream for accesses to the data structure
What parts of this data structure are modified by this code? Search downstream for writes to the data structure
What data is being modified in this code? Search downstream for writes to any field
What exceptions or errors can this method generate? Search downstream for throws or error calls
How do calls flow across process boundaries? Search downstream for out of process messages
How is control getting from a to b? Search downstream from a for b
What resources is this code using? Search downstream for calls accessing or acquiring resources
What are the possible actual methods called by dynamic dispatch
here? Search downstream across feasible paths
How does this code interact with libraries? Search downstream for calls to libraries
What is the difference between these similar parts of the code
(e.g., between sets of methods)? Compare statements downstream from each method
Question Related upstream search
Is this tested? Search upstream for unit test methods
What threads can reach this code or data structure? Search upstream for thread creation calls
What is the “correct” way to use or access this data structure? Search upstream for paths along which data structure is used
What is responsible for updating this field? Compare paths along which field is written
What in this structure distinguishes these cases? Search for reads from the structure upstream from each case
In what situations or user scenarios is this called? Search upstream for framework callbacks denoting user actions
When during the execution is this method called? Search upstream for framework callbacks or main methods
What parameter values does each situation pass to this method? Search upstream for values which flow into parameters
Is this method or code path called frequently, or is it dead? Search upstream from method or code path

Table 1. Questions developers ask can be answered by searching downstream or upstream along control flow paths.

no tools which can search for all calls into a framework), develop-
ers were only able to read snippets of code and guess which calls
to traverse to find target statements. Unfortunately, the methods
which might have answered these questions were located several
calls away. As a result, all the developers gave up and did not find
them, resulting in incorrect changes.

2.3 Further Examples
Our studies provide strong evidence that searching across paths is
an important and pervasive part of coding activities. In a lab study
of coding tasks [10], half of the bugs were related to searches over
paths developers attempted or should have attempted. In observa-
tions of developers at work on their own tasks [10], 9 out of 10 of
the longest debugging and implication investigations involved
answering a question related to a single search that took tens of
minutes to answer. Furthermore, many of the questions observed
in other researchers’ studies of developers are related to searches
across paths. Table 1 shows how questions from two studies (an
unpublished survey of developers and Silito’s [11]) can be trans-
lated into searches across paths.

3. SEARCHING ACROSS PATHS
Given the evidence that developers need to search across control
flow paths, we have begun designing a tool to make these
searches easier. In doing so, we have explored three important
design choices: (1) what kinds of paths will be searched over, (2)
what can be searched for, and (3) how the results are displayed.

3.1 Paths
Previous systems have supported searching or traversing across
various kinds of paths. A static slice includes edges between
statements that may be control or data dependent in any execution
[1], while a dynamic slice finds dependencies in a specific execu-
tion [7]. Other tools search across control flow graphs containing
edges between statements that might possibly execute sequentially
[5] or concrete traces describing the path in a particular execution
[2]. Impact analysis tools often extend control flow graphs with
additional edges for relationships such as type references [4].
However, we believe that the searches we have observed develop-
ers attempt, as described above, are not effectively supported by
any of these approaches because developers wish to search across
feasible control flow paths. While using static slices without tra-
versal or search has traditionally been criticized for containing too
much of the program (~30% on average [3]), static slices may
sometimes also contain too little of the program While developers
usually wanted to search for everything that might execute after
(or before) a statement, slices only contain the subset of these
statements that are control or data dependent.
While control flow graphs, by definition, include all possible con-
trol flow paths through a program, they also include infeasible
paths that may never execute. In practice, this is an important
issue in conventional GUI programs since they contain many flags
and often use dynamic dispatch. For example, participants in one
of our lab studies wished to search across paths through a bus.
Many methods sent a message onto the bus, and many methods
received messages, but only a small number of methods sent or
listened to the specific messages of interest. In another example,
widely implemented interfaces (e.g., COM interfaces in C++ or
IRunnable in Java) on which a method is invoked results in con-
trol flow paths including many implementations that are never
connected at runtime. Infeasible paths create false positives that
may overwhelm the true positives.

In some debugging activities, traversing dynamic slices can be
substantially more effective than using a debugger [8]. But, dy-
namic analyses do not let developers search over all behavior that
might occur, which is particularly important in many implication
investigations where developers need to understand all cases. And
in some debugging situations, developers may work with long-
running operations, stack dumps from the field where no repro-
duction steps are known, or bugs requiring specialized configura-
tions or hardware. In these cases, it is advantageous to debug
without running the program.
To address the limitations of existing types of paths, we are
designing a new type of path – the static trace. Unlike
dependency paths built by slicers, static traces contain all state-
ments that may execute after (or before). Unlike both control flow
graphs and static slicers, a static trace is an execution trace, con-
taining methods multiple times in different execution contexts like
a dynamic trace. And most importantly, static traces do not con-
tain infeasible paths that a static analysis is able to show will
never execute. But, unlike dynamic traces, static traces show
behavior from all executions rather than a single execution.

3.2 What Can Be Searched For
Previous systems have let users search for strings in method
names [2][4] or method text [5]. Our studies indicate that devel-
opers do indeed search by string for methods or for reads or writes
to fields contained in specific types. In addition, developers
wished to search by string and statement attributes (e.g., all calls
into a framework, all reads to a field) or just by statement attrib-
utes, neither of which are currently supported. Statement attribute
searches are very different from string searches in that developers
do not yet have specific behavior in mind for which they can pro-
duce strings but wish to find all behavior of a specific type. De-
velopers also sometimes wished to perform nested searches to
compare or search across results produced by other searches. For
example, developers wished to compare statements downstream
from different methods or compare reads to a structure along al-
ternative paths to understand the differences.
In our system, we propose to let users search by strings and state-
ment attributes and to use the results produced by one search in
subsequent searches and comparisons. We are also exploring in-
teractions for quickly composing and refining searches.

3.3 Depicting the Results
Previous systems have presented users with either a list of target
statements [4][5] or the path by which the target is reached [2].
We believe presenting targets without the path is often ineffective
in situations such as when developers: (1) do not understand how
the target was reached, (2) want to understand why the call oc-
curred, (3) wish to compare paths by which the target is reached,
(4) are interested in ordering relationships or connections between
multiple targets, (5) wish to see the circumstances (variable val-
ues) necessary for a path to be taken, or (6) are skeptical that a
path ever executes. Existing approaches for depicting paths are
based on UML sequence diagrams which are designed for dis-
playing paths in a single dynamic trace. While it is possible to
express alternatives, the diagrams can quickly become unwieldy.
We are currently designing a new visual notation for describing
control flow paths. Unlike a call stack, multiple callees of a
method may be shown. Unlike existing notations for dynamic
traces, our notation includes information about mutually exclusive
calls and calls that may or may not execute and supports compar-
ing paths in alternative situations. In order to remain compact, our

visualization combines methods occurring multiple times in recur-
sive calls or when the call site is located in a loop. An important
focus has been finding the right balance between displaying too
much and not enough information. Only methods containing
statements that matched a search are shown by default. Paths be-
tween these methods are shown with a single dashed edge that can
be expanded to see the complete path. And we have considered
several alternative levels of detail provided in the visual attributes
shown. See Figure 1 for a mockup.

4. CONCLUSIONS AND FUTURE WORK
Recent studies indicate that searching across control flow paths is
a widely used approach for answering many questions. Therefore,
we are currently designing a tool to make this easier. But there are
several challenges to creating such a tool. A static analysis is nec-
essary to eliminate infeasible paths, but must be fast enough to
compute results in response to user searches. The visualization
should help users make sense of the paths without displaying an
overwhelming amount of irrelevant information. We believe that
better tool support for searching across control flow paths will
help make many common coding activities easier, faster, and less
error prone.

5. ACKNOWLEDGMENTS
This research was funded in part by the National Science Founda-
tion, under grant CCF-0811610. Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect those of the Na-
tional Science Foundation.

6. REFERENCES
[1] Anderson, P., and Teitelbaum, T. (2001). Software inspec-

tion using CodeSurfer. In Proc. Workshop on Inspection in
Software Engineering at CAV.

[2] Bennet, C., Myers, D., Storey, M. German, D. M., Oullet, D.,
Solois, M., and Charland, P. (2008). A survey and evaluation
of tool features for understanding reverse-engineered se-
quence diagrams. In Journal of Software Maintenance and
Evoluation, 20 (4), 291-315.

[3] Binkley, D., Gold, N., and Harman, M. (2007). An empirical
study of static program slice size. In TOSEM, 16(2).

[4] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V. (2005).
JRipples: a tool for program comprehension during incre-
mental change. In Proc. of the 13th Int. Workshop on Pro-
gram Comprehension (IWPC).

[5] Hill, E., Pollock, L., and Vijay-Shanker, A.K. (2007). Ex-
ploring the neighborhood with Dora to expedite software
maintenance. In Proc. ASE.

[6] Ko, A. J. DeLine, R., Venolia, G. (2007). Information Needs
in Collocated Software Development Teams. In Proc. ICSE.

[7] Ko, A.J., and Myers, B.A. (2008). Debugging reinvented:
asking and answering why and why not questions about pro-
gram behavior. In Proc. ICSE, 301-310.

[8] Ko., A.J., and Myers, B.A. (2009). Finding causes of pro-
gram output with the Java WhyLine. In Proc. Conference on
Human Factors in Computing Systems (CHI), 187-196.

[9] LaToza, T.D., Garlan, D., Herbsleb, J.D., and Myers, B.A.
(2007). Program comprehension as fact finding. In Proc.
ESEC/FSE.

[10] LaToza, T.D., and Myers, B.A. (2010). Developers ask
reachability questions. To appear in Proc. ICSE.

[11] Sillito, J., Murphy, G.C., and De Volder, K. (2008). Asking
and answering questions during a programming change task.
In Transactions on Software Engineering (TSE), 34(4).

Figure 1. A mockup of our path visualization. Developers in one of our studies wondered why a call to JEditBuffer.getFoldLevel
was necessary even though the return value was ignored. Maybe the method has effects by mutating fields or communicating with
the framework? Some developers looked downstream for this behavior, but the relevant statements were several calls away, and
developers failed to locate them. In the mockup, target statements (calls into the framework) are shown with a blue background
and paths from the search origin (getFoldLevel) are depicted using a variety of visual attributes.

