A Modular Algorithm for Resource Allocation

Injong Rhee
Department of Computer Science
North Carolina State University

446 EGRC, Campus Box 7534
Raleigh, NC 27695-7534
rhee@csc.ncsu.edu

Fax: 919-515-7926

May 1997

Abstract

This paper concerns resource allocation in distributed message passing systems; i.e., the scheduling of accesses
to exclusive system resources shared among concurrent processes. An efficient modular resource allocation
algorithm is presented that uses any arbitrary resource allocation algorithm as a subroutine. It improves the
performance of the subroutine by letting each process wait only for its currently conflicting processes, and
therefore, allows more concurrency. For appropriate choices of the subroutine, we obtain resource allocation
algorithms with the minimum worst case response times. Simulation studies were conducted which also
indicate that on average, the obtained algorithms perform faster and require a smaller number of messages
than other previously known algorithms, especially when resource contention among processes is high and

the average time that a process remains in the critical region is large.

Key words: dining philosophers, resource allocation, modular construction, concurrency, message passing

distributed systems.

1 Introduction

Distributed systems commonly include exclusive resources, such as files and distributed objects,
that must be managed so that no two processes access the resources at the same time, while avoiding
starved or deadlocked processes. The scheduling of processes with various resource requirements in
this type of system is generally known as resource allocation. We consider the problem only in the

message passing model.

Examples of resource allocation can be found in many applications including distributed
database and file systems. In distributed database systems, a transaction can access multiple
data records during its operation, and to maintain the consistency of the accessed data, each trans-
action usually locks the data records so that no other transactions can access them during its access.
The locks on data records can be considered as resources to which a transaction needs to have the

exclusive access.

Resource allocation in these kinds of systems has been formulated as three kinds: the dining
philosophers problem, the drinking philosophers problem, and the dynamic resource allocation prob-
lem. In all these problems, each process has a code segment singled out as the critical region where
it uses the resources. A process enters its critical region after acquiring all its needed resources and
then relinquishes them when exiting the region. If any two processes have overlapping resource
requirements, we say that the two processes are in conflict. The correctness conditions of these
problems dictate that no two conflicting processes can be in the critical region at the same time,

and all processes requesting resources must eventually enter the critical region.

The dining philosophers problem [6] is a static version of the resource allocation problem,
where the process set is fixed and each process requests a fixed set of resources periodically. A
more dynamic version of the dining philosophers, called drinking philosophers [3], allows a pro-
cess to request a different subset of its a priori given maximum resource requirement. Any two
processes whose current resource requirements do not overlap may be in the critical region at the
same time even though their maximum resource requirements overlap. In the dining and drinking
philosophers problems, each process has a priori knowledge about its maximal set of conflicting
processes. The dynamic resource allocation problem [1] is the most general of the three resource
allocation problems. In the problem, the process set may dynamically change over time and each
process may need, for its execution, any set of resources and may need different sets of resources
at different times (i.e., a process has no prior knowledge about its maximum resource requirement

and its conflicting processes).

The response time is used to measure the performance of resource allocation algorithms, which
is defined to be the time difference between when a process requests resources and when it acquires

them to enter the critical region. The message complexity is also used to measure the maximum

number of messages required for a process to enter the critical region. These metrics are often
expressed in terms of the following parameters. ¢ is the maximum number of conflicting processes
at any time during the execution of the algorithm, r is the maximum number of resources that a
process requests at a time, ¢ is the maximum time that a process is in the critical region and d is

the maximum message delay between any two processes.

1.1 Our Results

We present a modular algorithm M that uses any arbitrary resource allocation algorithm as a
subroutine §. It can improve on the overall response time by letting each process wait, if it has to,

only for its currently conflicting processes.

To be specific, consider a resource allocation algorithm of any kind with response time O(z-(c+
d)) and message complexity O(m) for some z and m. If M uses this algorithm as a subroutine S, the
overall response time of the resulting algorithm is O(éc + max{6%, 2}d) and its message complexity
is max{m,O(r6)}. Since ¢ is multiplied by ¢, our modular algorithm reduces the impact of ¢ on

the worst case response time when z is bigger than O(§) (more precisely, bigger than 36).

The modular algorithm M uses the critical region of S (i.e., the exclusion property of the region)
to schedule resource accesses in such a way that processes wait only for their currently conflicting
processes. The critical region of § is not used to allocate actual resource, but to lockout competing
processes while they schedule themselves for resource accesses. This modular construction effec-
tively bounds the response time to be a function of é¢, which is the lower bound. The time that a
process spends in the critical region of § is also bounded to be O(d) in M. Minimizing the term
applied to ¢ contributes to minimizing the overall actual response time of M because the term is
directly related to the level of concurrency allowed by the protocol (i.e., the number of processes
in the critical region at the same time). In addition, ¢ can often be large in most systems. For
example, in distributed database systems, an access to each resource in the critical region requires
disk accesses, and 1/0O latency is far (more than 20 times) greater than message delay in a typical

local area network, more evidently in parallel processor systems.

Another advantage of our modular algorithm is that its concurrency is limited only by the
current resource requirements of contending processes, but not by their maximum resource re-
quirements. This allows our algorithm to be applicable to various resource allocation problems.
For example, given any arbitrary dining philosophers algorithm as a subroutine, it behaves as a
drinking philosophers algorithm, allowing more concurrency than the dining philosophers, and if
the subroutine is a drinking philosophers algorithm or a dynamic resource allocation algorithm, so
is the resulting algorithm. So, when we use Choy and Singh’s dining philosophers algorithm [4] as

a subroutine, which has response time O(é%*(c + d)), we obtain a drinking philosophers algorithm

with improved response time O(dc + §%d) and message complexity O(ré). This is the fastest known
drinking philosophers algorithm with the stated message complexity (see Table 1). When we use
Choy and Singh’s dynamic resource allocation algorithm [5] as a subroutine, which has response
O(6%c + (6 + élog™ |U|)d) with message complexity O(é* + §log™ [U|) where U is the universal set

L. we obtain a dynamic resource allocation algorithm with

of from which process IDs are drawn
response time O(éc + (6 + élog™ |U|)d) and message complexity max{O(é% 4+ §log* [U]), O(ré)}.
When log™ || is less than é, our dynamic algorithm is the fastest known dynamic resource alloca-
tion algorithm with the stated message complexity (see also Table 1). A similar type of modularity
was presented by Welch and Lynch [12], but unlike theirs, one modular algorithm can improve the

performance of the subroutine being used.

The system structure of our solution is similar to those of Lynch [7] and Weidman et al. [13],
in that there is one designated process for each resource, called a resource manager, that allocates
its resource to the requesting processes or maintains information about conflicting processes. The
fact that the resource managers also participate in scheduling accesses to resources does not make
our algorithm more centralized than other algorithms in terms of fault-tolerance and performance
bottlenecks. Since each resource manager deals with resource requests only pertaining to its own
resource, a crash of a resource manager doesn’t necessarily affect the progress of the other processes
that do not require the resource of the crashed resource manager. In fact, the effect of the failure of
one resource manager can be less severe than that of the failure of one process (that is not a resource
manager). To see this, imagine that a process crashes in the critical region while holding a set of
resources. In this situation, all the processes that require these resources cannot progress. This has
the same effect as the failure of all the resource managers that manage these resources. Therefore,
in terms of fault-tolerance, our solution is no less distributed than fully distributed solutions, such
as those in [1, 2]. In terms of performance bottleneck, our algorithm gives an improved worst case

response time than other priorly known algorithms.

We simulated our combined algorithms and other known dining philosophers algorithms using a
discrete event simulation technique. The simulation results indicate that the average performance
(i.e., response time and message complexity) of our algorithm can be remarkably better than the
other known algorithms, especially when resource contention among processes is high and the

average time that a process remains in the critical region is larger than the average message delay.

1.2 Previous Results

Dijkstra [6] first modeled the resource allocation problem as a ring of 5 processes, called the

dining philosophers, where each process shares a resource with each neighbor. Later, Lynch [7]

og* n = min{i : log n < 1}.

Authors Problem Time Message
Lynch [7] dining O(c?(c+ d)) 0(é)
Styer and Peterson [11] | dining 08185+ (¢ 4 d)) O(sllos+1))
Choy and Singh [4] dining O(8*(c + d)) 0(é)
Page et al. [9] dining O(éc + nd) 0(6?)
Chandy and Misra [3] | drinking O(n(c+ d)) O(n)
Rhee drinking O(éc + 62d) O(max{6? ré})
Awerbuch and Saks [1] | dynamic O(6c+ 6% log [U|d) O(8? log [U])
Weidman et al. [13] dynamic O(n(c+ d)) 0(é)
Choy and Singh [5] dynamic | O(6%c + (63 + 8log™ [U])d) O(6% + 8log™ [U])
Rhee dynamic | O(c+ (62 + §log™ [U])d) | O(max{é® + §log" U], rs}

Table 1: Time and message complexities of resource allocation algorithms.

generalized the problem to an arbitrary conflict graph where a node represents a process and an
edge represents a sharing of resources between two processes. Lynch’s solution uses an edge coloring
algorithm to set a partial ordering on the shared resources, so that each process requests its needed
resources in that order. The response time is O(c(c + d)) where ¢ is the number of colors used in
the coloring. The message complexity is O(8). Styer and Peterson [11] extended Lynch’s algorithm
to develop a dining philosophers algorithm with response time O(§°8°+1(c + d)) and message
complexity O(6°85+1). Page, Jacob and Chern [9] presented a dining philosophers algorithm with
response time O(éc + nd) and message complexity O(6%). Choy and Singh [4] developed a dining
philosophers algorithm with response time O(é*(c + d)) and message complexity O(¢). They also

include some discussion of fault-tolerance.

Chandy and Misra [3] presented a dining philosophers algorithm using an acyclic directed version
of the conflict graph. They also first proposed the drinking philosophers problem and its solution
which uses their dining philosophers solution as a subroutine. The response time for both of the
solutions are O(n(c + d)), and the message complexity is O(6). Welch and Lynch [12] generalized
the modular construction of Chandy and Misra’s drinking philosophers algorithm to come up with
a drinking philosophers algorithm which uses, as a subroutine, any dining philosophers algorithm.
Its response time and message complexity are equal to those of the subroutine.

Awerbuch and Saks [1] first defined and solved the dynamic resource allocation problem. In their
model, they assume that processes have to know a priori the IDs of their conflicting processes.?
The algorithm’s worst case response time is O(dc + 6(log [U])d), and the message complexity

is O(6%log|U|). Weidman et al. [13] developed a dynamic resource allocation algorithm using

?Note that our definition of the dynamic resource allocation problem is more general in that it doesn’t assume a

priori knowledge about the conflict processes.

Chandy and Misra’s drinking philosophers algorithm as a subroutine. Its response time and message
complexity are the same as those of Chandy and Misra’s. Bar-Ilan and Peleg [2] developed a
synchronous algorithm that improves on Awerbuch and Saks’ algorithm to have response time
O(b6c+6(log |U])d) in a synchronous network. Choy and Singh [5] also developed a dynamic resource
allocation algorithm with worst case response time O(é62c+ (6% +log*|U|)d) and message complexity

O(82% + élog*|U]).

2 The System Model

There exists a (finite or infinite) set of processes P = {p1, pa, ps,...}. Processes communicate by
passing messages. There are three types of process steps: send, receive and local step. Send and
receive are communication primitives and a local step changes local variables of processes. Each
process p; is modeled by a finite state automaton with state set ¢);. The state set); includes an

initial state g ;.

The automaton for each process is specified by a single guarded command set [By — A;0By —
A,0...0B,, — A,]. Each B; — A, is a guarded command, where a guard B; is either a boolean
expression or a message reception (receive step), or a conjunction of both, and a finite list of
action statements A; that consists of either multiple local steps or one send step, or both. While
the execution of A; appears atomic to all the other processes, the statements within A; will be

executed in sequence.

Processes communicate by sending messages to each other. A send step represents the sending
of message to a process, and a receive step of a process involves a reception of one message destined
to the process. We assume that messages sent are eventually received by their destination processes

within a finite time.

A configuration is a vector C' = {qq,q2,...} where ¢; is the local state of p; for each p; € P
(including the network). A guarded command is enabled in a configuration if its associated boolean
expression is true and associated receive, if any, can return nonempty messages, i.e., the messages
specified in the receive are in the buffer of its process. An execution of a guarded command involves
an atomic execution of all the steps in the action statements of the guarded command. It results
in simultaneous changes to the state of the process of the guarded command based on the previous
state of the process, and possibly to the state of the network if the guarded command involves a
send step. A guarded command enabled in a configuration C' can be applied to C' to yield a new

configuration C’ as a result of the execution of the guarded command.

A system is specified by describing P, an initial configuration Co = (¢o1,¢0,2,--..), and the

automaton of all processes in P. An execution sequence of a system is an infinite alternating

sequence of configurations and enabled guarded commands Cy, 7y, Cy, T2, ... Cim; ..., where 7; is
an enabled guarded command in C;_1; and C; is obtained by applying m;_y to C;_y. We say
that in an execution sequence, a guarded command is continually enabled from C; to C;, 1 < 7, if
the guarded command is enabled in every configuration from C; to C; and is not applied to any
configuration in between C; and C;_;. We also say that in an execution sequence o, a guarded
command g is enabled before a guarded command ¢’ in C}, if there exists a sequence of configurations
Ciy....C5,...,Cy in o such that ¢ is continually enabled from C; to Cy, but ¢’ is not continually
enabled from C; to C;.

An execution is an execution sequence satisfying the following fairness conditions: (1)if m; is
a guarded command of process p (that is not the network) and applied to C;, then there is no
guarded command of p that is enabled before 7; in C; (i.e. the FIFO execution); (2) all continually

enabled guarded command will be executed eventually.

A timed execution (o, T) = Co,(m1,t1),...,(7;,t;),... satisfies the following conditions: (1)
a = Co,m,C1,m2,...,Ci, Tig1 ... is an execution; (2) T is a mapping from guarded commands
to real numbers that associates a real time with each guarded command in the execution. The
sequence tq,t1,...t; ... is nondecreasing and unbounded. (3) All messages sent are received in

finite time.

If V is a state variable of a process and ¢ is a real number, V(¢) denotes the value of V' in the
configuration C; where T'(7w;) <t < T(mj41), i.e., a configuration C; represents the states of the
system during time interval [T'(7;), T(7;41)).

Note that the system model here is completely asynchronous because there are no constraints

on relative timing of process steps and message delays.

3 Resource Allocation Problems

We now specialize the general system model in Section 2 for resource allocation problem. Let R
be the set of resource in the system. There exists a set of processes U (C P) called the users that

need subsets of K for their execution at various times.

Let R;(t) be the resource requirement of user 7 at time ¢. Let R7** be the mazimum resource re-
quirement of a user ¢ such that for every execution a, R7**" is the union of the resource requirements

of user 7 in a.

Each user’s local states are partitioned into four regions. In the trying region, the user requests
its required resources. Having acquiring the resources, the user enters the critical region. It remains
in the region for a finite time using the resources. When the user is finished with the resources, it

enters the exit region, where it relinquishes the resources. Otherwise, the user is in the remainder

region. To specify this, we assume that each user has a local variable, called regton, whose value
is set to Trying, Critical, Fzit, or Remainder if and only if the user is in the trying region, the
critical region, the exit region or the remainder region respectively. Initially, every user is in the

remainder region.

At some time ¢, if users ¢ and j are in the trying or critical region, and R;(t) N R;(t) # 0, then

we say that user ¢ conflicts with user j at time t.

A dining philosophers algorithm is a system with a finite and fixed set U where Vi € U,
Ri(t) = R and R7*" is a priori known to all processes. Each user’s code is well-formed, and
the algorithm must satisfy the following two conditions: (1) (exclusion) in any execution of the
algorithm, if users ¢ and j are both in the critical region at time ¢, then ¢ and j do not conflict with
each other; (2) (no-lockout) in any execution of the algorithm, if a user is in the trying region or
in the exit region, then it leaves its current region in finite time assuming no user remains in the

critical region forever.

In a drinking philosophers algorithm and a dynamic resource allocation algorithm, users can
have more concurrency than in a dining philosophers algorithm because users only need their
current resource requirement to be satisfied, but not their maximums. To formalize this concept,
we define the following condition: (3) (concurrency) in any execution of the algorithm, if there is
no conflicting user of user ¢ in its trying region after and when ¢ enters its trying region, then user ¢
eventually enters the critical region. This condition is stronger than the no-lockout condition, that
is, as long as there are no conflicting users while user ¢ is in the trying region, user 7 is never stuck
in the trying region even if other users are using other resources forever. The same concurrency

condition is also given in [12].

A drinking philosophers algorithm is a system with a finite and fixed user set U/ where for all
users 7, R7*" is a priori known to all processes, but R;(?) is a priori unknown. Each user’s code is

well-formed, and the algorithm has to satisfy the exclusion, no-lockout and concurrency conditions.

A dynamic resource allocation algorithm is a system with an infinite set U where for all users
i, R and R;(t) are a priori unknown to all processes. Each user’s code is well-formed, and the

algorithm also has to satisfy the exclusion, no-lockout and concurrency conditions.

4 Algorithm

4.1 Informal Description

The basic idea of our algorithm is an implementation of a distributed queue, where each user in the

trying region has a position in the queue and enters the critical region in the order of its position.

The distributed queue runs under the following operational rules: (1) while a user is in the trying
region, it occupies a position in the queue in such a way that no two conflicting users occupy the
same position; (2) users at the front of the queue enter the critical region and leave the queue when
they enter the exit region; (3) when all the users at the front of the queue leave the queue, all the
other users in the queue advance one position, preserving their relative order and the first rule;
and (4) a newly joining user does not prevent any users in the queue from advancing to their next

positions.

It can be proved that the distributed queue with these rules guarantees no-lockout and exclusion.
Since no two conflicting users occupy the same position in the queue and only the one at the front
of the queue enters the critical region, rules 1 and 2 ensure that no two conflicting users are in the
critical region at the same time (exclusion). By rule 2, when a user finishes in the critical region, it
leaves the queue, and by rule 3, all users in the queue will advance one position. Furthermore rule
4 ensures that even if some user enters the queue just before this advancement, all the users in the
queue advance one position. It prevents the user that has just left the queue and enters the queue
again from obstructing the advancing users. Thus, rules 3 and 4 ensure the no-lockout condition.

(Formal proof is given in Section 5).

In our implementation, there is a group of special processes, called resource managers, each
assigned to one resource. The distributed queue mentioned above is implemented by having one
queue per resource manager. Fach resource manager rmy maintains a queue gr. The goal is to
make these queues as a whole behave as the distributed queue by enforcing the above-mentioned

four rules. The following discusses our implementation.

We apply a modular approach to implement the first rule: we use another resource allocation
algorithm (of any kind) as a subroutine. FEach user ¢ in the trying region at time ¢ first runs the
subroutine. After entering the critical region of the subroutine, it selects a position to occupy in
each ¢i, k € R;(t). The idea is that while a user ¢ is in the critical region of the subroutine where
¢ is selecting a position in the queue, no conflicting users are in that region. Therefore, no two

conflicting users can select the same position in the same queue.

In order to select a unique position in a queue, user ¢ sends a report message to the resource
manager of the queue, and the resource manager acknowledges with a marked message that contains
information about positions occupied by other users in the queue, based on which ¢ selects a position
in each gi. After finishing the selection, the user informs all the relevant resource managers of the
selected positions with a select message, and then it leaves the critical region of the subroutine. It
is easy to see that it takes at most O(d) time for a user to select the positions after entering the
critical region of the subroutine. If the response time of the subroutine is X (C' + d) for some X, a

user can select its position in time O(Xd).

The position that a user selects in a queue affects the overall response time of the user. For
example, a user may select the tail position of each queue. But this can cause unnecessarily long
response time. To see this, suppose that a user ¢ needs resources a and b, g, is occupied by four
users, and g, is empty. If user 7 selects the end position of each queue, it will occupy position 5 in
¢, and position 1 in ¢,. Suppose that a user k requiring resources b and ¢ subsequently selects a
position 2 in ¢, and position 1 in ¢.. Now, k has to wait for ¢ to leave the queue which is in turn
waiting for four other users to finish (see Figure 1). This waiting chain can grow up to (n)-users

in length, which results in Q(nc) worst case response time.

[T]
[]
[]
[]
]

P N W b~ O

% % %

Figure 1: An illustration of queues when a user selects the end of position of queues: user k has to

wait for all the users that ¢ is waiting for (occupied positions are shaded).

One reasonable approach is to have each user ¢ to select the smallest unoccupied position in
every qi, k € R;(t). That is, a user looks for a “hole” in every queue. In the above example, ¢ will
select position 5 because position 5 is the smallest position unoccupied in both ¢, and ¢, and then
k will select position 1 because position 1 is unoccupied in ¢, and ¢.. Therefore, k does not have
to wait for ¢ to finish (see Figure 2). This way, each user, if it has to, waits only for its conflicting

users. Later, this approach will be slightly modified to accommodate the fourth rule.

[T]
[]
[]
[]
]

P N W b~ O

% % %

Figure 2: An illustration of queues when a user selects a “hole”: user k does not wait for the users

that user ¢ is waiting for.

To implement the second rule, each resource manager sends a grant message to the user at the
front of its queue. A user 7, when receiving a grant message from every rmy, k € R;(t), enters
the “real” critical region (not of subroutine). After it is finished in its critical region, it sends a
release message to every rmyg. This is the exit region of user ¢. Upon receiving a release message,

a resource manager marks the front of the queue unoccupied. If a position in a queue becomes

unoccupied, any user occupying the immediately succeeding position needs to advance.

Now, we need to implement the third rule in which, when all the users at the front of the queue
leave the queue, all the other users in the queue advance one position, preserving their relative
order and the first rule. Because of the asynchrony in the system, arbitrary advancement of users
in a queue may break the relative order among conflicting users. To illustrate this, suppose that
user ¢ selects a position p in resources @ and b. Assume that all the users at the positions less than
p in ¢, finish the critical region and leave the queue before those in g,. Suppose that after some
time, the positions of user ¢ become equal to, say, p— 4 in ¢, and pin ¢;. It is possible that not all
positions below position pin ¢, are occupied. So, in the meanwhile, some user j which also requires
resources a and b selects, say, position p — 2 in both ¢, and ¢,. Now, because j waits for 7 in ¢,

while ¢ waits for 7 in ¢, there is no relative order between i and j, and this causes deadlock (see

Figure 3).
position p E E E
pl]]
pl | ([CJ—= || |
03 [l []|Aftersometime]
A | [T]
4 % 4 %

Figure 3: An illustration of queues when a user 7 selects position p initially and then after some
time, user j selects p—2. This shows that a careless advancement of users (here user ¢ in ¢,) causes

a deadlock.

To implement the third rule without breaking the relative order among conflicting users, we let
each resource manager rmy send a dec message to user ¢ when the position immediately preceding
user ¢’s position in g is unoccupied. When user ¢ receives one dec message from each rmy, k € R;(1),
it sends an advance message to every rmyg. Upon receiving the advance message, rmy advances

user ¢’s position in ¢; to the next lower position.

It can be proved that when the above scheme is used, the difference between the positions of
user 7 in any two queues is less than two, i.e., the positions of user 7 in the different queues, advance
almost “in synchrony”. The proof is given in Section 5. This preserves the relative order among
the conflicting users. For example, in the above example, user ¢ will remain in position p or p — 1
in both ¢, and ¢;. Therefore, user j cannot occupy a position in between the two positions of user
..

The fourth rule prevents new users from interfering with the advancement of the users in the
queues. It can be easily implemented by dictating those new users not consider the positions

immediately preceding any occupied ones in the queues of their required resources when they select

10

the initial positions. This implementation of the fourth rule is somewhat related to the first rule.
Imagine a situation where a user i sends an advance message to a resource manager rmyg so that ¢
can advance to p — 1 from p. Without such implementation of the fourth rule, it is possible for a
new user j to occupy position p — 1 in ¢ just before rmy receives the advance message. Now, we
have a situation that either both 7 and 7 may occupy the same position in ¢, or # may not be able
to advance to position p — 1 at all. Thus, by preventing a new user from occupying any positions
immediately preceding already occupied positions, we can keep new users from obstructing the

advancement without violating the first rule.

We obtain the time complexity of our protocol using the following argument. The initial position
of a user is always less than O(6), because (1) each user selects the minimum position that is not
occupied by all its conflicting users; (2) the difference between any two positions of user ¢ in queues
is less than two (which means user ¢ occupies no more than two position in queues at any time);
and (3) there are at most § conflicting users at any time. By induction on the position that a user
occupies, it can be shown that a user advances one position in time O(éd) after all position 1’s in
all queues are unoccupied (which happens at every O(c + d) time in the worst case). The proof is
given in Section 5. Therefore, since there are at most O(4) positions in front of any user, a user
will reach the front of the queue in time O(éc+ §%d). Since it takes O(X d) time for a user to select
an initial position, the overall response time of the algorithm is O(éc + é%d + X d).

For the message complexity, before a user 7 advances to a new position in ¢, user ¢ receives at
most r dec messages and sends at most r advance messages while user ¢ is at position p. Therefore,
because the initial position is always in O(¢), the message complexity is O(M + ré) if M is the

message complexity of the subroutine.

4.2 Formal Description

As described in Section 3, in each user’s code, region is set to T'rying, C'ritical, Fzit or Remainder
if and only if a user is the trying region, the critical region, the exit region or the remainder region.
The subroutine also has its own “region” variable. To distinguish these two variables, we call

region in the subroutine sub-region.

Given a subroutine, we take only the resource allocation part of the code and concatenate it to
the user code described in Figure 4. All the occurrences of region in the resource allocation part
of the subroutine are replaced by sub-region, and the variable R; in the subroutine is also replaced

by subR;. It is assumed that the subroutine is well-formed.

The following messages and state variables (in addition to ones described in above) are used in

the algorithm described in Figures 4 and 5.

o select(p); r: message from user ¢ to rmy; indicates that 7 selected position p in gg.

11

e report; : message from user ¢ to rmy; requests information about the occupied positions in gj.

o release; j: message from user ¢ to rmy, ; indicates that it has finished using the resource.

o markedy ;: message from rmy to user i; contains all the occupied positions and their preceding
positions in qp.

e granty ;:message from rmy, to user ¢; indicates that resource k is granted to the user.

o dec(p)r,;: message from rmy, to user 7; indicates that position p — 1 of g is unoccupied.

o advance(p); ;: message from user ¢ to rmy; indicates that rmy can advance user 7 into position
p—1.

e req-report: a boolean variable; true when a user sent report messages, but hasn’t received marked

messages.

o has_received_advanced(p): a boolean variable; becomes true when rmy, receives advance(p); , and

becomes false when user ¢ advances to position p — 1 (i.e., advance_one_position(p) is called).

e occupanty(p): a variable; contains the ID of the user that occupies position p of ¢x. 0 if the

position is unoccupied. (We assume there is no user with ID zero.)

o rm_criticaly: a boolean variable; true when rmy, received a report message from some ¢, but hasn’t

received a select message from ¢. It indicates that ¢ is in the critical region of the subroutine.

e has_dec_sent(p): a boolean variable; true when a dec(p) is sent, and false when a user occupies

position p.

5 Correctness Proof and Performance Analysis

For convenience of presentation, we define some terms. We denote by ¢; the fact that user ¢ occupies
a position in ¢gg. If a user 7 occupies or advances to a position p in ¢, then we say that 7, occupies
or advances to p. If rmy, sends a dec(p) for any p while 7 occupies position p in g, then instead of
saying that the resource manager sends the dec messages, we say more conveniently that ¢ sends
dec(p). We also assume that each user enters the trying region no more than once. This assumption
does not affect the correctness of our protocol as the protocol relies only on the current resource

requirement of users.

As it is straightforward to show that the user code is well-formed, we only prove the exclusion,

no-lockout and concurrency conditions.

Lemma 5.1 In any timed execution of the algorithm, for any conflicting users @ and j, 1 and ji

do not occupy the same position at the same time.

12

010 region = Trying and sub-region = Remainder —
02 sub-region := Trying;

03 subR; := Ry;

040 sub-region = Critical and reg-report = false —
05 reg-report 1= true;

06 for all 5 € R;: send report; j;

070 Receive marked; ;, Vj € Ry —

08 p := min{N — UV]GR, marked; ; };

09 for all j € R;: send select(p); ;;

10 req-report := false;

11 sub-region := Exit;

120 Receive grant;;, Vj € R; —

13 region = Critical;

140 Receive dec(p); i, Vj € R; for some p —

15 for all j € R;: send advance(p); 5;

160 region = Exit —

17 region := Remainder;

18 for all j € R;: send release; 53

Figure 4: Code for user ¢

Proof: Without loss of generality, we assume that ¢ selects a position in ¢ after j does (i.e., ¢
enters the critical region of the subroutine after j). Note that they cannot select positions at the

same time because of the exclusion condition of the subroutine and because ¢ conflicts with j.

When ¢ selects a position in g, it receives a marked message from rmy, which contains in-
formation about all the occupied positions in gg. rm_criticaly, in the resource manager’s code is
set to true when rmy receives a report message from user ¢ (see line 4 in Figure 5), which is sent
only after the user enters the critical region of the subroutine. Since other conflicting users cannot
be in the region at the same time, rmy doesn’t receive a select message until ¢ sends it. Thus,
while ¢ is selecting a position in g, rm_criticaly remains true until select; ;. is received. Since rmy
doesn’t receive any other message while rm_criticaly, is true, the positions of other users in ¢ do
not change during the selection. Also by the code, #; doesn’t select any position occupied by jj
or its preceding position (see line 8 in Figure 4). This guarantees that ¢ never selects the position

that jp selected since user ¢ selects a position that are unoccupied in ¢;.

Since ¢ advances to a new position only after its immediately preceding position is unoccupied
(see lines 17 and 22 in Figure 5), it never happens that 75 advances to the position that j; occupies

or vice versa. []

Theorem 5.2 (Ezclusion) In any timed execution of the algorithm, if users i and j are both in the

critical region, then 1 and j do not conflict with each other.
Proof: By Lemma 5.1, i and ji never occupy the same position at the same time. By the code,

13

010
02

03
04
050
06
07
08
09
100
11
12
130
14
15

—rm_criticaly, receive report; . — /[received report msg.
markedy ; == {j — 1,7 : Vj,occupanty(j) # 0};
// marked contains information about all
// occupied positions and their immediately preceding positions.
send markedy, ;;
rm_criticaly 1= true; // enter critical section of the subroutine.
rm_criticaly, receive select(p); ., — // finished the selection
rm_criticaly := false; // leave critical section of the subroutine.
occupanty (p) =
if p = 1 then send granty ;; // send a grant msg if 7 is at the front.
adjust_queue(p);
—rm_criticaly, receive advance(p); ., — // recvd an advance msg
has_recetved_advance(p) := true;
adjust_queue(p);
—rm_criticaly, receive release; j — // release the res. to the next user.

occupanty (1) := 0;
adjust_queue(2);

17
18
19
20
21
22
23
24

16 Procedure adjust_queue (p)

while (occupanty (p) # 0) and (occupanty(p — 1) = 0)
if (has_dec_sent(p) = false) then
has_dec_sent(p) := true;

send dec(p)k,occupantk (p)?
endif

if (has_recetved_advance(p) = true): advance one_position(p);
p:=p+1
end while

26
27
28
29
30

31
32
33

25 Procedure advance one_position(p)

occupanty (p — 1) := occupanty(p); // advance one position
occupanty (p) := 0; // reinitialize position variables
has_recetved_advance(p) := false;

has_dec_sent(p) := false;

if (p —1=1) then send granty cccupanty(p—1);

// if the next position is empty, send a dec message.

if (has_dec_sent(p — 1) = false) and (occupanty(p — 2) = 0) then
has_dec_sent(p) := true;

send dec(p - l)k,occupantk(p—1)§

only the users at position 1 will be in the critical region (see lines 8 and 30 in Figure 5). Thus, if

users occupy different positions in a queue, there is no such case that they are in the critical region

at the same time.

We now prove the no-lockout condition of the algorithm. The proof is structured as follows.
We first prove in Lemma 5.5 (using Claims 5.4 and 5.3) that a user ¢ advances one position from a

position p if and only if position p — 1 in every ¢, k' € R;, is unoccupied. The lemma implies that

all 7;’s are advancing

Figure 5: Code for resource manager rmy

“in synchrony” whenever position p — 1 in every ¢, k' € R;, is unoccupied.

14

As every 1 initially occupies the same position in every ¢z, the distance between any 75 and g
(k # k') is at most 1.

Then we prove in Lemma 5.7 that if a user jp occupies a position lower than iy, it is always
the case that jp occupies a position lower than iy, e.g., there is no such situation that while a
user 1) is at position 2 and a user ji is at position 1, ¢z is at 1 and jpr is at 2. Lemmas 5.5 and
5.7 together guarantee that all users that occupy position 1 at all queues will eventually receive a
grant message from their resource managers, enter the critical region, and leave the queues. Also,
using Lemma 5.5, Lemma 5.9 proves that after all users that occupy position 1 at any queue leave
the queues, all other users in the queues advance one position eventually. Inductively applying this
argument, we can prove that all users in the queue eventually advance to position 1. This proves

the no-lockout condition.
Claim 5.3 [fhas_dec_sent(p)y is true and iy is at p, then rmy sends at least one dec(p) to i.

Proof: Since only at line 19 in Figure 5, has_dec_sent(p); becomes true, after which a dec(p)
message is sent to the occupant of p, we only need to prove that when ¢ first occupies p,

has_dec_sent(p)y is false.

Assume by way of contradiction that when ¢y first occupies p, has_dec_sent(p)j is already true.
Since has_dec_sent(p)y is initially set to false, there must have been some user jj that occupied p
and set has_dec_sent(p); to true (at line 19 in Figure 5) previously, and some other user s that
subsequently occupied p (at either line 7 or line 26 in Figure 5) and found has_dec_sent(p); to be
true. Note that has_dec_sent(p); becomes false only at line 28 in Figure 5 which is executed when
the occupant of p advances to p—1 (line 26 in Figure 5). Therefore, the fact that has_dec_sent(p);
was already true when s first occupied p implies that jp has not had moved from p yet. This

contradicts Lemma 5.1 since j; and s; were at the same position in the same queue. [|

Claim 5.4 Anrmy, k € R; sends at least one dec(p) message to user i if and only if position p—1

in qp ts unoccupied and position p in qi is occupied by ¢.

Proof: (If part) The condition that position p — 1 in ¢4 is unoccupied and position p in g is
occupied by ¢ becomes true only either (1) when p — 1 becomes unoccupied while ¢y is at p, or (2)

when 7, first occupies position p, p — 1 is already unoccupied.

Case 1 happens only either when rmy receives an advance(p — 1) message or when p = 2 and
rmy, teceives a release message. In either case, adjust_queue(p) is called. Thus, line 18 in Figure

5 will be executed

Case 2 happens only either when 7 selects position p by sending a select(p) or when), advances

to p from p+ 1. When rmy, receives a select(p) message, it calls adjust_queue(p) (line 9 in Figure

15

5). When i; advances to p from p + 1, it is always checked whether p — 1 is occupied or not. Line

31 in Figure 5 will be executed.

In all cases, has_dec_sent(p) is checked and if it is not set to true, a dec(p) message is sent to

i. If it is set to true, then by Claim 5.3, at least one dec(p) message must be sent to ¢.

(Only if part) Trivially true by the code (see lines 17 and 31 in Figure 5). |
We say that a user 7 is aligned at position p if for every k, k € R;, occupant(p) = 1.

Lemma 5.5 An rmy, k € R; executes advance_one position(p) if and only if ¢ is aligned at

position p, and for every l, | € R;, occupant;(p— 1) = 0.

Proof: By Claim 5.4, user i receives a dec(p) message from all the rm;’s if for all {, | € R;,
occupant;(p—1) = 0 and occupant;(p) = . By line 15 in Figure 4, user ¢ will send an advance(p) mes-
sage to rmy. Receiving the message, rmy, sets has_received_advance(p) to true and adjust_queue(p)

is called in which line 22 in Figure 5 is executed.

has_received_advance(p) is set to true only at line 11 which is when rmy receives advance(p).
has_received_advance(p) is set to false either initially or when a user at p advances to p — 1 (at line
28). Thus if has_received_advance(p) is true, then it has received an advance(p) from the current
occupant of position p. Note that by the code, an advance(p) message is sent by the occupant of p
only when the occupant receives a dec(p) message from all the resource managers of the resources
it requires. Thus, by Claim 5.4, the fact that has_received_advance(p) is true implies that for all [,
l € R;, occupant;(p — 1) = 0 and occupant;(p) = i. [

Lemmas 5.1 and 5.5 imply that no new user can obstruct the advancement of user ¢ if ¢ is
aligned and the immediately preceding position of every ¢ is unoccupied. This is because (1) new
users cannot select their initial positions to be immediately preceding any occupied position, and
(2) while a new user selecting a position in some queue k, rm_criticaly, is true. Thus, by the code,
rmy, receives only select messages. Since rmy does not receive any advance or release message while

the new user is selecting, other users in queue k cannot advance.

Let Px(?) be the position of iy in g.

Claim 5.6 For any user i and any k and k' € R;, it is always true that |Py(i) — Py ()] < 1 while

i and iy are in q; and q respectively.

Proof: Every iy, k € R; occupies the same position initially (line 9 in Figure 4). By the code, i
sends an advance(p) message only after it receives a dec(p) message from iy and i. By Claim 5.4,
if i receives dec(p)y ; and dec(p)i; 1% and ¢y must be at p. By the code, advance_one_position(p)
is executed when an advance(p) is received. Since advance_one_position(p) advances i; only one

position, the claim follows. [|

16

For any k, ¢ and 7, ¢ # j, if Pp(i) > Pi(j), then we say that user i waits for user jj, denoted
by i — Jk-

Lemma 5.7 There is no cycle in the wait-for relation created by the execution of the algorithm.

Proof: We show that if iy, — j; at time ¢, {3y — jj, for any resources k and k' € R; N R;. The
lemma is trivially true if & = &', Assume k # k. Without loss of generality, assume that ¢ selects
a position before j does. If ji; occupies a position less than Py(7), jir should also occupy a position
less than Py (¢). This is because when j selects a position in g and g, P(ji) = P(jp). By Claim
5.6, | P(ix) — P(ig) |< 1. Therefore, if i, — jj, then iz — jr. This is sufficient to show there are

no such cycles since a user cannot wait on itself. [|

Claim 5.8 Let p be the lowest position that a user i is in at some time t. User v will be eventually

aligned at position p at some time t', t' > 1.

Proof: Every ix, k € R; initially occupies the same position. A user ¢ advances to the next
position p — 1 only when it receives an advance(p) message and the message is sent to every i.
advance(p) is sent by user ¢ only when it receives a dec(p) message from every i which is sent
only when 75 occupies p. Thus, if 74 is at position p, then it must have received an advance(p+ 1)
message. Then every ip, k' # k, will receive it as well and advance to p. i cannot advance to

p — 1 before every ¢ advances to p because ip does not send a dec(p) message until it advances to

p. [|

Lemma 5.9 At some time t, let U; be the set of users at position 1 in every queue. If all users in
U, leave the critical region and their queues by some time t', t' > t, a user iy, that is at position p

at t will eventually advance to p — 1 after t.

Proof: By Claim 5.8, user ¢ will be aligned at either p or p — 1. If it is at p — 1, then the lemma

is trivially true. Assume that ¢ is aligned at p. There are two cases to consider.

(1) Position p — 1 in every queue that 7 is in is unoccupied. In this case, this lemma is true by

Lemma 5.5.

(2) Position p — 1 in some queue is occupied by some user j. By Claim 5.8, user j is (or will
be) aligned at position p — 1 or p — 2. If it is aligned at p — 2, this lemma is true by Lemma 5.5.
Note that no new user can occupy p — 1 left by j. Assuming that j is aligned at p — 1, we can find
a chain of users z(0),z(1),...,2(l) for some [, [> 2, such that z(0) is ¢, and z(m), for some m,

1 < m <1, is aligned at p — m, and x(m) and z(m + 1) are in conflict. Let us call this chain an

17

(= 1] |[=]

Il

Figure 6: Two aligned chains of user 1

aligned chain of ¢. Figure 6 shows an example of two aligned chains of a user 1. The two chains

are 1,2,4 and 1,3,5,6.

Without loss of generality, we can assume that there are ¢ aligned chains of ¢ for some integer

c,c> 1.

2(0), 2°(1), 2°(lo)
z10), 2'(1), z1(ly)
z%(0), *(1), (1)
°(0), (1), (1)

Note that 2¥(0), 1 < m < ¢, is equal to i, and for some &’ and k", [;s and l» could be different
meaning that each chain can be of different length. Suppose that xk(lk) is at position py, . py, is
either 1 or some position higher than 1. (1) If 2*(l;) is aligned at 1, then it is in U; and will leave
its queues at time ¢”. (2) If p;, is not 1, then by the definition of aligned chain, p;, — 1 in every

queue that z*(l;) is in is unoccupied. Thus, by Lemma 5.5, 2¥(l),) will advance to p;, — 1.

In both cases, p;, will be unoccupied. The same is true for every I, 1 < k£ < ¢. Then, by
Lemma 5.5, every z*(l;, — 1), 1 < k < ¢, will advance to pi,- Note that new users can occupy py,
because z¥(I), — 1) occupies pi, —1. By induction on position p;,, we can prove that user ¢ eventually

advances to p — 1.

Theorem 5.10 (No-lockout) If a user i is in the trying region or in the exit region, then it leaves

its current region in finite time assuming no user remains in the critical region forever.

Proof: By the no-lockout condition of the subroutine, user ¢ will eventually select a position in
all queues of the resources that it requires. By Lemma 5.7 and by the code, all users at position
1 of queues will receive a grant message from all resource managers of the resources they require,

and enter the critical region. If they leave the critical region in finite time, then the position 1’s

18

occupied by them will be free. Then, as all the users in the position 1 leave their queues, all of
position 1’s in all queues will be unoccupied eventually. Since all the position 1’s in all queues will

be unoccupied, by Lemma 5.9, all the users in the queues will advance one position eventually.

Induction on the position that user ¢« occupies proves that ¢ eventually leaves the trying region

in finite time, and enters the critical region.

Since in the exit region, users send release messages and then enter the remainder region

immediately, users leave the exit region in finite time. [|

Theorem 5.11 (Concurrency) in any execution of the algorithm, if there is no conflicting user of
user 1 in the trying region after and when 1 enters the trying region, then 1 eventually enters the

critical region.

Proof: 1If ¢ is in the trying region, it will eventually enter the critical region of the subroutine
because of the no-lockout condition of the subroutine. Since there is no conflicting user, all ¢,

k € R;, are empty, user ¢ will select position 1 in all g and enter the critical region. [|

To measure the response time of the algorithm, we define functions Respa(c) and Msgy to be

the response time and the message complexity of a resource allocation algorithm A.

Theorem 5.12 If a resource allocation algorithm A is used as a subroutine for our algorithm, then

our algorithm has response time O(éc + é*d + Respa(d)) and message complexity O(Msga + ré).

Proof: For the response time, we only need to show that any user ¢ that sends a request message

at time ¢t will receive grant messages from all resource managers rmy, k € R;(t) by time t + O(éc+

62d + Respa(d)).

Note that for a message to be received, it takes time d + 1 in the worst case (the maximum
message delay plus one step to receive the message). The maximum time period that a user spends
in the critical region of the subroutine is 2d 4 2, i.e., sending a report message, receiving a marked
message (after sending a select message, a user leaves the region immediately). Since the response
time of the subroutine is Respa(c) and in the subroutine, ¢ = 2d 4 2, a user will enter the critical

region of the subroutine within time Resp4(2d + 2).

Let p be the initial position of user 7. There are at most 6 — 1 other users in the queues of
resources that user 7 requires. By Claim 5.6, no user occupies more than two positions at any time.
By the code, the position immediately preceding any occupied position is not considered for the

selection. Therefore, p < 36.

19

We now show that it takes at most O(pe + p*d) time for any user i to leave a queue after it

occupies position p.

It can be shown by an easy induction on p that if position 1’s of all queues are unoccupied at
time ¢/, then all users at the positions higher than 1 will advance to p— 1 within time ¢’ 4 p(2d 4 2).
Assume, by way of induction, that all users at position p — 1 advance one position to position p — 2
within time ¢’ 4+ (p — 1)(2d + 2). When all users at p — 1 advance, all users at position p send
dec(p) messages, which will be received within time d 4+ 1, and then advance messages will be sent,
which takes at most d 4+ 1 time to be received. All users at position p will advance to p — 1 by time

'+ (p—1)2d+2)+2d+ 2.

After all ji’s, & € R;, occupy position 1 in all ¢;’s, it takes at most ¢4 2d 4 2 time for all rmy’s
to receive a release message from user j, i.e., d + 1 time for a grant message to be received by j;
¢ time for j to be in the critical region; and d 4+ 1 time for a release message to be received. Thus,
after a user 7 occupies position p, all users at position 1 will leave the queue within time ¢+ 2d + 2.

It follows that within time ¢ + Resp(2d 4 2)+ ¢+ 2d + 2 + p(2d + 2), every i, occupies p — 1 or less.

Since there are p — 1 positions to advance, within time ¢ + Resp(2d+2)+ (p— 1)(c+2d +2 +
p(2d + 2)), user ¢ advances to position 1. Since p < 34, user ¢ enters the critical region by time
t+ Resp(2d+2)+ (36— 1)(c+2d +2+436(2d + 2)) plus the time to receive a grant message (d +1).
Therefore, user i enters the critical region by time ¢ + O(Resp(d) + éc + 6*d).

For the message complexity, each user receives r dec messages and sends r advance messages
at each position in the queues. Since a user occupies at most 36 positions, the message complexity

is O(Msg4 4 r6) before it actually uses its required resources in the critical region. [|

One may also wonder about the number of bits that each message requires. Among all the
messages in our algorithm, a marked message can be largest because it contains information about
all the occupied positions in one queune. Since there are at most ¢ conflicting users at a time and
all the users in the same queue are conflicting, a marked message can contain up to O(¢) positions.
Because each position can be represented by log P bits where P is the total number of positions in

a queue, a marked message needs at most O(élog P) bits.

6 Simulation

We are interested in comparing the mean response time of different resource allocation algorithms.

We do the comparison by discrete event simulation. This section discusses the simulation results.

We simplify the model in Section 2 to reduce the complexity of simulation. We model the

execution of the system to be synchronous, so that at every one time unit, each process executes

20

one enabled guarded command (if there is no enabled guarded command, it takes an idle step).
However, message passing among processes is still asynchronous so that each message has a random

delay with uniform distribution.

The simulation model has 100 users and 100 resources. The resource requirements of processes
are set randomly prior to the execution of each simulation, and the conflict graph is constructed
based on the resource requirements of all users. We assume a uniform probability distribution of
the resource requirements of users (i.e., the probability that a user requires a resource a is the same

as the probability that it requires a resource b).

Each user takes idle steps in the remainder region for some random time before it enters the
trying region. We call the time period the thinking time. The time period that a user uses one
resource is called the resource service time. The resource service time for each resource is set
randomly before a user enters the critical region. The time period that a user stays in the critical
region is determined by the sum of the resource service times of all resources that the user needs
to use. The probability distributions of the thinking time and the resource service time are also
uniform. To increase the accuracy of the simulation, we adjusted simulation run lengths in such
a way that the sample mean response times and mean numbers of messages had 95% confidence

intervals which were less than 5% of the measured values.

We simulated Chandy and Misra’s algorithm (CM), Choy and Singh’s algorithm (CS), Awerbuch
and Saks’ algorithm (AS), our modular algorithm with Choy and Singh’s algorithm as a subroutine
(CSR) and our modular algorithm with Chandy and Misra’s algorithm as a subroutine (CMR).
Approximately 300 random conflict graphs were tested.

Figures 7, 8, 9, 10 and 11 show the result of our simulations, where the average response times
and message complexities are shown for various numbers of conflicting users. To see the impact of
the ratio of message delay over the resource service time on the response time, we simulated the
algorithms with different ratios. The average message delay was fixed to 50 time units while the

resource service time was varied from 25 to 100. The average think time was set to 25.

When the ratio of the average response time over the average message delay was small, all the
algorithms except CM performed comparably (see Figure 7). CS performs better than all other
algorithms tested when the average number of conflicting users is small. However, as the average
number of conflicting users gets bigger, the average response time of CS grows more steeply than
those of CSR, CMR and AS. This phenomenon becomes more evident when the ratio of the average
resource service time over the average message delay gets bigger (compare Figure 7 with Figures

8,9 and 10).

Our result shows that CSR and CMR give clearly better response time than the other algorithms

(AS, CS and CM) when the average number of conflicting users is large and the ratio of the average

21

T
14000 | "CM" <— o 14000 " o—
"CS' - -
A - "B
12000 |- "CSR" % 12000 OV
"CMR" & " A
Q Q
E 10000 | R E 10000 E
E E
o} o}
=4 =4
E_ 8000 E E_ 8000 b
[i4 i4
Q Q
? 6000 E Q 6000 b
o o
> >
< <
4000 E 4000 b
2000 - 2000 -
0 0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Average Number of Conflicting Users Average Number of Conflicting Users

Figure 7: Average response time when aver- Figure 8: Average response time when aver-
age resource service time = 25 and average age resource service time = 50 and average

message delay = 50. message delay = 50.

resource service time over the average message delay is high. CMR and CSR show up to 60%
improvement over CS and up to 80% improvement over CM. CMR and CSR show better average
performance even than AS (up to 40%) as the ratio gets bigger. CMR works surprisingly better
than CM on average. Even in the case where the ratio is small, if the average number of conflicting
users is large, CMR and CSR show improvement over all the other algorithms (see Figure 8).

Chandy and Misra’s algorithm is worst in every case.

For the message complexity, our combined algorithms naturally require more messages than
the subroutines. However, they require fewer messages on average than polynomial response time

algorithms such as AS (see Figure 11).

In summary, the simulation result clearly indicates that the modular algorithm can improve the
average response time of its subroutine algorithm with small increase in the messages complexity,
especially when there is high contention for resources and the message delay is smaller than the

resource service time.

7 Conclusion

We presented an efficient modular resource allocation algorithm that uses another resource allo-
cation algorithm of any kind as a subroutine. When our algorithm uses Choy and Singh’s dining
philosophers algorithm [4], the combined algorithm gives worst case response time O(8%(c + d))
and message complexity O(ré), which is the fastest known drinking philosophers algorithm with

the stated message complexity. When Choy and Singh’s dynamic resource allocation algorithm

22

14000 | "CM" <— o 14000
"CS' -
"AS' -E-
12000 | " "X 12000
"CMR" &
1) 1)
E 10000 |- R E 10000
E E
o} o}
c c
?ﬁ 8000 - 1 ?ﬁ 8000
[i4 i4
(9] (9]
=3 6000 - 4 =3 6000
o o
> >
< <
4000 |- E 4000
2000 | &,,5§5:~'W . - 2000
0 | | | | | | | 0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Average Number of Conflicting Users Average Number of Conflicting Users

Figure 9: Average response time when aver- Figure 10: Average response time when aver-

age resource service time = 75 and average age resource service time = 100 and average

message delay = 50. message delay = 50.
500 T
M o—
g 'CS -
450 |- AS B
o CR
Je| _'CHIR" A
20 X Ju— 4
350 |- i /// 4

300

250 -

200

Average Message Complexity

0 L L L L L L L

15 20 2
Average Number of Conflicting Users

Figure 11: Average message complexity of when average resource service time = 100 and average

message delay = 50.

[5] is used, the combined dynamic resource allocation algorithm gives worst case response time
O(6c+ (8% + log* [U])d) and message complexity O(ré), which is again the fastest known dynamic
resource allocation algorithm with the stated message complexity. We also simulated various re-
source allocation algorithms using a discrete event simulation technique. The simulation results
indicate that our algorithm performs better than other algorithms on average, especially when the
average number of conflicting users is large and the ratio of the average time period that a user is

in the critical region over the average message delay is high.

Acknowledgments: The author is greatly indebted to Jennifer Welch for her helpful comments

on earlier versions of this paper, and continuous encouragement. This work is supported through

23

her NSF PYI Award CCR-9158478, and IBM Faculty Development Award. Many thanks also go

to Ivor Page and Tom Jacob for providing their simulation programs, which helped me understand

the algorithm of Awerbuch and Saks. The author would like to thank the anonymous referees for

their critical reading of earlier versions of this paper and many helpful comments. Much of this

work was done while the author was with the Department of Computer Science, University of North
Carolina, Chapel Hill.

References

[1]

[9]

[10]

B. Awerbuch and M. Saks, “A dining philosophers algorithm with polynomial response time,”
Proc. 31st IEFE Symposium on Foundations of Computer Science, St. Louis, MO, pp. 65-74,
Oct. 1990,

J. Bar-Ilan and D. Peleg, “Distributed resource allocation algorithms,” Proc. 6th International

Workshop on Distributed Algorithms,, pp. 277-291, Sept. 1992.

K. Chandy and J. Misra, “The drinking philosophers problem,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 6, pp. 632-646, 1984.

M. Choy and A. Singh, “Efficient fault-tolerant algorithms for resource allocation in distributed
systems,” Proc. 24th ACM Symposium on Theory of Computing, pp. 593-602, May 1992. Also

to appear in ACM Transactions on Programming Languages and Systems.

M. Choy and A. Singh, “Distributed job scheduling using snapshots,” Proc. of the 7th Inter-
national Workshop on Distributed Algorithms,, pp. 145159, Sept. 1993.

E. Dijkstra, “Hierarchical ordering of sequential processes,” Acta Informatica, vol. 1, fasc. 2,

pp. 115-138, 1971.

N. Lynch, “Upper bounds for static resource allocation in a distributed system,” Journal of

Computer and System Science, vol. 23, pp. 254-278, 1981.

G. Peterson and M. Fisher, “Fconomical solutions for the critical section problem in a dis-

tributed system,” Proc. 9th ACM Symposium on Theory of Computing, pp. 91-97, May 1977.

I. Page, R. Jacob and S. Chern, “Fast algorithms for distributed resource allocation,” IFFFE
Transactions on Parallel and Distributed Systems, pp. 632-646, Feb. 1993.

I. Rhee, Efficiency of Partial Synchrony, and Resource Allocation in Distributed Systems,
PhD Dissertation, TR94-071, Department of Computer Science, University of North Carolina,
Chapel Hill, April 1994 (ftp://ftp.cs.unc.edu/pub/technical-reports/94-071.ps.Z).

24

[11] E. Styer and G. Peterson, “Improved algorithms for distributed resource allocation,” Proc.
Tth ACM Symposium on Principles of Distributed Computing, Toronto, Canada, pp. 105-116,
August 1988.

[12] J. Welch and N. Lynch, “A modular drinking philosophers algorithm,” Distributed Computing,
vol. 6, pp. 233-244, 1993.

[13] E. Weidman, 1. Page, and W. Pervin, “Explicit dynamic exclusion algorithm,” Proc. of the
Srd IEFE Symposium on Parallel and Distributed Processing, pp. 142-149, Dec. 1991.

25

A brief biography of the author

Injong Rhee received B.E. in electrical engineering from Kyung-Pook National University, Korea
in 1989, and Ph.D. in Computer Science from the University of North Carolina, Chapel Hill, USA
in 1994. After conducting postdoctoral research for one year at Warwick University, U.K., and for
one year at Emory University, USA, he is now an assistant professor of computer science at North
Carolina State University, USA. His research interests include distributed systems and networks,

networked multimedia systems, and distributed algorithms.

26

