
A Modular Algorithm for Resource AllocationInjong RheeDepartment of Computer ScienceNorth Carolina State University446 EGRC, Campus Box 7534Raleigh, NC 27695-7534rhee@csc.ncsu.eduFax: 919-515-7926May 1997



AbstractThis paper concerns resource allocation in distributed message passing systems, i.e., the scheduling of accessesto exclusive system resources shared among concurrent processes. An e�cient modular resource allocationalgorithm is presented that uses any arbitrary resource allocation algorithm as a subroutine. It improves theperformance of the subroutine by letting each process wait only for its currently conicting processes, andtherefore, allows more concurrency. For appropriate choices of the subroutine, we obtain resource allocationalgorithms with the minimum worst case response times. Simulation studies were conducted which alsoindicate that on average, the obtained algorithms perform faster and require a smaller number of messagesthan other previously known algorithms, especially when resource contention among processes is high andthe average time that a process remains in the critical region is large.Key words: dining philosophers, resource allocation, modular construction, concurrency, message passingdistributed systems.



1 IntroductionDistributed systems commonly include exclusive resources, such as �les and distributed objects,that must be managed so that no two processes access the resources at the same time, while avoidingstarved or deadlocked processes. The scheduling of processes with various resource requirements inthis type of system is generally known as resource allocation. We consider the problem only in themessage passing model.Examples of resource allocation can be found in many applications including distributeddatabase and �le systems. In distributed database systems, a transaction can access multipledata records during its operation, and to maintain the consistency of the accessed data, each trans-action usually locks the data records so that no other transactions can access them during its access.The locks on data records can be considered as resources to which a transaction needs to have theexclusive access.Resource allocation in these kinds of systems has been formulated as three kinds: the diningphilosophers problem, the drinking philosophers problem, and the dynamic resource allocation prob-lem. In all these problems, each process has a code segment singled out as the critical region whereit uses the resources. A process enters its critical region after acquiring all its needed resources andthen relinquishes them when exiting the region. If any two processes have overlapping resourcerequirements, we say that the two processes are in conict. The correctness conditions of theseproblems dictate that no two conicting processes can be in the critical region at the same time,and all processes requesting resources must eventually enter the critical region.The dining philosophers problem [6] is a static version of the resource allocation problem,where the process set is �xed and each process requests a �xed set of resources periodically. Amore dynamic version of the dining philosophers, called drinking philosophers [3], allows a pro-cess to request a di�erent subset of its a priori given maximum resource requirement. Any twoprocesses whose current resource requirements do not overlap may be in the critical region at thesame time even though their maximum resource requirements overlap. In the dining and drinkingphilosophers problems, each process has a priori knowledge about its maximal set of conictingprocesses. The dynamic resource allocation problem [1] is the most general of the three resourceallocation problems. In the problem, the process set may dynamically change over time and eachprocess may need, for its execution, any set of resources and may need di�erent sets of resourcesat di�erent times (i.e., a process has no prior knowledge about its maximum resource requirementand its conicting processes).The response time is used to measure the performance of resource allocation algorithms, whichis de�ned to be the time di�erence between when a process requests resources and when it acquiresthem to enter the critical region. The message complexity is also used to measure the maximum1



number of messages required for a process to enter the critical region. These metrics are oftenexpressed in terms of the following parameters. � is the maximum number of conicting processesat any time during the execution of the algorithm, r is the maximum number of resources that aprocess requests at a time, c is the maximum time that a process is in the critical region and d isthe maximum message delay between any two processes.1.1 Our ResultsWe present a modular algorithm M that uses any arbitrary resource allocation algorithm as asubroutine S. It can improve on the overall response time by letting each process wait, if it has to,only for its currently conicting processes.To be speci�c, consider a resource allocation algorithm of any kind with response time O(x �(c+d)) and message complexity O(m) for some x andm. IfM uses this algorithm as a subroutine S, theoverall response time of the resulting algorithm is O(�c+maxf�2; xgd) and its message complexityis maxfm;O(r�)g. Since c is multiplied by �, our modular algorithm reduces the impact of c onthe worst case response time when x is bigger than O(�) (more precisely, bigger than 3�).The modular algorithmM uses the critical region of S (i.e., the exclusion property of the region)to schedule resource accesses in such a way that processes wait only for their currently conictingprocesses. The critical region of S is not used to allocate actual resource, but to lockout competingprocesses while they schedule themselves for resource accesses. This modular construction e�ec-tively bounds the response time to be a function of �c, which is the lower bound. The time that aprocess spends in the critical region of S is also bounded to be O(d) in M. Minimizing the termapplied to c contributes to minimizing the overall actual response time of M because the term isdirectly related to the level of concurrency allowed by the protocol (i.e., the number of processesin the critical region at the same time). In addition, c can often be large in most systems. Forexample, in distributed database systems, an access to each resource in the critical region requiresdisk accesses, and I/O latency is far (more than 20 times) greater than message delay in a typicallocal area network, more evidently in parallel processor systems.Another advantage of our modular algorithm is that its concurrency is limited only by thecurrent resource requirements of contending processes, but not by their maximum resource re-quirements. This allows our algorithm to be applicable to various resource allocation problems.For example, given any arbitrary dining philosophers algorithm as a subroutine, it behaves as adrinking philosophers algorithm, allowing more concurrency than the dining philosophers, and ifthe subroutine is a drinking philosophers algorithm or a dynamic resource allocation algorithm, sois the resulting algorithm. So, when we use Choy and Singh's dining philosophers algorithm [4] asa subroutine, which has response time O(�2(c + d)), we obtain a drinking philosophers algorithm2



with improved response time O(�c+�2d) and message complexity O(r�). This is the fastest knowndrinking philosophers algorithm with the stated message complexity (see Table 1). When we useChoy and Singh's dynamic resource allocation algorithm [5] as a subroutine, which has responseO(�2c+ (�3 + � log� jUj)d) with message complexity O(�2 + � log� jUj) where U is the universal setof from which process IDs are drawn1, we obtain a dynamic resource allocation algorithm withresponse time O(�c + (�3 + � log� jUj)d) and message complexity maxfO(�2 + � log� jUj); O(r�)g.When log� jUj is less than �, our dynamic algorithm is the fastest known dynamic resource alloca-tion algorithm with the stated message complexity (see also Table 1). A similar type of modularitywas presented by Welch and Lynch [12], but unlike theirs, one modular algorithm can improve theperformance of the subroutine being used.The system structure of our solution is similar to those of Lynch [7] and Weidman et al. [13],in that there is one designated process for each resource, called a resource manager, that allocatesits resource to the requesting processes or maintains information about conicting processes. Thefact that the resource managers also participate in scheduling accesses to resources does not makeour algorithm more centralized than other algorithms in terms of fault-tolerance and performancebottlenecks. Since each resource manager deals with resource requests only pertaining to its ownresource, a crash of a resource manager doesn't necessarily a�ect the progress of the other processesthat do not require the resource of the crashed resource manager. In fact, the e�ect of the failure ofone resource manager can be less severe than that of the failure of one process (that is not a resourcemanager). To see this, imagine that a process crashes in the critical region while holding a set ofresources. In this situation, all the processes that require these resources cannot progress. This hasthe same e�ect as the failure of all the resource managers that manage these resources. Therefore,in terms of fault-tolerance, our solution is no less distributed than fully distributed solutions, suchas those in [1, 2]. In terms of performance bottleneck, our algorithm gives an improved worst caseresponse time than other priorly known algorithms.We simulated our combined algorithms and other known dining philosophers algorithms using adiscrete event simulation technique. The simulation results indicate that the average performance(i.e., response time and message complexity) of our algorithm can be remarkably better than theother known algorithms, especially when resource contention among processes is high and theaverage time that a process remains in the critical region is larger than the average message delay.1.2 Previous ResultsDijkstra [6] �rst modeled the resource allocation problem as a ring of 5 processes, called thedining philosophers, where each process shares a resource with each neighbor. Later, Lynch [7]1log� n = minfi : logi n � 1g: 3



Authors Problem Time MessageLynch [7] dining O(c�(c+ d)) O(�)Styer and Peterson [11] dining O(�(log �+1)(c+ d)) O(�(log �+1))Choy and Singh [4] dining O(�2(c+ d)) O(�)Page et al. [9] dining O(�c + nd) O(�2)Chandy and Misra [3] drinking O(n(c+ d)) O(n)Rhee drinking O(�c + �2d) O(maxf�2; r�g)Awerbuch and Saks [1] dynamic O(�c+ �2 log jUjd) O(�2 log jUj)Weidman et al. [13] dynamic O(n(c+ d)) O(�)Choy and Singh [5] dynamic O(�2c + (�3 + � log� jUj)d) O(�2 + � log� jUj)Rhee dynamic O(�c+ (�3 + � log� jUj)d) O(maxf�2 + � log� jUj; r�gTable 1: Time and message complexities of resource allocation algorithms.generalized the problem to an arbitrary conict graph where a node represents a process and anedge represents a sharing of resources between two processes. Lynch's solution uses an edge coloringalgorithm to set a partial ordering on the shared resources, so that each process requests its neededresources in that order. The response time is O(c�(c+ d)) where c is the number of colors used inthe coloring. The message complexity is O(�). Styer and Peterson [11] extended Lynch's algorithmto develop a dining philosophers algorithm with response time O(�log �+1(c + d)) and messagecomplexity O(�log �+1). Page, Jacob and Chern [9] presented a dining philosophers algorithm withresponse time O(�c+ nd) and message complexity O(�2). Choy and Singh [4] developed a diningphilosophers algorithm with response time O(�2(c+ d)) and message complexity O(�). They alsoinclude some discussion of fault-tolerance.Chandy and Misra [3] presented a dining philosophers algorithm using an acyclic directed versionof the conict graph. They also �rst proposed the drinking philosophers problem and its solutionwhich uses their dining philosophers solution as a subroutine. The response time for both of thesolutions are O(n(c+ d)), and the message complexity is O(�). Welch and Lynch [12] generalizedthe modular construction of Chandy and Misra's drinking philosophers algorithm to come up witha drinking philosophers algorithm which uses, as a subroutine, any dining philosophers algorithm.Its response time and message complexity are equal to those of the subroutine.Awerbuch and Saks [1] �rst de�ned and solved the dynamic resource allocation problem. In theirmodel, they assume that processes have to know a priori the IDs of their conicting processes.2The algorithm's worst case response time is O(�c + �2(log jUj)d), and the message complexityis O(�2 log jUj). Weidman et al. [13] developed a dynamic resource allocation algorithm using2Note that our de�nition of the dynamic resource allocation problem is more general in that it doesn't assume apriori knowledge about the conict processes. 4



Chandy and Misra's drinking philosophers algorithm as a subroutine. Its response time and messagecomplexity are the same as those of Chandy and Misra's. Bar-Ilan and Peleg [2] developed asynchronous algorithm that improves on Awerbuch and Saks' algorithm to have response timeO(�c+�(log jUj)d) in a synchronous network. Choy and Singh [5] also developed a dynamic resourceallocation algorithm with worst case response time O(�2c+(�3+log�jUj)d) and message complexityO(�2 + �log�jUj).2 The System ModelThere exists a (�nite or in�nite) set of processes P = fp1; p2; p3; : : :g. Processes communicate bypassing messages. There are three types of process steps: send, receive and local step. Send andreceive are communication primitives and a local step changes local variables of processes. Eachprocess pi is modeled by a �nite state automaton with state set Qi. The state set Qi includes aninitial state q0;i.The automaton for each process is speci�ed by a single guarded command set [B1 ! A12B2 !A22 : : :2Bm ! Am]. Each Bi ! Ai is a guarded command, where a guard Bi is either a booleanexpression or a message reception (receive step), or a conjunction of both, and a �nite list ofaction statements Ai that consists of either multiple local steps or one send step, or both. Whilethe execution of Ai appears atomic to all the other processes, the statements within Ai will beexecuted in sequence.Processes communicate by sending messages to each other. A send step represents the sendingof message to a process, and a receive step of a process involves a reception of one message destinedto the process. We assume that messages sent are eventually received by their destination processeswithin a �nite time.A con�guration is a vector C = fq1; q2; : : :g where qi is the local state of pi for each pi 2 P(including the network). A guarded command is enabled in a con�guration if its associated booleanexpression is true and associated receive, if any, can return nonempty messages, i.e., the messagesspeci�ed in the receive are in the bu�er of its process. An execution of a guarded command involvesan atomic execution of all the steps in the action statements of the guarded command. It resultsin simultaneous changes to the state of the process of the guarded command based on the previousstate of the process, and possibly to the state of the network if the guarded command involves asend step. A guarded command enabled in a con�guration C can be applied to C to yield a newcon�guration C 0 as a result of the execution of the guarded command.A system is speci�ed by describing P , an initial con�guration C0 = (q0;1; q0;2; : : :), and theautomaton of all processes in P . An execution sequence of a system is an in�nite alternating5



sequence of con�gurations and enabled guarded commands C0; �1; C1; �2; : : :Ci�i : : :, where �i isan enabled guarded command in Ci�1; and Ci is obtained by applying �i�1 to Ci�1. We saythat in an execution sequence, a guarded command is continually enabled from Ci to Cj , i < j, ifthe guarded command is enabled in every con�guration from Ci to Cj and is not applied to anycon�guration in between Ci and Cj�1. We also say that in an execution sequence �, a guardedcommand g is enabled before a guarded command g0 in Ck if there exists a sequence of con�gurationsCi; : : : ; Cj; : : : ; Ck in � such that g is continually enabled from Ci to Ck, but g0 is not continuallyenabled from Ci to Cj .An execution is an execution sequence satisfying the following fairness conditions: (1)if �i isa guarded command of process p (that is not the network) and applied to Ci, then there is noguarded command of p that is enabled before �i in Ci (i.e. the FIFO execution); (2) all continuallyenabled guarded command will be executed eventually.A timed execution (�; T ) = C0; (�1; t1); : : : ; (�j; tj); : : : satis�es the following conditions: (1)� = C0; �1; C1; �2; : : : ; Ci; �i+1 : : : is an execution; (2) T is a mapping from guarded commandsto real numbers that associates a real time with each guarded command in the execution. Thesequence t0; t1; : : : ti : : : is nondecreasing and unbounded. (3) All messages sent are received in�nite time.If V is a state variable of a process and t is a real number, V (t) denotes the value of V in thecon�guration Cj where T (�j) � t < T (�j+1), i.e., a con�guration Cj represents the states of thesystem during time interval [T (�j); T (�j+1)).Note that the system model here is completely asynchronous because there are no constraintson relative timing of process steps and message delays.3 Resource Allocation ProblemsWe now specialize the general system model in Section 2 for resource allocation problem. Let Rbe the set of resource in the system. There exists a set of processes U (� P ) called the users thatneed subsets of R for their execution at various times.Let Ri(t) be the resource requirement of user i at time t. Let Rmaxi be the maximum resource re-quirement of a user i such that for every execution �, Rmaxi is the union of the resource requirementsof user i in �.Each user's local states are partitioned into four regions. In the trying region, the user requestsits required resources. Having acquiring the resources, the user enters the critical region. It remainsin the region for a �nite time using the resources. When the user is �nished with the resources, itenters the exit region, where it relinquishes the resources. Otherwise, the user is in the remainder6



region. To specify this, we assume that each user has a local variable, called region, whose valueis set to Trying, Critical, Exit, or Remainder if and only if the user is in the trying region, thecritical region, the exit region or the remainder region respectively. Initially, every user is in theremainder region.At some time t, if users i and j are in the trying or critical region, and Ri(t) \Rj(t) 6= ;, thenwe say that user i conicts with user j at time t.A dining philosophers algorithm is a system with a �nite and �xed set U where 8i 2 U ,Ri(t) = Rmaxi and Rmaxi is a priori known to all processes. Each user's code is well-formed, andthe algorithm must satisfy the following two conditions: (1) (exclusion) in any execution of thealgorithm, if users i and j are both in the critical region at time t, then i and j do not conict witheach other; (2) (no-lockout) in any execution of the algorithm, if a user is in the trying region orin the exit region, then it leaves its current region in �nite time assuming no user remains in thecritical region forever.In a drinking philosophers algorithm and a dynamic resource allocation algorithm, users canhave more concurrency than in a dining philosophers algorithm because users only need theircurrent resource requirement to be satis�ed, but not their maximums. To formalize this concept,we de�ne the following condition: (3) (concurrency) in any execution of the algorithm, if there isno conicting user of user i in its trying region after and when i enters its trying region, then user ieventually enters the critical region. This condition is stronger than the no-lockout condition, thatis, as long as there are no conicting users while user i is in the trying region, user i is never stuckin the trying region even if other users are using other resources forever. The same concurrencycondition is also given in [12].A drinking philosophers algorithm is a system with a �nite and �xed user set U where for allusers i, Rmaxi is a priori known to all processes, but Ri(t) is a priori unknown. Each user's code iswell-formed, and the algorithm has to satisfy the exclusion, no-lockout and concurrency conditions.A dynamic resource allocation algorithm is a system with an in�nite set U where for all usersi, Rmaxi and Ri(t) are a priori unknown to all processes. Each user's code is well-formed, and thealgorithm also has to satisfy the exclusion, no-lockout and concurrency conditions.4 Algorithm4.1 Informal DescriptionThe basic idea of our algorithm is an implementation of a distributed queue, where each user in thetrying region has a position in the queue and enters the critical region in the order of its position.7



The distributed queue runs under the following operational rules: (1) while a user is in the tryingregion, it occupies a position in the queue in such a way that no two conicting users occupy thesame position; (2) users at the front of the queue enter the critical region and leave the queue whenthey enter the exit region; (3) when all the users at the front of the queue leave the queue, all theother users in the queue advance one position, preserving their relative order and the �rst rule;and (4) a newly joining user does not prevent any users in the queue from advancing to their nextpositions.It can be proved that the distributed queue with these rules guarantees no-lockout and exclusion.Since no two conicting users occupy the same position in the queue and only the one at the frontof the queue enters the critical region, rules 1 and 2 ensure that no two conicting users are in thecritical region at the same time (exclusion). By rule 2, when a user �nishes in the critical region, itleaves the queue, and by rule 3, all users in the queue will advance one position. Furthermore rule4 ensures that even if some user enters the queue just before this advancement, all the users in thequeue advance one position. It prevents the user that has just left the queue and enters the queueagain from obstructing the advancing users. Thus, rules 3 and 4 ensure the no-lockout condition.(Formal proof is given in Section 5).In our implementation, there is a group of special processes, called resource managers, eachassigned to one resource. The distributed queue mentioned above is implemented by having onequeue per resource manager. Each resource manager rmk maintains a queue qk. The goal is tomake these queues as a whole behave as the distributed queue by enforcing the above-mentionedfour rules. The following discusses our implementation.We apply a modular approach to implement the �rst rule: we use another resource allocationalgorithm (of any kind) as a subroutine. Each user i in the trying region at time t �rst runs thesubroutine. After entering the critical region of the subroutine, it selects a position to occupy ineach qk ; k 2 Ri(t). The idea is that while a user i is in the critical region of the subroutine wherei is selecting a position in the queue, no conicting users are in that region. Therefore, no twoconicting users can select the same position in the same queue.In order to select a unique position in a queue, user i sends a report message to the resourcemanager of the queue, and the resource manager acknowledges with amarkedmessage that containsinformation about positions occupied by other users in the queue, based on which i selects a positionin each qk . After �nishing the selection, the user informs all the relevant resource managers of theselected positions with a select message, and then it leaves the critical region of the subroutine. Itis easy to see that it takes at most O(d) time for a user to select the positions after entering thecritical region of the subroutine. If the response time of the subroutine is X(C + d) for some X , auser can select its position in time O(Xd). 8



The position that a user selects in a queue a�ects the overall response time of the user. Forexample, a user may select the tail position of each queue. But this can cause unnecessarily longresponse time. To see this, suppose that a user i needs resources a and b, qa is occupied by fourusers, and qb is empty. If user i selects the end position of each queue, it will occupy position 5 inqa and position 1 in qb. Suppose that a user k requiring resources b and c subsequently selects aposition 2 in qb and position 1 in qc. Now, k has to wait for i to leave the queue which is in turnwaiting for four other users to �nish (see Figure 1). This waiting chain can grow up to 
(n)-usersin length, which results in 
(nc) worst case response time.
qa qb qc

i

i

k

k1

2

3

4

5Figure 1: An illustration of queues when a user selects the end of position of queues: user k has towait for all the users that i is waiting for (occupied positions are shaded).One reasonable approach is to have each user i to select the smallest unoccupied position inevery qk , k 2 Ri(t). That is, a user looks for a \hole" in every queue. In the above example, i willselect position 5 because position 5 is the smallest position unoccupied in both qa and qb, and thenk will select position 1 because position 1 is unoccupied in qb and qc. Therefore, k does not haveto wait for i to �nish (see Figure 2). This way, each user, if it has to, waits only for its conictingusers. Later, this approach will be slightly modi�ed to accommodate the fourth rule.
qa qb qc

k

i

k

i

1

2

3

4

5Figure 2: An illustration of queues when a user selects a \hole": user k does not wait for the usersthat user i is waiting for.To implement the second rule, each resource manager sends a grant message to the user at thefront of its queue. A user i, when receiving a grant message from every rmk, k 2 Ri(t), entersthe \real" critical region (not of subroutine). After it is �nished in its critical region, it sends arelease message to every rmk. This is the exit region of user i. Upon receiving a release message,a resource manager marks the front of the queue unoccupied. If a position in a queue becomes9



unoccupied, any user occupying the immediately succeeding position needs to advance.Now, we need to implement the third rule in which, when all the users at the front of the queueleave the queue, all the other users in the queue advance one position, preserving their relativeorder and the �rst rule. Because of the asynchrony in the system, arbitrary advancement of usersin a queue may break the relative order among conicting users. To illustrate this, suppose thatuser i selects a position p in resources a and b. Assume that all the users at the positions less thanp in qa �nish the critical region and leave the queue before those in qb. Suppose that after sometime, the positions of user i become equal to, say, p� 4 in qa and p in qb. It is possible that not allpositions below position p in qb are occupied. So, in the meanwhile, some user j which also requiresresources a and b selects, say, position p � 2 in both qa and qb. Now, because j waits for i in qawhile i waits for j in qb, there is no relative order between i and j, and this causes deadlock (seeFigure 3).
qa qb

i

qa qb

i

j j

pposition 

After some time

i

i

p-1

p-2

p-3

p-4Figure 3: An illustration of queues when a user i selects position p initially and then after sometime, user j selects p�2. This shows that a careless advancement of users (here user i in qa) causesa deadlock.To implement the third rule without breaking the relative order among conicting users, we leteach resource manager rmk send a dec message to user i when the position immediately precedinguser i's position in qk is unoccupied. When user i receives one decmessage from each rmk, k 2 Ri(t),it sends an advance message to every rmk. Upon receiving the advance message, rmk advancesuser i's position in qk to the next lower position.It can be proved that when the above scheme is used, the di�erence between the positions ofuser i in any two queues is less than two, i.e., the positions of user i in the di�erent queues, advancealmost \in synchrony". The proof is given in Section 5. This preserves the relative order amongthe conicting users. For example, in the above example, user i will remain in position p or p� 1in both qa and qb. Therefore, user j cannot occupy a position in between the two positions of useri. The fourth rule prevents new users from interfering with the advancement of the users in thequeues. It can be easily implemented by dictating those new users not consider the positionsimmediately preceding any occupied ones in the queues of their required resources when they select10



the initial positions. This implementation of the fourth rule is somewhat related to the �rst rule.Imagine a situation where a user i sends an advance message to a resource manager rmk so that ican advance to p � 1 from p. Without such implementation of the fourth rule, it is possible for anew user j to occupy position p� 1 in qk just before rmk receives the advance message. Now, wehave a situation that either both i and j may occupy the same position in qk, or i may not be ableto advance to position p � 1 at all. Thus, by preventing a new user from occupying any positionsimmediately preceding already occupied positions, we can keep new users from obstructing theadvancement without violating the �rst rule.We obtain the time complexity of our protocol using the following argument. The initial positionof a user is always less than O(�), because (1) each user selects the minimum position that is notoccupied by all its conicting users; (2) the di�erence between any two positions of user i in queuesis less than two (which means user i occupies no more than two position in queues at any time);and (3) there are at most � conicting users at any time. By induction on the position that a useroccupies, it can be shown that a user advances one position in time O(�d) after all position 1's inall queues are unoccupied (which happens at every O(c+ d) time in the worst case). The proof isgiven in Section 5. Therefore, since there are at most O(�) positions in front of any user, a userwill reach the front of the queue in time O(�c+ �2d). Since it takes O(Xd) time for a user to selectan initial position, the overall response time of the algorithm is O(�c+ �2d+Xd).For the message complexity, before a user i advances to a new position in qk , user i receives atmost r dec messages and sends at most r advance messages while user i is at position p. Therefore,because the initial position is always in O(�), the message complexity is O(M + r�) if M is themessage complexity of the subroutine.4.2 Formal DescriptionAs described in Section 3, in each user's code, region is set to Trying, Critical, Exit or Remainderif and only if a user is the trying region, the critical region, the exit region or the remainder region.The subroutine also has its own \region" variable. To distinguish these two variables, we callregion in the subroutine sub-region.Given a subroutine, we take only the resource allocation part of the code and concatenate it tothe user code described in Figure 4. All the occurrences of region in the resource allocation partof the subroutine are replaced by sub-region, and the variable Ri in the subroutine is also replacedby subRi. It is assumed that the subroutine is well-formed.The following messages and state variables (in addition to ones described in above) are used inthe algorithm described in Figures 4 and 5.� select(p)i;k: message from user i to rmk; indicates that i selected position p in qk.11



� reporti;k: message from user i to rmk; requests information about the occupied positions in qk.� releasei;k: message from user i to rmk ; indicates that it has �nished using the resource.� markedk;i: message from rmk to user i; contains all the occupied positions and their precedingpositions in qk .� grantk;i:message from rmk to user i; indicates that resource k is granted to the user.� dec(p)k;i: message from rmk to user i; indicates that position p� 1 of qk is unoccupied.� advance(p)i;k: message from user i to rmk; indicates that rmk can advance user i into positionp� 1.� req-report: a boolean variable; true when a user sent reportmessages, but hasn't receivedmarkedmessages.� has received advanced(p): a boolean variable; becomes true when rmk receives advance(p)i;k andbecomes false when user i advances to position p� 1 (i.e., advance one position(p) is called).� occupantk(p): a variable; contains the ID of the user that occupies position p of qk . 0 if theposition is unoccupied. (We assume there is no user with ID zero.)� rm criticalk: a boolean variable; true when rmk received a reportmessage from some i, but hasn'treceived a select message from i. It indicates that i is in the critical region of the subroutine.� has dec sent(p): a boolean variable; true when a dec(p) is sent, and false when a user occupiesposition p.5 Correctness Proof and Performance AnalysisFor convenience of presentation, we de�ne some terms. We denote by ik the fact that user i occupiesa position in qk . If a user i occupies or advances to a position p in qk, then we say that ik occupiesor advances to p. If rmk sends a dec(p) for any p while i occupies position p in qk , then instead ofsaying that the resource manager sends the dec messages, we say more conveniently that ik sendsdec(p). We also assume that each user enters the trying region no more than once. This assumptiondoes not a�ect the correctness of our protocol as the protocol relies only on the current resourcerequirement of users.As it is straightforward to show that the user code is well-formed, we only prove the exclusion,no-lockout and concurrency conditions.Lemma 5.1 In any timed execution of the algorithm, for any conicting users i and j, ik and jkdo not occupy the same position at the same time.12



012 region = Trying and sub-region = Remainder !02 sub-region := Trying;03 subRi := Ri;042 sub-region = Critical and req-report = false !05 req-report := true;06 for all j 2 Ri: send reporti;j ;072 Receive markedj;i , 8j 2 Ri !08 p := minfN �S8j2Ri markedj;ig;09 for all j 2 Ri: send select(p)i;j ;10 req-report := false;11 sub-region := Exit;122 Receive grantj;i, 8j 2 Ri !13 region := Critical;142 Receive dec(p)j;i, 8j 2 Ri for some p !15 for all j 2 Ri: send advance(p)i;j ;162 region = Exit!17 region := Remainder;18 for all j 2 Ri: send releasei;j ;Figure 4: Code for user iProof: Without loss of generality, we assume that i selects a position in qk after j does (i.e., ienters the critical region of the subroutine after j). Note that they cannot select positions at thesame time because of the exclusion condition of the subroutine and because i conicts with j.When i selects a position in qk, it receives a marked message from rmk, which contains in-formation about all the occupied positions in qk . rm criticalk in the resource manager's code isset to true when rmk receives a report message from user i (see line 4 in Figure 5), which is sentonly after the user enters the critical region of the subroutine. Since other conicting users cannotbe in the region at the same time, rmk doesn't receive a select message until i sends it. Thus,while i is selecting a position in qk, rm criticalk remains true until selecti;k is received. Since rmkdoesn't receive any other message while rm criticalk is true, the positions of other users in qk donot change during the selection. Also by the code, ik doesn't select any position occupied by jkor its preceding position (see line 8 in Figure 4). This guarantees that i never selects the positionthat jk selected since user i selects a position that are unoccupied in qk.Since ik advances to a new position only after its immediately preceding position is unoccupied(see lines 17 and 22 in Figure 5), it never happens that ik advances to the position that jk occupiesor vice versa.Theorem 5.2 (Exclusion) In any timed execution of the algorithm, if users i and j are both in thecritical region, then i and j do not conict with each other.Proof: By Lemma 5.1, ik and jk never occupy the same position at the same time. By the code,13



012 :rm criticalk, receive reporti;k ! == received report msg.02 markedk;i := fj � 1; j : 8j; occupantk(j) 6= 0g;== marked contains information about all== occupied positions and their immediately preceding positions.03 send markedk;i ;04 rm criticalk := true; == enter critical section of the subroutine.052 rm criticalk , receive select(p)i;k , ! == �nished the selection06 rm criticalk := false; == leave critical section of the subroutine.07 occupantk(p) := i;08 if p = 1 then send grantk;i; == send a grant msg if i is at the front.09 adjust queue(p);102 :rm criticalk, receive advance(p)i;k , ! == recvd an advance msg11 has received advance(p) := true;12 adjust queue(p);132 :rm criticalk, receive releasei;k ! == release the res. to the next user.14 occupantk(1) := 0;15 adjust queue(2);16 Procedure adjust queue(p)17 while (occupantk(p) 6= 0) and (occupantk(p� 1) = 0)18 if (has dec sent(p) = false) then19 has dec sent(p) := true;20 send dec(p)k;occupantk(p);21 endif22 if (has received advance(p) = true): advance one position(p);23 p := p+ 1;24 end while25 Procedure advance one position(p)26 occupantk(p� 1) := occupantk(p); == advance one position27 occupantk(p) := 0; == reinitialize position variables28 has received advance(p) := false;29 has dec sent(p) := false;30 if (p� 1 = 1) then send grantk;occupantk(p�1) ;== if the next position is empty, send a dec message.31 if (has dec sent(p� 1) = false) and (occupantk(p� 2) = 0) then32 has dec sent(p) := true;33 send dec(p� 1)k;occupantk(p�1) ;Figure 5: Code for resource manager rmkonly the users at position 1 will be in the critical region (see lines 8 and 30 in Figure 5). Thus, ifusers occupy di�erent positions in a queue, there is no such case that they are in the critical regionat the same time.We now prove the no-lockout condition of the algorithm. The proof is structured as follows.We �rst prove in Lemma 5.5 (using Claims 5.4 and 5.3) that a user ik advances one position from aposition p if and only if position p� 1 in every qk0 , k0 2 Ri, is unoccupied. The lemma implies thatall ik's are advancing \in synchrony" whenever position p� 1 in every qk0 , k0 2 Ri, is unoccupied.14



As every ik initially occupies the same position in every qk, the distance between any ik and ik0(k 6= k0) is at most 1.Then we prove in Lemma 5.7 that if a user jk occupies a position lower than ik, it is alwaysthe case that jk0 occupies a position lower than ik0 , e.g., there is no such situation that while auser ik is at position 2 and a user jk is at position 1, ik0 is at 1 and jk0 is at 2. Lemmas 5.5 and5.7 together guarantee that all users that occupy position 1 at all queues will eventually receive agrant message from their resource managers, enter the critical region, and leave the queues. Also,using Lemma 5.5, Lemma 5.9 proves that after all users that occupy position 1 at any queue leavethe queues, all other users in the queues advance one position eventually. Inductively applying thisargument, we can prove that all users in the queue eventually advance to position 1. This provesthe no-lockout condition.Claim 5.3 If has dec sent(p)k is true and ik is at p, then rmk sends at least one dec(p) to i.Proof: Since only at line 19 in Figure 5, has dec sent(p)k becomes true, after which a dec(p)message is sent to the occupant of p, we only need to prove that when ik �rst occupies p,has dec sent(p)k is false.Assume by way of contradiction that when ik �rst occupies p, has dec sent(p)k is already true.Since has dec sent(p)k is initially set to false, there must have been some user jk that occupied pand set has dec sent(p)k to true (at line 19 in Figure 5) previously, and some other user sk thatsubsequently occupied p (at either line 7 or line 26 in Figure 5) and found has dec sent(p)k to betrue. Note that has dec sent(p)k becomes false only at line 28 in Figure 5 which is executed whenthe occupant of p advances to p�1 (line 26 in Figure 5). Therefore, the fact that has dec sent(p)kwas already true when sk �rst occupied p implies that jk has not had moved from p yet. Thiscontradicts Lemma 5.1 since jk and sk were at the same position in the same queue.Claim 5.4 An rmk, k 2 Ri sends at least one dec(p) message to user i if and only if position p�1in qk is unoccupied and position p in qk is occupied by i.Proof: (If part) The condition that position p � 1 in qk is unoccupied and position p in qk isoccupied by i becomes true only either (1) when p� 1 becomes unoccupied while ik is at p, or (2)when ik �rst occupies position p, p� 1 is already unoccupied.Case 1 happens only either when rmk receives an advance(p� 1) message or when p = 2 andrmk receives a release message. In either case, adjust queue(p) is called. Thus, line 18 in Figure5 will be executedCase 2 happens only either when i selects position p by sending a select(p) or when ik advancesto p from p+1. When rmk receives a select(p) message, it calls adjust queue(p) (line 9 in Figure15



5). When ik advances to p from p+ 1, it is always checked whether p� 1 is occupied or not. Line31 in Figure 5 will be executed.In all cases, has dec sent(p)k is checked and if it is not set to true, a dec(p) message is sent toi. If it is set to true, then by Claim 5.3, at least one dec(p) message must be sent to i.(Only if part) Trivially true by the code (see lines 17 and 31 in Figure 5).We say that a user i is aligned at position p if for every k, k 2 Ri, occupantl(p) = i.Lemma 5.5 An rmk, k 2 Ri executes advance one position(p) if and only if i is aligned atposition p, and for every l, l 2 Ri, occupantl(p� 1) = 0.Proof: By Claim 5.4, user i receives a dec(p) message from all the rml's if for all l, l 2 Ri,occupantl(p�1) = 0 and occupantl(p) = i. By line 15 in Figure 4, user i will send an advance(p) mes-sage to rmk. Receiving the message, rmk sets has received advance(p) to true and adjust queue(p)is called in which line 22 in Figure 5 is executed.has received advance(p) is set to true only at line 11 which is when rmk receives advance(p).has received advance(p) is set to false either initially or when a user at p advances to p� 1 (at line28). Thus if has received advance(p) is true, then it has received an advance(p) from the currentoccupant of position p. Note that by the code, an advance(p) message is sent by the occupant of ponly when the occupant receives a dec(p) message from all the resource managers of the resourcesit requires. Thus, by Claim 5.4, the fact that has received advance(p) is true implies that for all l,l 2 Ri, occupantl(p� 1) = 0 and occupantl(p) = i.Lemmas 5.1 and 5.5 imply that no new user can obstruct the advancement of user i if i isaligned and the immediately preceding position of every ik is unoccupied. This is because (1) newusers cannot select their initial positions to be immediately preceding any occupied position, and(2) while a new user selecting a position in some queue k, rm criticalk is true. Thus, by the code,rmk receives only select messages. Since rmk does not receive any advance or release message whilethe new user is selecting, other users in queue k cannot advance.Let Pk(i) be the position of ik in qk .Claim 5.6 For any user i and any k and k0 2 Ri, it is always true that jPk(i)� Pk0(i)j � 1 whileik and ik0 are in qk and qk0 respectively.Proof: Every ik, k 2 Ri occupies the same position initially (line 9 in Figure 4). By the code, isends an advance(p) message only after it receives a dec(p) message from ik and ik0 . By Claim 5.4,if i receives dec(p)k;i and dec(p)k0;i ik and ik0 must be at p. By the code, advance one position(p)is executed when an advance(p) is received. Since advance one position(p) advances ik only oneposition, the claim follows. 16



For any k, i and j, i 6= j, if Pk(i) > Pk(j), then we say that user ik waits for user jk, denotedby ik ! jk.Lemma 5.7 There is no cycle in the wait-for relation created by the execution of the algorithm.Proof: We show that if ik ! jk at time t, ik0 ! jk0 , for any resources k and k0 2 Ri \ Rj. Thelemma is trivially true if k = k0. Assume k 6= k0. Without loss of generality, assume that i selectsa position before j does. If jk occupies a position less than Pk(i), jk0 should also occupy a positionless than Pk0(i). This is because when j selects a position in qk and qk0 , P (jk) = P (jk0). By Claim5.6, j P (ik)� P (ik0) j� 1. Therefore, if ik ! jk, then ik0 ! jk0 . This is su�cient to show there areno such cycles since a user cannot wait on itself.Claim 5.8 Let p be the lowest position that a user i is in at some time t. User i will be eventuallyaligned at position p at some time t0, t0 � t.Proof: Every ik, k 2 Ri initially occupies the same position. A user i advances to the nextposition p � 1 only when it receives an advance(p) message and the message is sent to every ik.advance(p) is sent by user i only when it receives a dec(p) message from every ik which is sentonly when ik occupies p. Thus, if ik is at position p, then it must have received an advance(p+ 1)message. Then every ik0 , k0 6= k, will receive it as well and advance to p. ik cannot advance top� 1 before every ik0 advances to p because ik0 does not send a dec(p) message until it advances top.Lemma 5.9 At some time t, let Ut be the set of users at position 1 in every queue. If all users inUt leave the critical region and their queues by some time t0, t0 � t, a user ik that is at position pat t will eventually advance to p� 1 after t.Proof: By Claim 5.8, user i will be aligned at either p or p� 1. If it is at p� 1, then the lemmais trivially true. Assume that i is aligned at p. There are two cases to consider.(1) Position p� 1 in every queue that i is in is unoccupied. In this case, this lemma is true byLemma 5.5.(2) Position p � 1 in some queue is occupied by some user j. By Claim 5.8, user j is (or willbe) aligned at position p � 1 or p � 2. If it is aligned at p � 2, this lemma is true by Lemma 5.5.Note that no new user can occupy p� 1 left by j. Assuming that j is aligned at p� 1, we can �nda chain of users x(0); x(1); : : : ; x(l) for some l, l � 2, such that x(0) is i, and x(m), for some m,1 � m � l, is aligned at p �m, and x(m) and x(m + 1) are in conict. Let us call this chain an17



1 1 1

2 2 3 3

4 5

6Figure 6: Two aligned chains of user 1aligned chain of i. Figure 6 shows an example of two aligned chains of a user 1. The two chainsare 1,2,4 and 1,3,5,6.Without loss of generality, we can assume that there are c aligned chains of i for some integerc, c � 1. x0(0); x0(1); : : : x0(l0)x1(0); x1(1); : : : x1(l1)x2(0); x2(1); : : : x2(l2)...xc(0); xc(1); : : : xc(lc)Note that xk(0), 1 � m � c, is equal to i, and for some k0 and k00, lk0 and lk00 could be di�erentmeaning that each chain can be of di�erent length. Suppose that xk(lk) is at position plk . plk iseither 1 or some position higher than 1. (1) If xk(lk) is aligned at 1, then it is in Ut and will leaveits queues at time t00. (2) If plk is not 1, then by the de�nition of aligned chain, plk � 1 in everyqueue that xk(lk) is in is unoccupied. Thus, by Lemma 5.5, xk(lk) will advance to plk � 1.In both cases, plk will be unoccupied. The same is true for every lk, 1 � k � c. Then, byLemma 5.5, every xk(lk � 1), 1 � k � c, will advance to plk . Note that new users can occupy plkbecause xk(lk�1) occupies plk�1. By induction on position plk , we can prove that user i eventuallyadvances to p� 1.Theorem 5.10 (No-lockout) If a user i is in the trying region or in the exit region, then it leavesits current region in �nite time assuming no user remains in the critical region forever.Proof: By the no-lockout condition of the subroutine, user i will eventually select a position inall queues of the resources that it requires. By Lemma 5.7 and by the code, all users at position1 of queues will receive a grant message from all resource managers of the resources they require,and enter the critical region. If they leave the critical region in �nite time, then the position 1's18



occupied by them will be free. Then, as all the users in the position 1 leave their queues, all ofposition 1's in all queues will be unoccupied eventually. Since all the position 1's in all queues willbe unoccupied, by Lemma 5.9, all the users in the queues will advance one position eventually.Induction on the position that user i occupies proves that i eventually leaves the trying regionin �nite time, and enters the critical region.Since in the exit region, users send release messages and then enter the remainder regionimmediately, users leave the exit region in �nite time.Theorem 5.11 (Concurrency) in any execution of the algorithm, if there is no conicting user ofuser i in the trying region after and when i enters the trying region, then i eventually enters thecritical region.Proof: If i is in the trying region, it will eventually enter the critical region of the subroutinebecause of the no-lockout condition of the subroutine. Since there is no conicting user, all qk,k 2 Ri, are empty, user i will select position 1 in all qk and enter the critical region.To measure the response time of the algorithm, we de�ne functions RespA(c) and MsgA to bethe response time and the message complexity of a resource allocation algorithm A.Theorem 5.12 If a resource allocation algorithm A is used as a subroutine for our algorithm, thenour algorithm has response time O(�c+ �2d+RespA(d)) and message complexity O(MsgA + r�).Proof: For the response time, we only need to show that any user i that sends a request messageat time t will receive grant messages from all resource managers rmk, k 2 Ri(t) by time t+O(�c+�2d+ RespA(d)).Note that for a message to be received, it takes time d + 1 in the worst case (the maximummessage delay plus one step to receive the message). The maximum time period that a user spendsin the critical region of the subroutine is 2d+2, i.e., sending a report message, receiving a markedmessage (after sending a select message, a user leaves the region immediately). Since the responsetime of the subroutine is RespA(c) and in the subroutine, c = 2d+ 2, a user will enter the criticalregion of the subroutine within time RespA(2d+ 2).Let p be the initial position of user i. There are at most � � 1 other users in the queues ofresources that user i requires. By Claim 5.6, no user occupies more than two positions at any time.By the code, the position immediately preceding any occupied position is not considered for theselection. Therefore, p � 3�. 19



We now show that it takes at most O(pc + p2d) time for any user i to leave a queue after itoccupies position p.It can be shown by an easy induction on p that if position 1's of all queues are unoccupied attime t0, then all users at the positions higher than 1 will advance to p�1 within time t0+p(2d+2).Assume, by way of induction, that all users at position p� 1 advance one position to position p� 2within time t0 + (p � 1)(2d + 2). When all users at p � 1 advance, all users at position p senddec(p) messages, which will be received within time d+1, and then advance messages will be sent,which takes at most d+1 time to be received. All users at position p will advance to p� 1 by timet0 + (p� 1)(2d+ 2) + 2d+ 2.After all jk's, k 2 Rj, occupy position 1 in all qk 's, it takes at most c+2d+2 time for all rmk'sto receive a release message from user j, i.e., d+ 1 time for a grant message to be received by j;c time for j to be in the critical region; and d+ 1 time for a release message to be received. Thus,after a user i occupies position p, all users at position 1 will leave the queue within time c+2d+2.It follows that within time t+Resp(2d+2)+ c+2d+2+ p(2d+2), every ik occupies p� 1 or less.Since there are p� 1 positions to advance, within time t+Resp(2d+ 2) + (p� 1)(c+ 2d+ 2 +p(2d + 2)), user i advances to position 1. Since p � 3�, user i enters the critical region by timet+Resp(2d+2)+(3�� 1)(c+2d+2+3�(2d+2)) plus the time to receive a grant message (d+1).Therefore, user i enters the critical region by time t+ O(Resp(d) + �c+ �2d).For the message complexity, each user receives r dec messages and sends r advance messagesat each position in the queues. Since a user occupies at most 3� positions, the message complexityis O(MsgA + r�) before it actually uses its required resources in the critical region.One may also wonder about the number of bits that each message requires. Among all themessages in our algorithm, a marked message can be largest because it contains information aboutall the occupied positions in one queue. Since there are at most � conicting users at a time andall the users in the same queue are conicting, a marked message can contain up to O(�) positions.Because each position can be represented by logP bits where P is the total number of positions ina queue, a marked message needs at most O(� logP ) bits.6 SimulationWe are interested in comparing the mean response time of di�erent resource allocation algorithms.We do the comparison by discrete event simulation. This section discusses the simulation results.We simplify the model in Section 2 to reduce the complexity of simulation. We model theexecution of the system to be synchronous, so that at every one time unit, each process executes20



one enabled guarded command (if there is no enabled guarded command, it takes an idle step).However, message passing among processes is still asynchronous so that each message has a randomdelay with uniform distribution.The simulation model has 100 users and 100 resources. The resource requirements of processesare set randomly prior to the execution of each simulation, and the conict graph is constructedbased on the resource requirements of all users. We assume a uniform probability distribution ofthe resource requirements of users (i.e., the probability that a user requires a resource a is the sameas the probability that it requires a resource b).Each user takes idle steps in the remainder region for some random time before it enters thetrying region. We call the time period the thinking time. The time period that a user uses oneresource is called the resource service time. The resource service time for each resource is setrandomly before a user enters the critical region. The time period that a user stays in the criticalregion is determined by the sum of the resource service times of all resources that the user needsto use. The probability distributions of the thinking time and the resource service time are alsouniform. To increase the accuracy of the simulation, we adjusted simulation run lengths in sucha way that the sample mean response times and mean numbers of messages had 95% con�denceintervals which were less than 5% of the measured values.We simulated Chandy and Misra's algorithm (CM), Choy and Singh's algorithm (CS), Awerbuchand Saks' algorithm (AS), our modular algorithm with Choy and Singh's algorithm as a subroutine(CSR) and our modular algorithm with Chandy and Misra's algorithm as a subroutine (CMR).Approximately 300 random conict graphs were tested.Figures 7, 8, 9, 10 and 11 show the result of our simulations, where the average response timesand message complexities are shown for various numbers of conicting users. To see the impact ofthe ratio of message delay over the resource service time on the response time, we simulated thealgorithms with di�erent ratios. The average message delay was �xed to 50 time units while theresource service time was varied from 25 to 100. The average think time was set to 25.When the ratio of the average response time over the average message delay was small, all thealgorithms except CM performed comparably (see Figure 7). CS performs better than all otheralgorithms tested when the average number of conicting users is small. However, as the averagenumber of conicting users gets bigger, the average response time of CS grows more steeply thanthose of CSR, CMR and AS. This phenomenon becomes more evident when the ratio of the averageresource service time over the average message delay gets bigger (compare Figure 7 with Figures8, 9 and 10).Our result shows that CSR and CMR give clearly better response time than the other algorithms(AS, CS and CM) when the average number of conicting users is large and the ratio of the average21



0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

A
v
er

ag
e 

R
es

p
o
n
se

 T
im

e

Average Number of Conflicting Users

"CM"
"CS"
"AS"

"CSR"
"CMR"

Figure 7: Average response time when aver-age resource service time = 25 and averagemessage delay = 50. 0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

A
v
er

ag
e 

R
es

p
o
n
se

 T
im

e

Average Number of Conflicting Users

"CM"
"CS"
"AS"

"CSR"
"CMR"

Figure 8: Average response time when aver-age resource service time = 50 and averagemessage delay = 50.resource service time over the average message delay is high. CMR and CSR show up to 60%improvement over CS and up to 80% improvement over CM. CMR and CSR show better averageperformance even than AS (up to 40%) as the ratio gets bigger. CMR works surprisingly betterthan CM on average. Even in the case where the ratio is small, if the average number of conictingusers is large, CMR and CSR show improvement over all the other algorithms (see Figure 8).Chandy and Misra's algorithm is worst in every case.For the message complexity, our combined algorithms naturally require more messages thanthe subroutines. However, they require fewer messages on average than polynomial response timealgorithms such as AS (see Figure 11).In summary, the simulation result clearly indicates that the modular algorithm can improve theaverage response time of its subroutine algorithm with small increase in the messages complexity,especially when there is high contention for resources and the message delay is smaller than theresource service time.7 ConclusionWe presented an e�cient modular resource allocation algorithm that uses another resource allo-cation algorithm of any kind as a subroutine. When our algorithm uses Choy and Singh's diningphilosophers algorithm [4], the combined algorithm gives worst case response time O(�2(c + d))and message complexity O(r�), which is the fastest known drinking philosophers algorithm withthe stated message complexity. When Choy and Singh's dynamic resource allocation algorithm22



0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

A
v
er

ag
e 

R
es

p
o
n
se

 T
im

e

Average Number of Conflicting Users

"CM"
"CS"
"AS"

"CSR"
"CMR"

Figure 9: Average response time when aver-age resource service time = 75 and averagemessage delay = 50. 0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

A
v
er

ag
e 

R
es

p
o
n
se

 T
im

e

Average Number of Conflicting Users

"CM"
"CS"
"AS"

"CSR"
"CMR"

Figure 10: Average response time when aver-age resource service time = 100 and averagemessage delay = 50.
0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40

A
v
er

ag
e 

M
es

sa
g
e 

C
o
m

p
le

x
it

y

Average Number of Conflicting Users

"CM"
"CS"
"AS"

"CSR"
"CMR"

Figure 11: Average message complexity of when average resource service time = 100 and averagemessage delay = 50.[5] is used, the combined dynamic resource allocation algorithm gives worst case response timeO(�c+ (�3 + log� jUj)d) and message complexity O(r�), which is again the fastest known dynamicresource allocation algorithm with the stated message complexity. We also simulated various re-source allocation algorithms using a discrete event simulation technique. The simulation resultsindicate that our algorithm performs better than other algorithms on average, especially when theaverage number of conicting users is large and the ratio of the average time period that a user isin the critical region over the average message delay is high.Acknowledgments: The author is greatly indebted to Jennifer Welch for her helpful commentson earlier versions of this paper, and continuous encouragement. This work is supported through23



her NSF PYI Award CCR-9158478, and IBM Faculty Development Award. Many thanks also goto Ivor Page and Tom Jacob for providing their simulation programs, which helped me understandthe algorithm of Awerbuch and Saks. The author would like to thank the anonymous referees fortheir critical reading of earlier versions of this paper and many helpful comments. Much of thiswork was done while the author was with the Department of Computer Science, University of NorthCarolina, Chapel Hill.References[1] B. Awerbuch and M. Saks, \A dining philosophers algorithm with polynomial response time,"Proc. 31st IEEE Symposium on Foundations of Computer Science, St. Louis, MO, pp. 65{74,Oct. 1990,[2] J. Bar-Ilan and D. Peleg, \Distributed resource allocation algorithms," Proc. 6th InternationalWorkshop on Distributed Algorithms,, pp. 277{291, Sept. 1992.[3] K. Chandy and J. Misra, \The drinking philosophers problem," ACM Transactions on Pro-gramming Languages and Systems, vol. 6, pp. 632{646, 1984.[4] M. Choy and A. Singh, \E�cient fault-tolerant algorithms for resource allocation in distributedsystems," Proc. 24th ACM Symposium on Theory of Computing, pp. 593{602, May 1992. Alsoto appear in ACM Transactions on Programming Languages and Systems.[5] M. Choy and A. Singh, \Distributed job scheduling using snapshots," Proc. of the 7th Inter-national Workshop on Distributed Algorithms,, pp. 145{159, Sept. 1993.[6] E. Dijkstra, \Hierarchical ordering of sequential processes," Acta Informatica, vol. 1, fasc. 2,pp. 115{138, 1971.[7] N. Lynch, \Upper bounds for static resource allocation in a distributed system," Journal ofComputer and System Science, vol. 23, pp. 254-278, 1981.[8] G. Peterson and M. Fisher, \Economical solutions for the critical section problem in a dis-tributed system," Proc. 9th ACM Symposium on Theory of Computing, pp. 91{97, May 1977.[9] I. Page, R. Jacob and S. Chern, \Fast algorithms for distributed resource allocation," IEEETransactions on Parallel and Distributed Systems, pp. 632{646, Feb. 1993.[10] I. Rhee, E�ciency of Partial Synchrony, and Resource Allocation in Distributed Systems,PhD Dissertation, TR94-071, Department of Computer Science, University of North Carolina,Chapel Hill, April 1994 (ftp://ftp.cs.unc.edu/pub/technical-reports/94-071.ps.Z).24



[11] E. Styer and G. Peterson, \Improved algorithms for distributed resource allocation," Proc.7th ACM Symposium on Principles of Distributed Computing, Toronto, Canada, pp. 105{116,August 1988.[12] J. Welch and N. Lynch, \A modular drinking philosophers algorithm," Distributed Computing,vol. 6, pp. 233{244, 1993.[13] E. Weidman, I. Page, and W. Pervin, \Explicit dynamic exclusion algorithm," Proc. of the3rd IEEE Symposium on Parallel and Distributed Processing, pp. 142{149, Dec. 1991.

25



A brief biography of the authorInjong Rhee received B.E. in electrical engineering from Kyung-Pook National University, Koreain 1989, and Ph.D. in Computer Science from the University of North Carolina, Chapel Hill, USAin 1994. After conducting postdoctoral research for one year at Warwick University, U.K., and forone year at Emory University, USA, he is now an assistant professor of computer science at NorthCarolina State University, USA. His research interests include distributed systems and networks,networked multimedia systems, and distributed algorithms.

26


