
���������	�
����

����������������
���
��
�

��������
�����
���
�����
�
���
������
���

	��� �������� ����
�!�"##

$��%���#&&'

������	�
������
���

���
���������	
����	��
��������
��������	����	��
����

�����������

��������	
	

� � � � � �
�
� � � � �

�������	
��
���
��������	����
�������	�������
�����	����	������

Die Forschungsberichte des Instituts für
Informatik und Wirtschaftsinformatik dienen
der Darstellung vorläufiger Ergebnisse, die i.
d. R. noch für spätere Veröffentlichungen ü-
berarbeitet werden. Die Autoren sind deshalb
für kritische Hinweise dankbar.

All rights reserved. No part of this report may
be reproduced by any means, or translated.

Managing Assistant and Contact:

Jonas Sprenger

Institut für Informatik und
Wirtschaftsinformatik (ICB)
Universität Duisburg-Essen
Universitätsstr. 9
45141 Essen
Germany

icb@uni-duisburg-essen.de

Proceedings

Edited by:

Patrick Heymans

University of Namur, Belgium

phe@info.fundp.ac.be

Kyo-Chul Kang

Pohang University of Science and
Technology, Korea

kck@postech.ac.kr

Andreas Metzger
Klaus Pohl

University Duisburg-Essen, Germany

andreas.metzger@sse.uni-due.de
klaus.pohl@sse.uni-due.de

The ICB Research Reports comprise prelimi-
nary results which will usually be revised for
subsequent publications. Critical comments
would be appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der
Übersetzung, des Nachdruckes, des Vortrags,
der Entnahme von Abbildungen und Tabellen
– auch bei nur auszugsweiser Verwertung.

ISSN 1860-2770

ICB Research Reports

Edited by:

Prof. Dr. Heimo Adelsberger
Prof. Dr. Peter Chamoni
Prof. Dr. Frank Dorloff
Prof. Dr. Klaus Echtle
Prof. Dr. Stefan Eicker
Prof. Dr. Ulrich Frank
Prof. Dr. Michael Goedicke
Prof. Dr. Reinhard Jung
Prof. Dr. Tobias Kollmann
Prof. Dr. Bruno Müller-Clostermann
Prof. Dr. Klaus Pohl
Prof. Dr. Erwin P. Rathgeb
Prof. Dr. Albrecht Schmidt
Prof. Dr. Rainer Unland
Prof. Dr. Stephan Zelewski

i

Abstract
This ICB Research Report constitutes the proceedings of the Second International Workshop on Vari-
ability Modelling of Software-intensive Systems (VaMoS’08), which was held from January 16–18,
2008 at the University of Duisburg-Essen.

Proceedings VaMoS’08

ii

iii

Table of Contents

1 MESSAGE FROM THE ORGANIZERS ...1
2 ORGANIZATION...2
3 WORKSHOP FORMAT..3
4 TECHNICAL PAPERS ...5

1

1 Message from the Organizers

Welcome to VaMoS’08 – the Second International Workshop on Variability Modelling of Soft-
ware-intensive Systems!

The aim of the VaMoS workshop series is to bring together researchers from various areas of vari-
ability modelling in order to discuss advantages, drawbacks and complementarities of the various
variability modelling approaches, and to present novel results for variability modelling and man-
agement.

To facilitate interactions, VaMoS’08 will adopt the organization structure of the first VaMoS work-
shop, which was held in Limerick, Ireland in 2007. Each session will be organized in such a way
that discussions among the workshop participants will be stimulated. We hope that VaMoS will
trigger work on new challenges in variability modelling and thus will help to shape the future of
variability modelling research.

VaMoS’08 has attracted 23 submissions from 10 countries. Each submission was reviewed by at
least three members of the programme committee. Based on the reviews, 17 submissions have
been accepted.

The accepted papers address a wide range of topics relevant to variability modelling and man-
agement. In detail, the following topics are covered:

• Product derivation and configuration
• Variability modelling for automotive systems and service-based systems
• Aspects
• Requirements variability and elicitation
• Quality
• Handling complexity
• Variability in Behaviour
• Dynamic Variability

We like to extend our gratitude to all the people who spent time and energy to make VaMoS a
success. VaMoS’08 would not have been possible without their efforts and expertise. We like to
cordially thank all the members of the VaMoS programme committee for devoting their time to re-
viewing the submitted papers. We are grateful to the people who helped preparing and organiz-
ing the event, especially Maike Uhlig, André Heuer, Andreas Classen and Arnaud Hubaux. Finally,
we thank the sponsors of VaMoS: The University of Duisburg-Essen and the University of Namur.

Enjoy VaMoS 2008 and your stay in Essen, Germany!

The VaMoS organizers

Patrick Heymans Kyo-Chul Kang Andreas Metzger Klaus Pohl

Proceedings VaMoS’08

2

2 Organization

Organizing Committee

Patrick Heymans, University of Namur, Belgium

Kyo-Chul Kang, Pohang University of Science and Technology, Korea

Andreas Metzger, University of Duisburg-Essen, Germany

Klaus Pohl, University of Duisburg-Essen, Germany & Lero, Limerick, Ireland

Programme Committee

David Benavides, University of Seville, Spain

Jürgen Börstler, Umeå University, Sweden

Pascal Costanza, Free University of Brussels, Belgium

Krzysztof Czarnecki, University of Waterloo, Canada

Ulrich Eisenecker, University of Leipzig, Germany

Hasan Gomaa, George Mason University, USA

Paul Grünbacher, Johannes Kepler Universität Linz, Austria

Jilles van Gurp, Nokia Research, Finland

Øystein Haugen, University of Oslo & SINTEF, Norway

André van der Hoek, University of California, Irvine, USA

Jean-Marc Jezequel, IRISA, France

Tomoji Kishi, Japan Advanced Institute of Science and Technology

Charles Krueger, BigLever Software, USA

Frank van der Linden, Philips, The Netherlands

Roberto Lopez-Herrejon, University of Oxford, UK

Tomi Männistö, Helsinki University of Technology, Finland

Kim Mens, Catholic University of Louvain, Belgium

Dirk Muthig, Fraunhofer IESE, Germany

John Mylopoulos, University of Toronto, Canada

Linda Northrop, SEI, USA

Camille Salinesi, University of Paris 1-Sorbonne, France

Pierre-Yves Schobbens, University of Namur, Belgium

Vijay Sugumaran, Oakland University, USA

Steffen Thiel, Lero, Limerick, Ireland

Matthias Weber, Carmeq GmbH, Germany

3

3 Workshop Format

As VaMoS is planned to be a highly interactive event, each session is organized in order to stimu-
late discussions among the presenters of papers, discussants and the other participants. Typically,
after a paper is presented, it is immediately discussed by two pre-assigned discussants, after which
a free discussion involving all participants follows. Each session is closed by a general discussion of
all papers presented in the session. For VaMoS, each of the sessions will typically consist of two
paper presentations, two paper discussions, and one general discussion.

Three particular roles, which imply different tasks, are taken on by the VaMoS attendees:

1) Presenter

A presenter obviously presents his paper but additionally will be asked to take on the role of dis-
cussant for the other paper in his session. It is highly desired that – as a presenter – you attend the
complete event and take an active part in the discussion of the other papers. Prepare your presenta-
tion and bear in mind the available time, which is 15 min for the paper presentation.

2) Discussant

A discussant prepares the discussion of a paper. Each paper is assigned to two discussants (typi-
cally the presenter of the other paper in the same session and a presenter from another session). A
discussant’s task is to give a critical review of the paper directly after its presentation. This task is
guided by a predefined set of questions that are found in the discussion template provided by the
VaMoS organizers.

3) Session Chair

A session chair’s tasks are as follows:

Before the session starts:

• Make sure that all presenters and presentations are available.

• Make sure that all discussants are present and that they have downloaded their discussion
slides to the provided (laptop) computer.

For each paper presentation:

• Open your session and introduce the presenters.

• Keep track of time and signalize the presenters when the end of their time slot is approach-
ing.

• Invite the discussants and organize the individual paper discussions, i.e., ensure that the dis-
cussion is structured.

• Close the paper discussion and hand over to the next presenter.

After the last presentation:

• Lead through and moderate the general discussion.

• Finally, close the session when the allotted time has elapsed.

Proceedings VaMoS’08

4

5

4 Technical Papers

Interactive Visualisation to Support Product Configuration in Software Product Lines
Ciarán Cawley, Daren Nestor, André Preußner, Goetz Botterweck, Steffen Thiel7

Towards an Automatic PL Requirements Configuration through Constraints Reasoning
Olfa Djebbi, Camille Salinesi ...17

Integrated Product Line Model for Semi-Automated Product Derivation Using Non-Functional Properties
Norbert Siegmund, Martin Kuhlemann, Marko Rosenmüller, Christian Kaestner, and Gunter Saake25

Increasing Reliability of Model-driven Software Family Engineering and Product Configuration
Frank Grimm ...33

Dealing with Changes in Service-Oriented Computing Through Integrated Goal and Variability Modelling
Roger Clotet, Deepak Dhungana, Xavier Franch, Paul Grünbacher, Lidia López,
Jordi Marco, Norbert Seyff ..43

Weaving Aspect Configurations for Managing System Variability
Brice Morin, Olivier Barais, Jean-Marc Jézéquel ...53

Model-Based Implementation of Meta-Variability Constructs: A Case Study using Aspects
Klaus Schmid, Holger Eichelberger..63

Value-Based Elicitation of Product Line Variability: An Experience Report
Rick Rabiser, Deepak Dhungana, Paul Grünbacher, Benedikt Burgstaller ...73

Tracing from Features to Use Cases: A Model-Driven Approach
Edward Alférez Salinas, Uirá Kulesza, Ana Moreira, João Araújo, Vasco Amaral81

Svamp – An Integrated Approach for Modeling Functional and Quality Variability
Mikko Raatikainen, Eila Niemelä, Varvana Myllärniemi, Tomi Männistö ...89

How complex is my Product Line? The case for Variation Point Metrics
Roberto Lopez-Herrejon, Salvador Trujillo ..97

A Multiple Views Model for Variability Management in Software Product Lines
Rabih Bashroush, Ivor Spence, Peter Kilpatrick, Charles Gillan, Thomas Brown.................................101

Understanding Decision Models – Visualization and Complexity Reduction of Software Variability
Thomas Forster, Dirk Muthig, Daniel Pech, ..111

Variability Management on Behavioral Models
Patrick Tessier, David Servat, Sébastien Gérard ...121

Statecharts and Variabilities
Nora Szasz, Pedro Vilanova ..131

Reflective Component-based Technologies to Support Dynamic Variability
Nelly Bencomo, Gordon Blair, Carlos Flores, Pete Sawyer...141

Towards Visualisation and Analysis of Runtime Variability in Execution Time of BDD Systems
Ildefonso Montero, Joaquín Peña, Antonio Ruiz-Cortés ...151

Proceedings VaMoS’08

6

Interactive Visualisation to Support Product Configuration
 in Software Product Lines

Ciarán Cawley1, Daren Nestor1, André Preußner2, Goetz Botterweck1, Steffen Thiel1

1Lero,University of Limerick
Limerick, Ireland

{ ciaran.cawley | daren.nestor |
goetz.botterweck | steffen.thiel }@lero.ie

2BTU Cottbus
Institute of Computer Science

Cottbus, Germany
apreussn@informatik.tu-cottbus.de

Abstract
Software Product Line engineering allows

companies to realise significant improvements in time-
to-market, cost, productivity, and system quality. One
major difficulty with software product lines is that
within industry there may exist thousands of variation
points in a single product line. This scale of variability
can become extremely complex to manage resulting in
a product configuration process that bears significant
costs. This paper presents a feature configuration
meta-model and introduces a prototype tool that
employs visualisation and interaction techniques to
provide feature configuration functionality.

1. Introduction
Software Product Line (SPL) engineering is a para-

digm to develop software applications using platforms
and mass customisation. This is achieved through the
identification and control of the applications' common-
ality and variation. Developing using a product line
allows companies to build a variety of systems with a
minimum of technical diversity and to realise signifi-
cant improvements in time-to-market, cost, productivity
and quality [1]. The management of such a product
line's variability is fundamentally key to its success.
Particularly in the area of feature modelling and prod-
uct configuration, variability management can greatly
impact the complexity that is involved when producing
a new product from existing product line assets [2].

Within industry, product lines exist with thousands
of variation points and configuration parameters that
need to be managed in order to customise a product
[3]. Managing this level of variability is extremely
complex and can be very costly [4]. Furthermore, in

cases such as these where there are a large number of
variants, appropriate techniques are required to allow
particular stakeholders to perform their specific tasks
[5].

One technique that can be applied beneficially in
this context is visualisation. Visualisation takes abstract
data and transforms it into a format that is useful for
presentation to humans. In doing this, human cognition
is enhanced and understanding is afforded. In the area
of software product line variability management, visu-
alisation can be used to amplify cognition of the large,
complex data sets that can exist in industrial SPL engi-
neering.

This paper presents a meta-model and a prototype
tool for feature configuration. The tool implements
various visualisation and interaction techniques that
can support stakeholders in the process of product
configuration for software product lines.

The remainder of this paper is organised as follows:
in Section 2 we summarize a meta-model for feature
configuration in software product lines; in Section 3 we
introduce our visual prototype tool (VISIT-FC) which
is based on the meta-model and discuss the tool’s
architecture design; in Section 4 we explain some of
the visualisation techniques implemented in VISIT-FC
and how they help to address the challenges of high
variability in large feature models. Section 5 provides
an illustrating example of a feature configuration using
VISIT-FC. Section 6 discusses related work in visual
feature configuration and Section 7 outlines future
work. Finally, Section 8 concludes the paper.

2. Feature Modelling
A key aspect of the Software Product Line engineer-

ing approach is the modelling of the variability of the
supported product line features. Such a feature model
can support the derivation of a product allowing the

Proceedings VaMoS'08

7

inclusion and exclusion of various features and variants
so that a valid feature configuration is produced. A
feature model can also act as a guide for product con-
figuration and can be used to validate a particular con-
figuration for conformance.

We summarise a meta-model which can be used to
describe feature models and which forms the basis of
the prototype tool presented in sections 3, 4 and 5.

There are a number of suggested feature modelling
languages in existence [6-8] but we have chosen to
extend and modify Czarnecki’s meta-model [8] (see
Figure 1). The following are the reasons behind our
extensions and modifications.

• To reduce complexity, explicit reference to
�������	
������
, �����
������
 and
����
������
 was removed and there is no
separation between elements that can be con-
tained by a
������ and a
�����������.
These aspects of the meta-model presented in [8]
are not required for our purposes.

• We needed enhanced support for the product con-
figuration process and so increased the options
available for relating features with architecture
and for supporting inter feature dependencies.

• Support for the cloning of features within a fea-
ture group was added.

The following sub-sections describe the main char-
acteristics of our meta-model.

2.1. Basic Model Structure
The model structure is designed to support a staged

configuration approach where a model may be loaded,
partially configured/constrained and saved in iterations.
This allows a product to be gradually configured with
each stage extending on the previous until all feature
variability has been resolved and an end product has
been configured. This is supported through the sub-
classing of ������������������� which can contain
many �������������
 and can itself be a
configuration of one �����������������.

The model supports a hierarchy of features and
feature groups where a
������ can contain

������
,
�����������
 and

���������������
. By using a generalisation /
specialisation association between
������������	
������ and
����������� and a
composition association between
����������� and
������������	
����������� we enforce that a

Figure 1. Basic structure of the feature model

Proceedings VaMoS'08

8

����������� cannot contain other
�����������

but can contain
������
 and
���������������
.

2.2. Cardinalities
Element selection and elimination is modelled using

cardinalities. A
������ and
���������������
have a minimum and maximum denoting the number of
times they occur [min, max]. This allows us to model
optional features as [0,1], mandatory features as [1,1]
and eliminated features as [0,0].

A
����������� has a �������� and a ������
��� attribute denoting the minimum and maximum
number of elements that can be contained within them.
As an example, a
����������� containing a set of
alternative features would be modelled as ������
�����, ���������� and each
������ within the

����������� would have their ��� and ��� atrib-
utes set to [0,1].

2.3. Dependencies
The meta-model supports two types of feature rela-

tionships (Figure 2), an ���������!��������	 and
a !�������!��������	. Two concrete implementa-
tions of a !�������!��������	 are ��"����
 and
���������
. As the names suggest, a ��"����
 de-
pendency denotes that if a source feature is selected
then the target feature must also be selected. A ������
����
 dependency denotes that if the source feature is
selected then the target feature should also be selected.

Two concrete implementations of an �!��������
!��������	 are �����������
��� and �������
#����������. �����������
��� denotes that if any
one of the set of features is selected then the other fea-
ture(s) must not be selected. ������#����������
denotes that if any one of the set of features is selected
then all other features should preferably not be se-
lected.

3. Tool Prototype
Based on the meta-model presented in Section 2 we

developed VISIT-FC, a Visual and Interactive Tool for
Feature Configuration. Well known visualisation and
interactive techniques were employed to attempt to
fulfil MacKinlay’s [10] expressiveness criteria. This
criteria states that a set of facts is expressible if all the
facts in the set, and only the facts in the set, are ex-
pressed. To this end, the VISIT-FC tool strives to dis-
play all the information that is required for a particular
stakeholder without showing that which can lead to
incorrect interpretations through mis-associations.

Visualisation has been described as an “adjustable
mapping from data to visual form” [11]. The term
“map shock” describes a phenomenon whereby a per-
ceiver has an audible reaction to a visual form that dis-
plays an overly complex diagram. Visualisations (and
VISIT-FC) aim to relate as much relevant information
as possible while avoiding such a reaction from a per-
ceiver. In addition, VISIT-FC adds interactive func-
tionality allowing clear exploration and manipulation
of the data.

An instance of the meta-model presented in Sec-
tion 2 has been created and is used to illustrate the
visualisation and interactive techniques employed by
VISIT-FC to support the product configuration func-
tionality. The feature model instance introduced repre-
sents the Restraint System Control Unit (RESCU)
product line. This product line contains features of
electronic control units (ECUs) for automotive restraint
systems such as airbags and seatbelt tensioners.

The following two subsections give a breakdown of
the design and architecture of the tool to show the un-
derlying model and how it supports our interactive
visualisation approach.

Figure 2. Dependencies among features

Proceedings VaMoS'08

9

3.1. Design Concept
The primary tasks of the VISIT-FC tool are the

visualisation of Software Product Line information and
feature configuration. The underlying concept of the
design is the separation of the various concerns. Fea-
ture configuration is divided between the base Feature
Model and the View Model that acts as a broker be-
tween the Feature Model and a third Visualisation
component (see Figure 3).

Figure 3. VISIT-FC design overview

As a stakeholder interacts with the Visualisation, the
View Model transfers the information between it and
the Feature Model and vice versa.

This design affords a number of advantages. As long
as a transformation of the Feature Model into the View
Model can be delivered, the Visualisation can operate
independently of the implementation details of the Fea-
ture Model. This protects the Visualisation against
changes to the Feature Model and also can allow dif-
ferent feature meta-models to be used. The View Model

can hide the complexity of the Feature Model and pro-
vide a simplified view of it.

At a stakeholder’s request, the Feature Model com-
ponent loads an XML file containing the product line
feature model. A copy of the model (the configuration
model) is generated and each feature is linked between
the base model and the copy. The copy is used to re-
cord and represent the new state of the feature model at
its current stage. The View Model brokers the configu-
ration data flow between the Feature Model and the
Visualisation. The Visualisation is controlled by layout
and mapping mechanisms that use defined information
for visualising the contents of the View Model and pro-
viding interactive functionality to the stakeholder.

3.2. Software Architecture
Figure 4 shows the component diagram for the

VISIT-FC tool. The tool is comprised of four compo-
nents.

Firstly, the Feature Model Management component
facilitates the loading of the model source XML file,
the creation of a base and configuration model, the
generation of the View Model and provides the func-
tionality that manages the changes to the model that
occur during the product configuration process.

Secondly, the View Model Management component
allows the creation of a new View Model. It maintains
the View Model reflecting the product configurations
being undertaken, transfers information concerning the

Figure 4. VISIT-FC component diagram

Proceedings VaMoS'08

10

configuration model to the View Model Visualisation
component and synchronises the modifications per-
formed by the stakeholder with the Feature Model
Management component.

Thirdly, the View Model Visualisation component
stores and maintains all the pertinent information re-
lated to the graphical representation. It manages the
layout algorithms and facilitates graphical manipula-
tions by the stakeholder.

Finally the VISIT-FC User Interface component al-
lows the actual screen events to take place providing
functionality such as feature selection, pan and zoom
and node manipulation.

To load a model file, functionality within the Fea-
ture Model Management component is invoked. The
Feature Model component creates a base and configur-
able model and also generates the View Model through
a call to the View Model Management component.
Finally, a call is made to the View Model Visualisation
component resulting in the rendering of the View
Model visually.

When product configuration actions take place,
functionality within the View Model Visualisation

component is invoked that produces a transfer of in-
formation between the View Model Visualisation com-
ponent and the Feature Model Management component
through the View Model Management component.
When the Feature Model Component receives this in-
formation it applies the modification on the configura-
tion model and invokes the View Model Visualisation
component via the View Model Management compo-
nent to display the modifications.

4. Visualisation & Interactive Techniques
The VISIT-FC tool (see Figure 5) aims to employ

visualisation and interactive techniques that facilitate
the following goals: provide a compact, interactive
representation of large feature hierarchies; provide fa-
cilities to restrict the view to feature model parts of
interest; allow feature configuration with automatic
constraint propagation and provide hints for configura-
tion problems and open decisions, see also [5]. This
section describes the techniques that are utilised and
the specific functionality that is then possible allowing
the fulfilment of the specific goals.

Figure 5. VISIT-FC configuration viewer showing features of the RESCU product line

Proceedings VaMoS'08

11

4.1. Explicit Representation
The VISIT-FC tool uses Explicit Representation as

opposed to Implicit Representation. Explicit Represen-
tation refers to drawing methods which display the hi-
erarchy as links between nodes, e.g. [12]. Implicit
drawing methods represent the hierarchy by a special
arrangement of nodes, e.g. containment or overlapping.
Examples of implicit graph drawing are tree-maps [13],
or the information cube [14]. Figure 5 shows a screen-
shot of the main visualisation of the RESCU product
line feature model in VISIT-FC.

4.2. Horizontal Linear Tree Layout
Advanced layouts exist for explicit tree-drawings

such as cone-trees [15] or space-trees [12]. However,
for the purpose of this prototype, a 2D visualisation
was chosen, and therefore a simple non-radial tree lay-
out [16] was adopted. The horizontal orientation is
preferable over the vertical orientation although the
tool does allow the stakeholder to view the model in
vertical tree layout. The non-radial (linear) layout and
horizontal orientation combine to provide the optimal
use of screen space to allow the display of the kinds of
data related to a product line feature model. As an ex-
ample, displaying the names of features on screen with
a radial or vertical tree layout would result either in
large amounts of overlapping or a zoomed out view (to
avoid overlapping) both of which would obscurely ren-
der the visualisation.

The combination of an Explicit Representation and
a Horizontal Linear Tree gives us the opportunity to
encode a significant amount of information on screen
utilising the restricted space in an efficient manner.
VISIT-FC uses an explicit horizontal linear tree layout
where the nodes represent features and the edges repre-
sent the relationships between those features. Straight
edges indicate parent-child relationship and curved
edges represent dependency relationships.

Figure 6. Information encoding in VISIT-FC

Figure 6 shows a portion of the RESCU feature
model illustrating the information that is encoded in
quite a small screen area. Colour coding of the features
adds another layer of information to this basic node
link tree structure.

The colours indicate the configuration status of the
selected features and their sub-features, that is, a
���
��������� is colour-encoded mandatory but not con-
figured if its sub-features are not resolved. There are
four levels of colour encoding, one for each of the fea-
ture states, which are selected (green), eliminated
(grey), optional (amber) and mandatory but not con-
figured (red). These colour codes allow a quick over-
view of the feature model and its state, for instance to
see if a valid product configuration exists. Further in-
formation is encoded by use of graphical symbols (tick
or cross). A tick indicates selection, a cross indicates
elimination. To this, another layer of information is
encoded through the use of additional colour coding. If
the box is shaded, then the feature has been pre-
configured or eliminated at an earlier stage of configu-
ration and is no longer changeable. If the box is not
shaded but the icon is not coloured, then the feature
was selected or eliminated based on a dependency.

Information encoded at this low level of visual rep-
resentation is processed pre-attentively [11] [17] by the
human graphical system. Therefore once the colour
encoding becomes familiar, a stakeholder would be
able to interpret large representations rapidly.

4.3. Details on Demand
Details on Demand refer to the facility whereby the

stakeholder can choose to display additional detailed
information at a point where this data would be useful.
Information such as cardinalities can be displayed
through the use of a “mouse-over” (see Figure 7) and
feature names can be displayed or removed through
viewing configuration options.

Figure 7. Relationship showing cardinalities

VISIT-FC also provides the facility to choose a spe-
cific feature and show all sub features and dependent
features while hiding all other features that are neither
sub features nor dependent in any way on the chosen
feature (see Figure 8).

Figure 8. Contextual view

Proceedings VaMoS'08

12

This allows the stakeholder to focus on the relevant
data for a particular feature while temporarily removing
irrelevant data. This function is easily accessible and
removable by use of a keyboard shortcut and mouse
movement.

4.4. Incremental Browsing
Incremental browsing is a form of information filter-

ing, where only limited sections of the visualised struc-
ture are displayed. The rest is hidden and can be visual-
ised when needed.

In VISIT-FC the feature model visualisation starts
with displaying only the high-level features, and the
stakeholder can then explore the feature hierarchy by
unfolding the sub-features of features in which the
stakeholder is interested in. The stakeholder is thus
able to perceive the feature structure step by step, and
is not overwhelmed by the complete model.

Figure 9 is a simple illustration where only one fea-
ture has been unfolded. The triangular extension of the
colour coded feature indicates further unfolding is pos-
sible.

Figure 9. Support for incremental browsing

4.5. Focus+Context
Focus+Context refers to the ability to focus on a

particular aspect or portion of the visualisation while
not losing the context in which that aspect or portion
resides e.g. [18]. The advantage of Focus+Context is
that the stakeholder does not get lost when zooming
into a large structure, or exploring the details of certain
features. They are always able to see where they came
from, and are not required to keep this in memory. This
can be useful, e.g., for the visualization of search re-
sults or to see dependent feature nodes in distant parts
of a large feature model within the context of the whole
feature structure.

Pan, Zoom and Degree of Interest in combination
are powerful techniques that allow the stakeholder to
move around the visualisation, zoom and highlight a
particular area of interest. VISIT-FC provides these
facilities and also allows selective zooming of a spe-
cific chosen portion of the feature tree focusing on the
area of interest and allowing the non-relevant area to
remain in view but to a lesser degree. Figure 10 shows

a simplified version to illustrate the split zooming facil-
ity. It shows certain user selected features that have
been “zoomed out” because they are of lesser interest
while keeping them in view which maintains the overall
context. Different sets of feature nodes can be “zoomed
in” or “zoomed out” to varying degrees to allow an
optimum view for the task at hand.

5. Feature Configuration Example
To illustrate the use of VISIT-FC and its benefits,

this section describes the steps that a stakeholder would
undertake to configure a specific aspect of interest
within the RESCU product line. In this instance a
stakeholder wishes to explore the “Software Features”
of a product configuration that is in progress and add
configuration for Diagnostic Access.

Figure 10. Focus+Context, Degree of Interest
and Details on Demand

On start up VISIT-FC shows the root node of the
feature model, which can be expanded to show the next
level of tree nodes (see Figure 11). Immediately the
stakeholder can see that the model has been through a
previous configuration stage, that there are eight fea-
ture sets, two of those are mandatory and that none of
the feature sets have been fully configured as yet. By
expanding the “Software Features” node, the stake-
holder can explore this section of the product line while
keeping all other sections out of the way but still in
context. The stakeholder can see that four of the ten
sub-features have been configured at a previous stage
and that six remain to be resolved.

In this scenario, the stakeholder is interested in con-
figuring “Diagnostic Access” and can see it has not
been previously configured (see the corresponding
green node in Figure 12). By clicking on the Diagnostic
Access node, the stakeholder can select this feature for
the product being derived. On selection, the application

Proceedings VaMoS'08

13

automatically configures two other features in the
product line by selecting the feature “CAN Bus Inter-
face” (a sub-feature of “Hardware Features”) and
eliminating the “1024KB Memory” variant. These de-
pendent features are highlighted through increased
node size notifying the stakeholder of the automatic
actions. If a dependent node is not currently displayed
at the point of automatic selection / elimination of the
feature, then it is made visible at that time. The stake-
holder can then distinctly display the dependencies
using curved colour coded links. By use of split zoom-
ing and panning, the stakeholder modifies the display
for even further clarity.

If desired by the stakeholder, he can display all
other features that are connected in a dependent fashion
providing a useful view of connected parts of the prod-
uct being derived. Moreover, he or she can switch the
view to the dependency context mode (Figure 8) tem-
porarily removing all data from the screen except that
which is directly connected to the feature being config-
ured.

Figure 11. Initial Feature Model View

6. Related Work
FeaturePlugin [19], pure::variants [20], COVAMOF

[21] and Gears [22] are examples of other feature mod-
elling tools that employ a visual component to aid
product configuration and variability management.

FeaturePlugin is an Eclipse IDE plug-in that sup-
ports feature modelling. It uses the Eclipse Modelling
Framework (EMF) to generate the editors that facilitate
the modelling aspect and provides a rich set of model-
ling functionality. Nested lists and a tree layout are
employed as techniques to support product configura-
tion using the FODA style. Some of the drawbacks of
FeaturePlugin are that the lists can be difficult to navi-
gate as the focus+context display implementation is not
very effective. It is also difficult to comprehend the
dependencies as constraints are shown as unsorted lists.

pure::variants was developed by pure-systems
GmbH and is a software package that provides similar
functionality to FeaturePlugin. It supports various
views which provide different approaches for different
stakeholder tasks but does not support cardinality. Us-
ing the built in automatic layout, can adversely affect
the tree layout which as it is can be confusing. Large
industrial product lines could easily lead to information
overload.

A suite of tools exist that provides the implemen-
tation of the requirements of the ConIPF Variability
Modelling Framework, COVAMOF. Even though
significant functionality exists, understanding of the
overall state of the configuration can be difficult due to
the separate and disconnected window views.

7. Future Work
The development of the VISIT-FC prototype is

based on the utilisation of well understood but non-
complex visualisation and interaction techniques. It has
shown an avenue down which the challenges faced by
stakeholders during product configuration can be ad-
dressed. Even simple information encoding through
colour schemes suggests an increase in the speed at
which product configurations can be interpreted. More
in depth research into visualisation techniques and their
applicability to and usability for, variability manage-
ment tasks is planned.

Development of the tool to implement further func-
tionality provided by the meta-model is also planned,
such as implementation of the
���������������
entity, cloning of features and linking of the asset base,
feature model and realisation artefacts. This would
provide an end-to-end visual support for an interactive
product derivation tool.

The possibility of providing this prototype tool as an
Eclipse plug-in will also be explored.

8. Conclusions
We have presented a feature configuration meta-

model and introduced a prototype tool that utilises that
meta-model and employs a variety of visualisation and
interaction techniques. We suggest that targeted use of
these techniques in combination with a suitable meta-
model can provide significant aid to product configura-
tion stakeholders.

Proceedings VaMoS'08

14

Figure 12. Staged feature configuration example

In the authors’ opinion, further research into the
applicability of various visualisation and interaction
techniques to variability management could signifi-
cantly lessen the challenges faced by stakeholders and
greatly increase the efficiency of a number of tasks that
require fulfilment when undertaking product line engi-
neering. Furthermore, a configurable visualisation
toolkit could replace the dependence on a small
number of experts and allow software product line en-
gineers execute their tasks with much greater auto-
nomy.

9. Acknowledgements
This work is partially supported by Science

Foundation Ireland (SFI) under grant number
03/CE2/I303-1.

10. References
[1] K. Pohl, G. Böckle, and F. v. d. Linden, Software

Product Line Engineering: Foundations, Princi-
ples, and Techniques, 1st ed. New York, NY:
Springer, 2005.

[2] M. Sinnema and S. Deelstra, "Classifying vari-
ability modeling techniques," Information and
Software Technology, vol. 49, pp. 717-739, 2007.

[3] M. Steger, C. Tischer, B. Boss, A. Müller, O.
Pertler, W. Stolz, and S. Ferber, "Introducing
PLA at Bosch Gasoline Systems: Experiences and
Practices," in SPLC 2004, Boston, MA, USA,
2004, pp. 34-50.

[4] S. Deelstra, M. Sinnema, and J. Bosch, "Product
Derivation in Software Product Families: A Case
Study," Journal of Systems and Software, vol. 74,
pp. 173-194, 2005.

[5] D. Nestor, L. O'Malley, A. Quigley, E. Sikora,
and S. Thiel, "Visualisation of Variability in
Software Product Line Engineering," in VaMoS-
2007, Limerick, Ireland, 2007.

[6] K. Kang, S. Kim, J. Lee, K. Kim, S. E., and M.
Huh, "FORM: A Feature-Oriented Reuse Method
with Domain-Specific Reference Architectures,"
Annals of Software Engineering, vol. 5, pp. 143-
168, 1998.

[7] K. Kang, S. Cohen, J. Hess, W. Novak, and S.
Peterson, "Feature-Oriented Domain Analysis
(FODA) Feasibility Study," SEI, Carnegie Mellon
University CMU/SEI-90-TR-21, November 1990.

[8] K. Czarnecki, S. Helsen, and U. W. Eisenecker,
"Staged Configuration Using Feature Models," in
Proceedings of SPLC 2004, 2004, pp. 266-283.

[9] T. Bednasch, "Konzept und Implementierung
eines konfigurierbaren Metamodells für die
Merkmalmodellierung," in Fachbereich
Informatik Zweibrücken, Germany:
Fachhochschule Kaiserslautern, 2002.

[10] J. Mackinlay, "Automating the design of graphi-
cal presentations of relational information," ACM
Trans. Graph., vol. 5, pp. 110-141, 1986.

[11] S. K. Card, J. D. MacKinlay, and B. Shneider-
man, Readings in Information Visualization - Us-

Proceedings VaMoS'08

15

ing Vision to Think, 1st ed. San Francisco: Mor-
gan Kaufmann Publishers, 1999.

[12] C. Plaisant, J. Grosjean, and B. B. Bederson,
"SpaceTree: Supporting Exploration in Large
Node Link Tree, Design Evolution and Empirical
Evaluation," in Proceedings of the IEEE Sympo-
sium on InformationVisualization (InfoVis 2002),
2002.

[13] B. Johnson and B. Shneiderman, "Tree-maps: a
space-filling approach to the visualization of hier-
archical information structures," in Proceedings
of the 2nd Conference on Visualization, 1991, pp.
284–291.

[14] J. Rekimoto and M. Green, "The information
cube: Using transparency in 3d information visu-
alization," in Workshop on Information Tech-
nologies & Systems, 1993, pp. 125-132.

[15] G. G. Robertson, J. D. Mackinlay, and S. K.
Card, "Cone trees: Animated 3D visualizations of
hierarchical information," Proceedings of CHI 9,
pp. 189-194, 1991.

[16] E. M. Reingold and J. S. Tilford, "Tidier Draw-
ings of Trees," IEEE Transactions on Software
Engineering, vol. 7, pp. 223-228, 1981.

[17] C. Ware, Information Visualisation: Perception
for Design, 2nd ed.: Morgan Kaufmann, 2004.

[18] S. K. Card and D. Nation, "Degree-of-interest
trees: A component of an attention-reactive user
interface," Advanced Visual Interface, pp. 231-
245, 2002.

[19] M. Antkiewicz and K. Czarnecki, "FeaturePlugin:
Feature Modeling plug-in for Eclipse," in eclipse
'04: Proceedings of the 2004 OOPSLA workshop
on eclipse technology eXchange, Vancouver, BC,
Canada, 2004, pp. 67--72.

[20] pure-systems GmbH, "Variant Management with
pure::variants," http://www.pure-systems.com,
Technical White Paper, 2003-2004.

[21] M. Sinnema, O. d. Graaf, and J. Bosch, "Tool
Support for COVAMOF," in SPLC 2004, Work-
shop on Software Variability Management for
Product Derivation Boston, MA, USA, 2004.

[22] Biglever Software, Gears,:
http://www.biglever.com.

Proceedings VaMoS'08

16

�������	�
	��
���
��	��	���������

�	��
������
��
	
������	��
�
���

�	
�����
�
�	

�
�

�������	

��
��������	������	����
��������	
��
�
�����

��������
��		�������
����������
�������� ���

���!
�	���

"����#���	��
�$�	�����"�����	���%��
�����&����"" ��'�		��
��
�
���!
�	���
��(�)�*���
+$��
,)�	
�-.�

��)(
����$
���)���
	��
+�	
�-.�

��)(
����*���
+���#�)(
�

�
�

���
���
	
�

��/�

�$�	��� 0	#
	��

	#� 1�02� .
�������� �
�� �(�
#
����
	��
����
	� ��(�3�
�� �
������ %
	�� 1��%2�
������.$�	�)� ����
��� ��

��
�
�4� �..
���&��� 3�
��
������.������.��	�
�/�

�$�	���
�����������	�4��
������(�
�&�$� �������4� ���
���� �&��
����� �(� ��	(
#�

	#�
.
������)��&
��.�.�
�.
���	����	��..
���&��&���
	��	���
�����..�
��
�/�

�$�	�����	(
#�
��
�	�
	���%)�����#����

��������
��
�.
�������.��.���
����4�3�	�)�

�&
��� $�
	� �&�
����

��
�� �(� �&�� �..
���&� �
��
	���3�
�&45��2�
��
�����
-�

�	�����"2�
��#�
����.
������

�/�

�$�	��� ��
�
���
�	� �	�� ��	(
#�
��
�	� ��� ��
$���&
	#� ���
�
�4� �((�

	#� �� ��&�
�	�� #������ �
�3� �	�
�&�� .
������ �
	��� �	�� 2�
�� .
��
���� �4���$��
�� �	��

	��
���
��� #�
��	��� ���
��
	#� �	��4����
	� ��6
	#�
���
�
�	��������
�/�

�$�	��)��
�
��	�

�����
��
	
�

�������	������������	������		��������	�	�����������
���
�	� ���� �� ������� �	�	�� �	��� �������� ���������
��� ���	������	���!	����	�"��"��������	��� ���	�	����
��� ���	� ��� ���#	��� ������ ����������$�� %�����$� ����
��	&�
����$�'�()�*+�����������
��	������+	��� �����!���������
�+	�����������$������+	������	�	�������+	������������
������ �������� ��� �+	� ������� ���)� ,�� �� �	������ �+	�
�����	����������	������� �������������+	� ����������	����
��	� ��� �+	� ����������� ����$���� ���� �+	� �� ���� ��� �+	�
�+���	�����	������+	��	%���	�� ������)�

-���+��� ��������������	&���.	%���	�	���������		�����
/.�0� ���	��	�� +��	� ���� �����1� /�0� ��� �	���	� ����
�����	��	%���	�	�������+����+	� ����������	�����/��0����
���������	� �	%���	�	���� ���� �+	� �����	� �������)� *��
��+�	�	� �+	� ����	�� ������ 	&������� � ����+	�� �	�$� ��� ��
�������$� ���	�� 2�	��������3� ���	��� /�����	� �0� �+���
��������� ��� �	���	����� ����� �+	� ������� ���	�

�	%���	�	���� ���	� ����	������ � 	���$���� �+	� �����	�
 ����������
����)�

�
�������	
��������
������������������������������������
������������������������������������
������������������������������������
�����������������������������

�����������������������������
�
*+�����$�������#����+��	��	�	�����	������������������

����	������ ��� ���������� �+	� ���#� ��� �	 �	�	�������� ���
���#	+���	��3��	%���	�	����������+	�.�� ���	������	��)��

-��		��� �	�	������ �	%���	�	���� ������ �	"�	���	��
 ������� ���	� �	%���	�	���� ���	��� �����	��	��
���#	+���	��� ���� �#	��� �+	��� �+���	�)��& 	��	��	����+�
�+���� ����+������+	�������������+������*���	�	������
��� �.�� �� �	�	�������� �+���� �+��� ���#	+���	���
��������$�	���
���+����#��
	��		���+	��� ��
�	�������+	�
 �	"�	���	�� ����������� ��� �� �	����	�� ���+� ���������
����	�� ���� ��������$� ����	�� �
���� �� �������
�	%���	�	���� �+��� ��	� ���� �	�	��� ��� �+	� ���
�	%���	�	�������	��'
(�'4()�,�����	�������+	�������������
���	��	�	�	�����+����� �	�	����+	�������������+	���+���
����+	�	& �	�����������������		��)�5+��	��+���� ����+�
�� ������	��	������	�	���	�� ���������+���������$����#����
���������	�	���� ��� 	�	�� ����	� ��	����	��)� ���+�
�� ��������	%���	�	������������	����������������	��������
��	�������������	��)�

6	���	����+��	��+	�.�� ���	����+���������	����	����	�
�+��#���� ���+��� �+	� �$��	�� �	%���	�	����� �	�	������
������ �	�	���	�� �	%���	�	���� �	�������� ������	��
�$�
��	������$� ���� �	���+� ���� ���������	���$�� ����	������+�

����������
																																																												�
����������	
������
���
���

���
��
																																																												�
������������	
������
���������
������

����������
																															�
�
���

���
��
																															�
���������������
�������

��������
�
																										�
�
���

���
��
																										�
������
�����

����������
																															�
�
���

���
��
																															�
������������
����
���
����������

��

Proceedings VaMoS'08

17

 ��
�	���� ���� +	��	� �	���	�� �+	� ���	�� ����	� ��� �+	�
�	�� �����������
	��	�	�� 	�)�

7��	��	��� ����$���� ��	������ ���	�� ��� �+	��� ���� ���
	������ �+	� �	%���	�	���� �����	�� �������)�,���+���� ���
 �	������ �
���������� '8(� '9(�� 	&������� � ����+	�� ����
������ �����	� �����	� �������	� /���������� ���	���� ���	���
�� ���� ����$���0� ��� ������� �+	�� ��� 	��������� �������	���
 ������� �	%���	�	���)� *+	$� ��	� �	��+	�� ����	�� ���
��������	���	%���	�	��������+	�����	%���	�	�������	��
����� �������	���� �	&�	��������������+	� ����������)�

��� �+	� ��+	�� +����� ��� � ����+� ��� �+��+�
���#	+���	��� ������ ���	� � � ���+� ��� �	�	�$� �	��
�	%���	�	����� � 	���$���� �+	�	� ���	 	��	���$� ����� �+	�
��� �	%���	�	���� ���	�� ������
	� ���������� ��� +����	�
���� ����
	���	� �	�$� ��	�����	��)� -��		��� �	���	�����
����	� ���	��	��
	��		�� ���#	+���	��3� �	%���	�	����
���� ��� �	%���	�	���� ����
	� ���	� ��#����� 	����� ���	��
������ ��	��������	���������������	�����+�������������	���
�	�	��� ��� �
����������� ���������	��$� ��� �+	���$� ��������
�	%���	�	���� ��	� 	& �	��	��� ���� �+	� �		�� ���� ����	�
������� ��� �	������ ��� �	���	� �+	�+	�� ���#	+���	��3�
�	%���	�	���� ��	� �������	�)�5	� �������$�
	��	�	� �+��� ��
�$��	�������������	�����		�	��������������	��+����������$�
����� ����� �� �������$� ��� �+	�#� �+	� �������	��$� ���
 ������� �	%���	�	���� ���+� ��� ���� ���#	+���	��3�
�	%���	�	�������	��)�

�
*�� �	��� ���+� �	%���	�	���� �������������� ���������

����	�	�����	�������������� �� �����������+����	���������
����+���� ����	� ��
���������� �+	� �������� ���������������
����	�':()�*+	�	
$���+	��	���������� �����������������	��
�� ��	 ���	��	��������� �����	������ ����� �+	����	������	��
���	�	��
$��+	� ����������	����	��� �	�	������� ����
�	�
�����������
��� �� ����+����
	��		�� �+	� �	%���	�	����
�	�������� ��������� ���� �+	� �	%���	�	���� �+��� �+	�
 ������� ���	� ��� �	����	�� ��� �		�� /�����	�
0)� *+	�
�
����	�� ��������������
�����	� �+	�� �+	� �	��������� ���
�+	����������
	��		�1�

/�0� -������� �	%���	�	���� /,�"���+	�0� �+��� ����
	�
�������	��������������������	��
$��+	����/7��+�"
	0;�

/��0�-��������	%���	�	�����+��������+	��������$����������

	� �������	��
$� �+	� ��� ��� ��� ��� �	���	�)� <	�	��+	�	����
�+	$� �+�����
	� ������	�� ��� �+	� ������ �������
��������������/*�"
	0;�

/���0�����������	����+����+�����
	��� �	�	��	������+	�
������ �������������� 	�	�� �+���+� �+	$� +��	� ����
		��
	& �	��	�����������$�����	%���	�	���)�

��
,�� �+���� ��� �+	� �����	�
�� �+	� ����+����
	��		��

���#	+���	��3��������� �	%���	�	������������	%���	�	����
������� 	��������� �������� ����	������� ��� �	%���	�	����
�	������� ��� ����	�	��� �������� �+��� ��	� ��#	�$� ���
	�

������	�	�)�,�
��������� ��� �+	�� �		�	�� ��� 	�	��� ��	� ���
�+	�	�����	������)�

�

� �
��������
��������
������������
������������
������������
���

�������������
�������������
�������������
��������������
�
��	� �� ������� �+���	��	� ��� ���	���#	� �������

� 	����������� ��� �+��� ����	&�� ��� �
������$� ��� 	�����	���$�
+����	�
��+� �+	� ������������ ���	��$���� �+	� ��� ���	��
���� �+	������������� 	& �	��	��
$���	��� ���� �+	� �������
���	�� �	�	�� �	��)� 5	�
	��	�	� �+��� �� 2����3�
�	%���	�	������������������� ����+��+�����	��
�	1�

�� ������	�����
��+� ��� �� �
�����	�� ����
���#	+���	��3��	%���	�	�����
�� ��
������������ ����
�	��	%���	�	�����	���������

���	������	�����	��
$�����$!�����	���������� ������
�� �	��������������������$���������
����$����������

�	������+���� �	&��$�����
	������
�	�����
	��� ���	��

$��,����������=�
�� ���	��������	����$��	���	%���	�	���)�

�
*+��� � 	�� �	�	���� ���� ������ ��	��� �������� ��

�$��	������ � ����+� ���� ������� �	%���	�	����
� 	����������� ��� �� ��� ����	&�)� -�� ��	�� ��� �+	�
������	�����������+	��	%���	�	������������������ ���	���
��� �� �	��������� ��� ���	�
�$� ������������ ���+	�� �+��� ��
�	�������������+	��������
����$� �����)�

*+	� �	�������� ��� �+	� � 	�� ��� ��������	�� ���
������	�)��	������
� �	�	��������� ����+�����	������+�
�+	� ����+���� ����)� �	������ 4� ������	�� �+	� �������	�
��	��������������+	�� ����+)��	������8�����	�����	�����
�+	� �	���	�����#�)�,��� ������$�� ������������ ���� �����	�
���#����	��	 ���	������	������9)�

�
��	��
�
���

�	�����	��
������
��
	
�

.	�	����������+	�������������������	���#���������	��
��� �+	� �	������ �	������� ����+���� �	�+��%�	�� ��	�
�	%���	�� ��� ���	�� ��� �������� ��� ���� ���#	+���	��3�
�	%���	�	���)�*+	$��+�����������	������� 	��������	�����
�+	���������	&�1�

/�0� *+	� ���	����$� ��� �����
����$� ���������� '9(� '>(�

��	������	����	�����	����	����� 	�����	��)�

/��0�*+	������"���	�� ��� 	�������	��� ���� �+	������"
 ����"��"��	�� ��� ��� ��	� ��� �+	� ����� �����$� ��� �+	�
���#	+���	��)� �	�	���� ���#	+���	��� /������	����

���
���	
�����
��

�
������������
���	
�����
��

��
��

���
����	�
��

���	
�����
��

�
��������	�
�
���	
�����
��

������

����
����

����������

���������
�� ������!��

�������

Proceedings VaMoS'08

18

�	����������� +������	�� ������!������� 	&	�����	���
�	�	�� 	����������
������� 	��)0�������	& �	�������	�	���$�
�+	��� �	%���	�	����� ������� ������������� �	����������� =�
����������	�	������������)�

�
*�� �	��� ���+� ����+����� ����	�	��� � ����+	�� +��	�

������������$�
		�� 	� ��$	�� ��� �	%���	�	����
	����		����;� ������ �+	�����������$� �	�+��%�	����	� �+	�
����������	������� ��	��'?(�'@(�'�A(�'��()�

-�� �� ��� �������������� ����	&��� ����
	$���� �+	�
 � �����
	��	���+����+	�	��	�+��%�	����	����	���#��������
	����� ���	�� �+	$� ���	� ���
	� ����	%���	� ���� ���$�
�	�����)�

-��		��� �	���	����� �$�������� ��� �	�������
����	� ���	��	���� ��	��������	�������	 ������������+�
���	�� �+��� �+	� �������� �	%���	�	���� ��	� ���� 	& �	��	��

$� �+	� ���	��������	��������$�	�	��
	���������	�����
�	�	���� �
���������� �	�	��)� �	 	��	��$� �	�������+� ��

	��		������	%���	�	������������+	����� �	&��$�����+	�
����+���� ���	��)�7��	��	��� ���������	��$� ��� �+	���$�
�������� �	%���	�	���� ��	� 	& �	��	�� ���� �����
	�
�
�	��	����� �+��� �+	�	� ������		�������� ����	�����������
�	����������	���	��+	�+	�����#	+���	��B��	%���	�	������	�
�������	�)� 6	���	��� ��� ��� ���	� ���������$� ����$����
���������	�� �	�� �	%���	�	���� ���	�������)� C���+	����	��
�+	� �	���	�	�� ��� �	%���	�	���� �+��� ��	� 2�������3� ���
���#	+���	��3� �	%���	�	���� ��� ���� �	�	������$�
���������	� �+	����+���������������	�/�0���
��������� ���������
�		�	���������� �
�����	��������	����	������	�����������$�
���	� �	%���	�	����� ���� /��0� ���	� ���#	+���	��3�
�	%���	�	�����+�����	������������������+	���	%���	�	����
����	�����������	� �	%���	�	�������
������������������

	�2�������3����+�����	%���	�	���������+	�����������
	�
������	�	�� ��� � 	���$���� �� �����������$� �������
��������������'�
()�

�
-�� ��	���$� � 	���� �+��� ��� ���	��	����	� ��
����	���

�������	� ��� �	%���	�� ��� �	��� ���+� ���� �	%���	�	�����
�+��	�	������+	���	���������	����������%�	����
�����	�)�
-���+	���+	��+������	��������$�
	��	�	��+������$��	������
� ����+� ��� �		�	�� ����
��+�����+���� ���� ��
���������
��� �+	� �	%���	�	���� ��� �+	� ���	� ���)� -�� ������
	�
 ����
�	�
$�����$!�����������$�������������
�����	��
���
����� �����
�����	�� ��� �����	���� �	%���	�	���� �+��� ��	�
	& �	��	���
�����+	���������
����$��������$�������������	�
 �������)�

*+	�� ����+��+�����
	��������������	��������������	�
�+��� �������$� ���� ����� �� �������$� ��� �+	�#�
������������$� �+	� �������	��$� ��� �������� ��� ����
���#	+���	��3��	%���	�	����� �+	���	����+��	� 	�������+	�
��+	�)�-��������
	��������	��������+	�� ����+�����������
��� ��	&�
�	� 	����+� ��� ������ ��� ��	��� %�	�$���� ���
�	%���	�	����
	���	���� ���+	����������� �����	����#����

��� ��� ���	������	� �������	� ������� ��������������
 ���	��)� ���� ���	���������� ������ ������� 	& 	����
�+�����+������ ������	��+	����	��������$���� �	�	��
�	������
�	��$"���	� ������������ ��������������� ��	������	������
�	����������	����	����+����������	������+	����� ����)�
,�� �� ������� ����� ��� ��#� � � �+	�� ��� �+����	� ��	�����
���$����	�	��	���������������� �	�	�$���	��������)�5	�
��	������$����	�	��	���������	���������������������	������
���+��� ��������������������������������	�	�������������)�

�
,�� �+��� ��������� �� ����� ��� �� ������� �������	� �+���

�
�������� �+	� �����
����$� 	& �	������ ���� ����	�� �+	�
�������������� ���	���
$��	��������������������������	�)�
-�� � 	���� �+��� ������������ ��	� �+	� ����� ��	%���	�
 �������� ��� �������� ���� ��	�����	�� �	%���	�	���)�
�������������		�����
	������������	��������	����	& �	���
�	�	���� ���#	+���	��3� �	%���	�	���� ��� �	��� ��� ���
�� �
�����	�)� -�� ����
	� ����� ���	���$� �� 	�� ����� ��
 ��	����� ����������� �������	� ���� �����������
����������������
�	���/���0������������	��+	������������
������������ /��0� '�4(� '�8(� '�9(� '�:(� '�>()� �6	���	���
����������� �������� ��� ��	&�
�	� 	����+� ���
	� �
�	� ���
�	��� ���+� �	�� �		��� ���+� ��� �+	� ������������� ��� �	��
�$ 	�� ��� �	%���	�	���� �	 	��	���	��� �	�� #����� ���
������������ ��� ���+	�� ��$� ��� 	& �	��� ���#	+���	��B�
�	%���	�	���� /)�)� D�	������ �������� 4� ������	��	�� ���
�	����	�E������������ ������F0)�

�
-�� �� �	������ ���#� '�4(�� �	� �	��������	�� +��� ���

��	� ������������ ���� /�0� �+	� �	��������� ��� �������	��$�
�	����������� ���	�� ���� /��0� �+	� � 	����������� ���
�������������� �	%�	���� �+��� ��$� +	� � ��	��� ��#	�
�	�������)� ���� ���	������ ������ ���� ��� �	���	� ��
�������	�
��	�� ��� �+	� ����������� ����	 ��� ���	��
����������� �������	� /��0�� �+��� �������!	�� �+	�	�
� 	�����������)��

�
�

�
�

�
�
�
�
�
�
�
�
�

�

��������
��
�������
��
�������
��
�������
��
�������
��
������������������������������������

�

���
������������
�������	
�
�

�	����	�	���

�������	�
�

����	����	���

�	����	�	���

�������	

��������������

 ���	
�

!����
"������

�	����	�	���

�����
����

�

�����

���

�

 !��	

"���

���������
��� ���!����

�!�����!��

��

����

��

������
��"#�
����#����

����������!��

"������!��

�� �
�� �
�� �
�� �
�� �
�� �
�� �
		 	

 �
� � �
� �

		 	

�� �
�� �
�� �

�� � �
� �
�� �
		 	

�� �
�� �
�� �
�� �
�� �
�� �
�� �
		 	

�� �
�� �
�� �
�� �
�� � �
� �
�� �
�� �
�� �
�� �
�� � �
� �
�� �
		 	

Proceedings VaMoS'08

19

,���+��������+	������	�4���+	��������	��+�����������
���	& �	�������	%���	�	�������� �����������	� �������)�
���#	+���	��3� �	%���	�	����� ������������ ����
 �	�	�	��	�� �+�����
	� ��#	�� ����� �������� ���+��� ���
���	������	��	������� ���	������	���+	����������	%�	���)�
G�	��� �+����� �	�	��	� �� ��������� �+������ 	& ������$�
���	��+���	���� �����
	���	���#	�������	�������)�

�
,� ������ ��	 � ��� �+��� �������� �	�	���+� ��� �+	�� ���

� 	���$� �� ��
�	�� ��� �+	� �������	� �������� �+��� �����
������ ��� 	& �	��� �����
����$� ���� ��� �	%���	�	����� ���
�	��� ��� �+	� ��������������� ���	���� ����� �+	� �	�	����
�����
����$� ��������� ��� �+	� ����������� �������)� ,�
�	����� ��	 ������
	� ������ �	�	������������ ������	��
����	����
	� �+	� ����
�	� ������������������������������
�	���	� ��������������� ���	�� ����� ��� ,�"���+	�� H� ��
7��+�"
	�����	������*�"
	� ������/�0)�

*+	� �	&�� �	������ �	�	�� �� �+	� ������ ��)� C��� �+	�
�	�������	 �����	��������	�	�	�	������	�	��
����	��
���
�����	���	��	����+����
	� �	�	��	������+�������)�

�
��	��
�
���

	��
�����	
�
�	��+��	��+����	��������$1�
������.1��	%���	�	���

��1��	%���	�	��3�������
��	�
��1����������������
��	�
�
*+	� �������	� �������� ��� ��� ��	�� ��� ���� �����

��������	�1�
�

�)� -���������
�
,� �	�������+� � 2�����	3�
	��		�� �� �	%���	�	��� .��

/+���������	����������
��	�����0��������	������	%���	�	����
.��/+������	��+����	����������
��	�����0�� 	����	���+����+	�
�	�	������ ��� ���	� �	%���	�	���� .��� ������$���� ���	�
��������� �� ���������� ��	� ������	� �����
��	�� ��� .�� ����
��	�������	������
��	�����.����� ��	���+	��	�	���������.��
/���+�� 	�����������
��	/�0�����	/�00)��

	�����178�
���*
9:��8�����*�9��(�;�*
�;�*����1������	22�
�
C���	&�� �	�� �	�� ������	���� ��
���$��$��	�;���	�����

� 	���$��+����+	���+	��	%���	�	���2�����
��#�3�+������
��� �����
��	� 2��&� ���
	��
��#�3�� ���� �+	� �	%���	�	���
2����� ��������3� +������ ��� �����
��	� 2��&� ���
	��
��������3�� ��	�
��+� �	�	��	��� ��� �+��� �+	� ��������� 2��&�
���
	��
��#��I����&����
	�����������J�83������	����	���
�+	�� �+	� �	%���	�	��� 2<����$� ���� �	���������3� ��� �����
�	�	��	������������+��	��+	�����	�2/��&����
	��
��#��
I� � ��&� ���
	�� ��������0K
3� ���� ���� �����
��	� 2�����	�
�	�����	3)�

5+	�� �+	� 2�����	3� �	�������+� � ����	���� ����
�	%���	�	���� ���	 	��	���$� ����� �+	��� �	� 	����	�
�����
��	�� /�))� �� �������$�� ���	0�� �+	�� ���� �$���&�����
	�
�+���	�	��������������1�

���99��"�
�
�

)� .	�����������
�
*+	� �	�������+� � 2�	������3� ������� ��� 	& �	���

�	����������� ��� �	%���	�	���� �����
��	�)� *+	�	�
�	����������� ��	��	���	��
$������+	�������� ������������
�+	�	� �����
��	�� �+��� ���� �������� ����	��������� ������
� 	��������	��)�

���

���178�
���*
9:��(�178�*
9:2�
�
*+	�����������$�������	%���	�	�����	�� ����� ����������

���	� ��� �+��� �	�������+� � �+	�	� �	����������� ��	� ��� ���
�+	� ��&����� ���
	�� ���� �+	� �������� ���
	�� ���
�	%���	�	���� �+��� ����
	� �	�	��	�� ������ �+	� �	�)� *+	�
2�	������3� �	�������+� � ���� �+	��
	� �+���	�	�� ���
���������1��

7�
:�5�<���
�$
	=-<���
�$�,=�
�
-�� �������� ���� ��&����� �����������	�� ��	� 	%���� ���

�+	� �	%���	�	���� ���
	�� ��� �+	� �	��� ��� �+	�	�
�	%���	�	���� ��	� ��������$)� *+	� �	�������+� � ��� �+	��
�+���	�	�����	���+�������1�

7�:�5�	-	��>����
�
-�� �+	�������������������$�������	%���	�	������	%����

���!	�������������&���������������$����	%���������	���+	��
�+��� �	%���	�	��� ��� � ������)� *+	� �	�������+� � ���
�+���	�	��������������1�

7�:�5��-��>��<�=�
�
5+	����������������&����������������	��������	�����

���� �	%���	�	���� ��	� 	%���� ��� !	��� ���� ��	�
�	� 	����	�$���+	���+����	�������+� �	& �	������	&��������

	��		�� �+	�	� ���� �	%���	�	���)� *+	� �	�������+� � ���
�+	���+���	�	��������������1�

7�����":�5��-���>�����98��"�
�
*+��� �	������ 	& ������ +��������
����$� ���������� ����

	� 	& �	��	�� �+����+� �+	� ���� ��������	�� ��� ����
����������� �������)� *+	� ��
�	�
	����� �	�	����
��������������� ���	���� ���� C	����	�
��	�� �����
����$�
���������)��

Proceedings VaMoS'08

20

�� ���	
���������
������!����������������������������
������!����������������������������
������!����������������������������
������!��������������������
������������������������������������

�

��������	
����
	� �
�
���	��
�����
	�

1!��
���&��
���2�

CA�

1��$.��
�
�	2�
C��JJ�C
�
C
�JJ�C��

1�.�
�	2�

'C
(�
C
�JJ�C��

1����
	��
��2�

LC
��C4��C8M�1�
�������"������&�

C
�JJ�C��
C4�JJ�C��
C8�JJ�C��

1
�/�

��2�

C��JJ�C
�

1$���,2�

C��JN�C
�

�
�

1?�%-�
6����	��
�
	���2�
�

����������������������
��	�������������	��
��
���
����������������	��
��
��

�������������
�����������
����������������
���������
����������������
���������
�����
��������������������

�����	�/C����C�
��
C

�� �NO9K
0�

������������������������������ �����������������������������
���&�� �	� 	&�����	�� �����C�.����������)� '�)����	���	����� 2C����$"
���	��	�� .	%���	�	���� �����		����3�� �+�� *+	����� *	�+������
G���	����$�-��	�����
AA8)(�

*+	� ���+��	��� ��� �+	� ��������������� ���	���� ���
�	����	��
$� �+	��� �	������� 	%�����	��)� -��		���
 �������� �+��� ����
	� ��������	�� ����� �� �	����	����	��
��	���� ���
�	�����+��	��+�������
	���������	�����������
	%�����	���	& �	��	���������������������������)��

C���+	�� ���#�� ����� 	& ��	� ��������������� ���	����
������+	�������
����$�� ����+	��������	�)�

�
 �	��!�
��	���"�	
�

����	�	��� �	�+���� ���	�	��	�� ��� ������������� ����
���	��� ��	� ������
�	� ��� �+	� ���	�����)� ��������
���������������	�+�������	����	�����+	��������$����+	��
�����	� ���� ������ �	���	�� ��� �	�+������ �	�	��)�.	��������
.����������������	&�����$������	����#�������	�'�?(�'�@(�
'
A()� 7����$�� �������������� �	�+���� ��	� �	������	�� ���
�+	� �	�	������ ��� �� ��� �	%���	�	���� ��
�	�)� P��	�	���
�������$� 	& 	��	��	� ����	���� �+��� ��� �$� +������ �+	�
���+�� ���	��� ��� ���� �������	��� ��� ���������	� ���� �	�	������
�������	�
�$)������ ����+�����������	��
$�����������
�+�����#	� ���� ����������$1� /�0� �� ������� � 	����������� ���
������������+���	����	�������	������	�����	�	��
$��+	����
�� �
�����	���
��� ����� �� �	� ���	� ��� �+	� �	�	����
���#	+���	��3� �	%���	�	�������������������� /������	����
	&	�����	��� �	���� 	�������	���� ���#	�����=0�� /��0� �+	�
�	%���	�	�������������������������	���������� �	&�����
��	 ���	��	���������#�����������$)�

C����+	�����	���������+	�	���	����	��$����	� �� ������
��� ����������� ����$���� ��� �	����	� ���	��� ��� ���	�� ���
�� �����	���	����������������������������	��)��

*+	� ��	��	��� ���
	�� ��� ���#�� ���
��	�� ���
 �� ���������� ������ �+	�	� �����"���	�� ������ ��� �����$�
��	������+	�#��������$�����	����	����	���'
�(�'

(�'
4(�
'
8(� '
9()� *+��� �	�+��%�	� ��	�� ���� �	���$� ���� ��� ����
����	&�)� -�� ��� �	��� � �� ����	� ��� ��� ��	� ��� �	�	�
�����������
��� �	� ��	� ����� ���	�	��	�� ��� ����	�	������$�
�	������ ���+� �� ������� ��������� ���� ��� �������� �	�	����
���������)�6	���	����	���������	�+��%�	��+��������	&�
�	�
	����+� ���
	� �
�	� ����	������+��	���		������+���� �+	�
�����������������	���$ 	������	%���	�	����	 	��	���	���
�	��#�������������������=)� -�� � 	���� �+��� �+	��������
�+	� ����� ��	%���	� �������� ��� �������� ���� �+	�	�
�	%���	�	���)�

6	�����	�� '�8(� '
:(� '
>(� ���#�� �	���	�$� ���
����������� �����������)� -�� +��� ����$�� +	� �� ��	�� ��
�� ���� ����� �	����	� ���	��� ��� �� ��� ���������� ����
��������	�� ���	� � 	�������� ��� ������	��� ��� ���	�� ���
	&��������������������#	������+	� ����
�	� ������������+	�
���� �+	��� ���
	��� �+	� � ������ �������� 	��)� ��	�
� 	������� ��� �	���	�$� �� �������
	����	� ��� ���� �������
��� 	����		��� ��#	� �	��������� ���� �+��� ���		�� �������	��
�+	� ��	� ������ �	�+��%�)� -�� ��� �+	� ����	�� � 	������� �+���
��������� ��� � �$���� �� ����������� ��� �+	� �����
��	��

#��	
�!�$�
�%�

�&�

#����	
����$�
�%�

�&�

�&�

�%�

�'�

� � �

��

�&�

�%�

�%��&�

�&%��&&� �%&� �%%�

��

(�&)� (�%)�

*�����
�++��!�
�,��%� �-�

�&�

Proceedings VaMoS'08

21

����	�����+����+	�������	�������+�������	���������	���	��
 �������)�

5+��	� �+	� ������ ��� 6	�����	�� ��� ��� ������������
�	����	� ���	��� ����� �� ���� ��������� ��� ������ 	&������
������������$� ������������ ����� ��� ���	���� �	� ��	�
���	�	��	�� ��� ������������ �	%���	�	���� ��������������
 ���	��	�� �+��� ��������	� �������	����		�������� ������	�
��	��� �+���	�� �+��	� ���#���� �	�������;� �+��+� ��� ����
�$ �����$�������
�	�����	�	�����	���������� ����+	�)�

C���+	����	�� ����� �+��� 	�� 	����	�� �	� ��	� ����
���	�	��	�� ���$� ��� �	����	� ���	����
��� ��� ���� ��+	��
�����
����$����������)�������������	�������+	����	�����
�������	� ��� �������1� /�0� ���
	� �
������� 	����+� ���
	�
��
����	���� /��0� ���
	� ����
��#$�
��� ���+� �� +��+�
	& �	�������� �
����$)�

5	���	� ���	�	��	�� ����� ��� �������������	��������	��
�	�������� ��� ��#	� ��� ������� �������������� ����
�� ���	� �+	���	��������	�	�����'
:()��&�� �	�������+�
�	%�	���� ��1� �+	��	&���+���	�� �����#	����+��	� 	��������
������ �	%���	�	���� �	�	������ Q� 	&�������� ��� ���	�
���	���	���	%���	�	�����	��)�'�4()�
�
#�	��
�!����
	
�

*+	��	%���	�	������������������ �������������	&�����
������������	�	���+���	������+	�.����	��)�-����������$	��
+��	� �������	��� ���	�	��� ���� ��� ��� �	������	�� ��� �+	�
�	�	������������	%���	�	������
�	��������+	�������	��)�

*+��� � 	�� �	��� ���� �� ����+���� ����	���#� ��� �	���
���+��+�������)�*+	���	��
	+�����+	� �� ��	��� ����+�
��� �+��1� /�0� ���� ���#	+���	��� �+�����
	� ������	�� ���
� 	���$���� ������� �	%���	�	����� ���� /��0� �+	�
�������������� ���	��� �+����� ��� ��	� ��� �������
 ���	��	�� ���� ���������� �	���� ���
	� �
�	� ��� �������
	�����	����	���������
���� ��������	%���	�	�������
����)�

C��� �+��� �� ��	�� ��� ���	������	��	������� ���	��� ���
������	�)� -�� ��� �������	��
$� �� �����������
��	��
�������	� /��0� �+��� ������ 	& �	������ ���#	+���	��3�
�	%���	�	����� ��� �	��� ��� �	�������� ��� �+	�� ��� 	��
�	�
	�����	��� �	�������)� 5	� �	��������	� �+��� �����������
 ������������+	��������	%���	�������������+��)�

���� ���#� ��� ������ ��� ����	��)� -��� 	&�	������ �����
������	� �+	� �	�	�� �	��� ��� �+	� ����������� �������	��
������������������� ���	������������������������������	�)�
,� ����+	�� ����� ����� ������ ��� �+	� ����������� ��� ����
� ����+� �����������������	�������	��)�5	����	��������
��� �� �	�	��� �+	� ����� �� ������� ��� ���� �+��� ����
	�
���	����	�����+�	&���������������	�	���������'8(�'�4()�

�
�
�
�

$�	������
���	
�
'�(�+�� 1QQ���)�	�)���)	��Q ���������	�Q�
'
(� -)� R��#���� �)� �����	���� D7���+���� �.�� C������������	��
���+� �+	� ��������� .	%���	�	���� ��� C�	��+� ������$�� "� ,�
���������$� , ����+F�� @�&� �	��
	��
�	��� ��	(�
�	��� �	�
0	��
.

��� �	(�
$��
�	� �4���$��� ��0��A� "��B�� �������
����������
AA8)�
'4(� �)� .�������� <)� ���#��+�� D7���+���� �.�� �$��	��
C�����������$� ��� ������	�� .	%���	�	���F�� �
�����
	#�� �(��
�&�� ��&� �	��
	��
�	��� �4$.��
�$� �	� ��/�

�$�	���
0	#
	��

	#���0A����*����������������
AA���)�::">9)�
'8(��)���	

����)������	�������S)�C���$��D-������$�����	$����
�������� ���	�� 7����	�	��� *����1� .	%���	�	����� T������	��
���� � 	�� -���	�F�� �	��
	��
�	��� ��/�

�$�	��� 0	#
	��

	#�
��	(�
�	�����0A����-������
AA>)�
'9(� �)� ��	

��� ���� �)� �����	���� D����	���� ���� ��� ������
.	%���	�	���� U����
����$� 7��	����� <��������� ���� ��������
���	�V�� ��$.�
��
��� 0������
�	�
	� ��/�

�$�	���
0	#
	��

	#��
	� �0C�@� 1�0�02�� 7���	� ������ G�,��
�	 �	�
	��
AA:�� �
A�"�49)�
':(� �)� �����	���� �)� .�������� DC������� 6����	��� 7��	��� ���
�$��	��� C�����������$� �& ������� �+	� C���	��� .	�������+� F��
.
�����
	#���(��D
�0A� ��U	��	���,���������:"
A�W��	�
AA4)�
'>(� �)X)� ��+�

	���� �� �)� P	$������ �� W)�)� *�����&� � ���� X)�
6���	� ��� DS	�	���� �	�������� ��� �	����	� ��������F��
��$.���
�	��3�
6���C	
����$�
AA>)�
'?(��)����������U)��	�,����	������6)�R������D�������$��������
.	����������	 ����� ��� ��	���F���
�����
	#�� �(� �&�� ���&�
�	��
	��
�	�����	(�
�	����	���	��.�����E�����
	#�10�A�"2��
Y������+	���@@
��)��
�"�4?)�
'@(� �)�)� W������� .)�7�����,)�7����� D, ��&����	���� ��	���
.	���	���1� ,�� ,���	���� �&	����	� ��� �� ���������� ����	��ZF��
�
�����
	#�� �(� �&�� F�&� G�
6�&�.� �	� �	��
���
�	��
�
	#�
��(�3�
��������1G���F2�������
�����+����7���+��@@>)�
'�A(� W)� <���� ��+� ����� 6)� .	��	���� �)� �����+���	�� 7)�
,��	������� W)�Y��������� D�����������,������	���� ���� ����
.	%���	�	���� ���������$� ,���$���� ��� 7��#	�"����	��
�	�	�� �	��F���
�����
	#���(��0!�HA������&��	��
	��
�	���
G�
6�&�.� �	� ��/�

�$�	��� 0	#
	��

	#� 5� !��	���
�	�� �(�
��(�3�
��H���
�4��-��	���#	�������!	�������W��	�
AA�)�
'��(� -)� R��#���� D7-6�� 1�7[�+��	� �B-��[��	��	� �	�� 6	������
 ���� �B�� �����������B�.�F���&��
���(��	
��
�
�����

�� ����?�
, ����
AA9)�
'�
(� �)� ��	

��� ���� �)� �����	���� D.��"���� �� 7	�+��� ����
�	������� �������� .	%���	�	���� ����� �� �������� ���	�
.	%���	�	���� 7��	�F�� �	��
	��
�	��� ��	(�
�	��� �	�
D���	����
	(�
$��
�	� �4���$�� 0	#
	��

	#� 1�D��0A��2��
� ����	��U	������*����+	����<����$��W��	�
AA>)�
'�4(��)���	

����)������	���������)����!��D�	���������������
���	�.	%���	�	���1��+	�.��"���S������	�, ����+F��D�
�	�
���
(
�� ��(�3�
�� 0	#
	��

	#� ��	(�
�	��� 1D��0�2�� -����
��� ��	������	�$��<���$���W� �����	�	�
	��
AA>)�
'�8(� �)� 6	�����	��� �)� �	������ �)� *�������� ���� ,)� .��!"
����[���DG�����W������������	�������+	�,������	��,���$�	��
��� C	����	� 7��	��F�� ����-.
�����
	#�� ��$$�
� ��&���� �	�
'�	�
��
��� �	�� �
�	�(�
$��
�	��� ���&	
/����
	� ��(�3�
��
0	#
	��

	#�1'���0C��2��6��������������)�
AA9)�

Proceedings VaMoS'08

22

'�9(� �)� ������	�� ���� �)� ���!�� D��� �	� ���� ������	���
�������	��$� *	�+��%�	�� ���� 6���	��� ����	��� ��� �����������
�����������������F��I��
	����(�D���$����������	
	#��U��)�
�>��<�)�����@@:)�
'�:(� W)� W������ ���� 7)� W)� 7�+	��� D����������� ������
 ����������1� ,� ����	$F�� I��
	��� �(� %�#
�� �
�#
�$$
	#��
U��)��@Q
A���@@8)�
'�>(��)����!� �����)�������	���D�	���������-� �	�	��������
��� �+	� S<G� ������� �$��	�F)� I��
	��� �(� !�	��
�	��� �	��
%�#
���
�#
�$$
	#�1I!%�2��U��)�
AA���<�)�:������
	��
AA�)�
'�?(� *)� ���� �	�� 7���	�� ���� P)� ���+�	��� D.	%�����	1� ,�
�	%���	�	����	����		���������������������	� ����������	�F���	�
�
�����
	#���(��&��!
(�&��	��
	��
�	���G�
6�&�.��	��
������
!�$
�4�0	#
	��

	#�1�!0-�2���<���4A�8����	����-���$��
AA4)�
� ����	��U	����)�
'�@(�\)�P���	���6)�7]��	�"�	�	��	���W)����	��#��,)����
	����
D,�� 7�,^"
��	�� ����	���#� ���� ���	�"����	�� �������
�	��������F�� ��(�3�
�� 0	#
	��

	#� �	�� D..�
���
�	��� G�,��

AA8)�
'
A(�S)��+���	#��W)�)�7�S�	�����DS���	���	�������	�	�� ����
�� ������� ���	� ���������� ���F�� ��(�3�
�� 0	#
	��

	#�
�	��
������*	�+������.	 �����7GQ��-"
�A
"*."AA:��
AA
)�
'
�(�,)�7	�!�	����)�P	$������Y)���+����)"X)���+�

	����S)�
������� D�����
��������� �+	������	�����������U����
����$� ���
�������	� �������� ���	�1� ,� �	 �������� ��� ����	�����
C������!������ ���� ,������	�� ,���$���V�� ���&� �000�
�	��
	��
�	�����	(�
�	����	���/�

�$�	���0	#
	��

	#� 1�0�

��2�� �9� ����
	��
AA>�� <	�� �	�+��� -����)� -����� �	 �	�
	��

AA>��
84"
94)�
'

(�7)�7��������DG�����C����"���	�����������������������	�
7��	�� U���������F�� �
�����
	#�� �(� �&�� ����	�� ��(�3�
��
�
������ %
	�� ��	(�
�	��� 1��%�"2�� �<���
4>@�� � ����	���
������	�����,��
AA
��)��>:_�?>)�
'
4(�5)�R+�����P)�R+�������P)�7	���D,� �� ���������������"

��	�� �	�+��� ���� �	����������� ��� �	����	� ���	��F�� ��!0E�
"��B�������	�44A?��� ����	�_U	������
AA8��)���9_�4A)�
'
8(� �)� 6����$�� DC	����	� ���	���� ���������� ����
 �� ���������� ��������F�� �	� ��(�3�
�� �
������ %
	���
��	(�
�	�����<���4>�8��
AA9��)�>_
A)�
'
9(� Y)� �!���	�#��� ,)� 5�����#��� DC	����	� ��������� ����
������1�*+	�	�����6��#�,����F�����&��	��
	��
�	�����(�3�
��
�
������%
	����	(�
�	���1��%����2���A��	 �	�
	��
AA>��)�

4�_�48)�
'
:(� �)� 6	�����	��� �)� *�������� ���� ,)� .��!"����[���
D,������	�� .	�������� ��� C	����	� 7��	��F�� �&�� ���&�
��	(�
�	��� �	� D���	���� �	(�
$��
�	� �4���$�� 0	#
	��

	#�
1�D
�0C��2�����������������)�
AA9)�
'
>(��)�6	�����	����)��	�������)�*������������,).��!"����[���
D,���������	 ���������������	���#������+	��������	������$����
��� �	����	� ���	��F�� E�	�#
	#� J�

��
�
�4� (�
� ��(�3�
��
�
������ %
	��5� G�
6
	#� G
�&� J�

��
�
�4� E��&�	
�$��
1��%�C�@2��6�������)�
AA:)�
�

�

Proceedings VaMoS'08

23

Proceedings VaMoS'08

24

Integrated Product Line Model for Semi-Automated Product Derivation Using
Non-Functional Properties

Norbert Siegmund, Martin Kuhlemann, Marko Rosenmüller, Christian Kaestner, and Gunter Saake
University of Magdeburg

39106 Magdeburg, Germany
{nsiegmun,mkuhlema,rosenmue,ckaestne,saake}@ovgu.de

Abstract

Software product lines (SPLs) allow to generate tailor-
made software products by selecting and composing
reusable code units. However, SPLs with hundreds of fea-
tures and millions of possible products require an appro-
priate support for semi-automated product derivation. We
envision this derivation to be extended by non-functional
properties that are associated to code units and domain fea-
tures. Code units and domain features are commonly orga-
nized in different models and connected via complex map-
pings, what make automation difficult. We propose a model
that integrates features and code units in order to allow
semi-automated product derivation using non-functional
properties.

1 Introduction

Software product lines (SPLs) aim at providing variabil-
ity for a family of similar software products tailored to indi-
vidual user needs [12]. Variation points of an SPL, i.e., the
functional differences between different product line mem-
bers [4], are analyzed and modeled during domain analysis
as features inside a feature model [20, 14]. Based on feature
models SPLs are implemented using reusable and modular
code units that are organized in an implementation model.
Product line members are derived by composing such code
units.

In small SPLs, it is usually simple to derive a product
by selecting the required features manually. However, as
the size of SPLs grows – large SPLs in industry may con-
tain over 1000 features [31, 25] – the derivation process
of selecting these features becomes more tedious and diffi-
cult, because many decisions are necessary, each requiring
knowledge of the SPL’s domain and maybe of implementa-
tion.

Product derivation becomes further complex in the pres-

ence of non-functional constraints, e.g., in domains like em-
bedded systems where resources are restricted. There are
many relevant non-functional constraints [19], for example,
a generated database management product should have a
maximum footprint size of 48 KB to fit on an embedded
device and must be capable of handling a throughput of
10 transactions per second (T/s) because input is provided
at this rate. To derive a product by configuring hundreds
of variation points, that additionally has to adhere to non-
functional constraints is difficult and often results in a trial-
and-error approach, which is tedious and error-prone.

We envision tool support that assists developers in se-
lecting features to support the product derivation process.
For example, tools can automatically hide variation points
that are irrelevant because of constraints and features se-
lected earlier inside configuration process. In the follow-
ing, we refer to this process as semi-automated deriva-
tion (SAD) [32, 5, 36]. We argue that SAD is particularly
promising in the presence of non-functional constraints. For
example, tool support could check which features cannot be
selected because they would violate a footprint constraint.

SAD tools require domain specific information about the
SPL, that come solely from the feature model in existing
approaches (i.e., features and constraints between features).
However, to define non-functional constraints we need addi-
tional information. While some non-functional properties,
like development time, can be directly attached to the fea-
ture model [5], others, like performance, binary code size,
and in-memory size, depend on the implementation and can
be associated with code units [36]. Therefore, we have to
consider both, feature model and implementation model, for
SAD.

Current approaches to SPL development typically use a
mapping between feature model and implementation model
which makes SAD with non-functional constraints difficult
because the intermediate result of selecting code units us-
ing non-functional properties in the implementation model
must be propagated back to the feature model used for con-
figuration. In this paper, we suggest an integrated software

Proceedings VaMoS'08

25

product line model (ISPLM), that combines both, feature
model and implementation model, to overcome problems in
the SAD process with two models. This model should pro-
vide the basis for creating an SAD tool that supports the user
in deriving products based on non-functional constraints. In
our long term vision, this model enables an adequate han-
dling of large and complex SPLs in resource constrained
environments.

2. Background

In this section, we give an overview of feature modeling
and current approaches for implementing and configuring
SPLs.

Feature Modeling. Feature-oriented domain analysis
(FODA) [20] is the process of identifying and collecting
information relevant for a stakeholder that describe the fea-
tures of a concrete domain. These features might be mod-
eled with additional information like attributes or annota-
tions [14] and are integrated into a feature model with fur-
ther domain constraints. Features can be mandatory or op-
tional and may have relations or constraints to other fea-
tures, e.g., two features can be alternative. The feature
model is typically visualized by a feature diagram that is
a hierarchical representation of all features of an SPL.

DBMS

Storage Manager

B-Tree Index

Transaction

Buffer Manager

Mandatory

Optional

Alternative

Or

Constraint require/exclude

Figure 1. Simple Feature Diagram.

Figure 1 depicts a sample feature diagram of an SPL for
a database management system (DBMS). The diagram con-
sists of the base concept DBMS as the root node which rep-
resents the core functionality of the DBMS and additional
nodes that represent features of the product line. The fea-
ture diagram shows that only feature Storage Manager is
mandatory for every product because of the required stor-
age functionality for every DBMS instance provided by this
feature. Feature B-Tree Index, which represents a special
data structure for accessing data in a DBMS, is optional,
i.e., a stakeholder has to decide, whether this special feature
should occur in a product. Further relations between fea-
tures are possible, e.g., excludes and implies, but not shown
in the Figure.

SPL Implementation. Code units implement the features
of an SPL [14]. A common practice is the realization of

code units using components [12]. A mapping assigns fea-
tures to code units that implement the according functional-
ity. In general, code units can implement multiple features
and crosscutting features may map to several code units [8].
All code units and constraints between them form the im-
plementation model (a.k.a. architecture model [23]).

An important difference between common SPLs and
SPLs in the embedded systems domain are alternative im-
plementations. Alternative implementations are required
for fine-grained adjustments of non-functional properties by
providing equivalent functionality. Figure 2 depicts two dif-
ferent implementations of a B-Tree feature. Component B-
Tree small implements basic functionality and is optimized
for binary code size at the costs of performance. In con-
trast, component B-Tree fast uses special algorithms, e.g.,
lazy deletion [37, 18], that increases performance at the
costs of binary code size. Such a need for specialized al-
gorithms is common in embedded systems [10, 35]. The
Buffer Manager functionality (cf. Figure 1) provides sup-
port for different storage types. It similarly has two vari-
ants, one for a simple data handling without any specialized
memory structures (Minimal Buffer Manager) and one for
performance optimized data handling (Unrestricted Buffer
Manager). The developer has to decide which code unit
is optimal for a given environment. As shown in Figure 2
there are constraints between code units as well.

Minimal Buffer
Manager

Performance: 10.5T/s
Footprint: 120KB

B-Tree small
Performance: 10.5T/s

Footprint: 34KB

B-Tree fast
Performance: 23.3T/s

Footprint: 230KB

Unrestricted Buffer
Manager

Performance: 14.5T/s
Footprint: 255KB

Transaction
Performance: n/a
Footprint: 210KB

excludes

excludes

Database Core
Performance: n/a
Footprint: 70KB

excludes

Figure 2. Implementation Model.

Product Derivation. To derive a product of an SPL, the
stakeholder decides which features to include. Feature se-
lection is usually realized based on a feature model [21, 1, 2,
27, 29]. During feature selection, tools can check the cur-
rent configuration against existing constraints that are de-
fined in the feature model and implementation model.

3 Semi-automated Derivation with Non-
Functional Constraints

SAD is an approach to assist a user during configura-
tion of a large SPL with many features. This support can
be realized by automatically hiding features that cannot be
selected at the current state of configuration due to existing

Proceedings VaMoS'08

26

constraints [2, 15, 11, 7]. Other approaches guide the user
through the configuration space and further visualize depen-
dencies between features [27, 29]. Our vision goes beyond
this derivation process based only on the feature model, i.e.,
we also want to include non-functional constraints that have
to be fulfilled in the derived product.

We envision an extension to the concept of SAD by an
automated selection of features and code units according to
non-functional requirements. Often non-functional proper-
ties depend on how a code unit is implemented. Therefore,
it should be possible to present hints to a stakeholder dur-
ing configuration of an SPL which show how a selection
affects the properties of the final software. To start the SAD
process, a user defines constraints, e.g., Footprint < 48KB
AND Performance > 10T/s, for the resulting software which
may already exclude certain features from the configuration
space. As a next step, the user selects needed functional-
ity of the SPL. After every decision the SAD tool supports
the user by giving hints or automatically selecting features
or code units according to the constraints. Thus, the SAD
process requires information from the feature model (e.g.,
features, domain constraints) as well as from the implemen-
tation model (e.g., non-functional properties of code units
like binary code size and reliability). The measurement of
such non-functional properties of code units is in the focus
of our research, but outside the scope of this paper1.

4 Problem Statement

In the following we present problems we found that re-
sult from the separation of feature model and implementa-
tion model.

SAD Tools. During our development of an SAD tool, we
observed several problems. When evaluating a user selec-
tion, we have to proof this selection against domain con-
straints defined in the feature model. Afterwards, the tool
has to map the current configuration to the implementa-
tion model. Again, we have to proof the same user se-
lection of the feature, but now against the implementation
model, because of implementation constraints, e.g., it has
to be validated if excludes relations are violated. Moreover,
additional requirements and constraints may result in an au-
tomatic selection of required code units that map back to
a feature selection. This task is already complex, but the
SAD tool, which supports non-functional constraints, has
to evaluate the respectively actual configured implementa-
tion against the existing non-functional properties. These

1As part of the FAME-DBMS project (funded by the German Research
Foundation, project no. SA 465/32-1), we work on the derivation of non-
functional properties by composing products and measuring the resulting
properties.

Minimal Buffer
Manager

Performance: 10.5T/s
Footprint: 120KB

B-Tree small
Performance: 10.5T/s

Footprint: 34KB

B-Tree fast
Performance 23.3T/s

Footprint: 230KB

Unrestricted Buffer
Manager

Performance: 14.5T/s
Footprint: 255KB

Transaction
Performance: n/a
Footprint: 210KB

DBMS

Storage Manager

B-Tree Index

Transaction

Buffer Manager

excludes

excludes

Database Core
Performance: n/a
Footprint: 70KB

excludes

Mapping

Feature Model

Implementation Model

Feature

Code Unit

Mapping

Figure 3. Problems of separated Models.

non-functional constraints can raise conflicts in the imple-
mentation selection and therefore, in the feature selection.

Figure 3 shows a simplified abstraction of a mapping be-
tween a feature model and an implementation model from
our DBMS product line. If we define performance and foot-
print constraints and select the feature Transaction, an SAD
tool has to map the selection to three different components.
The tool has to check the excludes constraints of compo-
nents Transaction and Unrestricted Buffer which results in
a verification of the incomplete feature selection. Further-
more, the SAD tool has to check that the non-functional
constraints are not violated. In this example, the config-
uration of component Minimal Buffer Manager might be
changed to the selection of component Unrestricted Buffer
Manager which leads to a change of the non-functional
properties of the current configuration.

The reason for for this complex derivation process lies in
a complex interaction of two separated models of one SPL
that are typically connected via an intricate mapping [9, 34,
23] and have to be consistent. This complexity makes the
development of SAD tools costly and time consuming and
the SAD process expensive.

Interacting Code Units. Assigning non-functional prop-
erties to elements of one model can be difficult if these
properties vary depending on the remaining module selec-
tion. Reasons for the changing values are mainly code in-
teractions. The interaction code, a.k.a. derivatives [24] or
lifters [26], arise if one feature crosscuts another feature.
For example, the code units of B-Tree fast and Unrestricted
Buffer Manager interact by including extra code if they oc-
cur in the same product. This is not shown in the diagram,
because we use components as code units that usually in-

Proceedings VaMoS'08

27

Minimal Buffer
Manager

Performance: 10.5T/s
Footprint: 120KB

B-Tree small
Performance: 10.5T/s

Footprint: 34KB

B-Tree fast
Performance 23.3T/s

Footprint: 230KB

Unrestricted Buffer
Manager

Performance: 14.5T/s
Footprint: 255KB

Transaction
Performance: n/a
Footprint: 210KB

DBMS

Storage Manager

B-Tree Index

Transaction

Buffer Manager

excludes

excludes

Database Core
Performance: n/a
Footprint: 70KB

excludes

Mapping

Feature

Code Unit

Mapping

Minimal Buffer
Manager

Unrestricted Buffer
ManagerB-Tree fast B-Tree small

Unrestricted Buffer Database Core

Figure 4. Redundant Representation of Code Units.

clude the whole interaction code so that it does not occur
modularly. This additional code may lead to increased bi-
nary code size or affect performance. However, interaction
code may change non-functional properties significantly,
e.g., a Transaction interaction code can reduce the perfor-
mance of the Buffer Manager by locking data in the mem-
ory. For an SAD tool, it is problematic to derive required
non-functional properties if derivatives are not modeled ex-
plicitly. Because of the common integration of interaction
code in one already existent code unit [22], it is not modeled
separately in the implementation model. This results in a
lack of expressiveness for the SAD process and therefore, it
is a problematic investigation of the varying non-functional
properties of interaction code.

Consistency. The problems of SAD tools and consistency
described above, typically occur with a complex mapping.
A possible solution for selecting alternative implementa-
tions during configuration, is the redundant representation
of code units of the implementation model in the feature
model. For example, the feature B-Tree Index could be
modeled by two alternative subfeatures (cf. Figure 4) which
represent the two alternative B-Tree components. This
transformation, however, results in a mixture and duplica-
tion of both models which raises consistency problems and
is error-prone. Additionally, SAD becomes more time con-
suming because it has to validate the code units twice. Con-
sidering changes in one model, like it is common during
software evolution, the maintenance of the models becomes
difficult. This is caused by the evolution of feature mod-
els which is separated from the evolution of implementation
models and leads to an increasing mismatch between both
models as already investigated by Tesanovic et al. [34].

5 Integrated Software Product Line Model

In the following we present our approach for an inte-
grated software product line model (ISPLM). In particular,
we integrate code units into a feature model to improve
SAD of an SPL.

5.1 Overview

In Figure 6 we show a meta model for our approach. The
ISPLM of Figure 5 consists of one root feature, like feature
DBMS. The feature DBMS has subfeatures that are con-
nected with different relations, e.g., feature Storage Man-
ager is mandatory and feature Transaction is optional. Our
syntax for these constraints is equivalent to the FODA rep-
resentation of the DBMS domain. We integrate code units
into the feature model to represent the features’ implemen-
tation, e.g., the code unit Database Core implements fea-
ture DBMS. Features and code units in the ISPLM can have
non-functional properties as well as relations (excludes and
implies).

The integration of code units into the feature model re-
quires two conditions. First, code units can only be child
elements of features or other code units. We do not allow
to model a code unit as a root node or as a parent of a fea-
ture node because features are defined during the domain
analysis which precedes the implementation phase (the fea-
ture model written once is solely extended but not changed).
Second, we need an additional relation to represent the in-
teraction between code units (i.e., derivatives, cf. Section 4)
because of the interacting code units. The Interaction rela-
tion allows an SAD tool to automatically include the target
code unit (filled rectangle) when all interaction sources are
configured. In Figure 5, this is the case for the code unit

Proceedings VaMoS'08

28

DBMS

Storage Manager

Buffer Manager
B-Tree Index

B-Tree fast B-Tree small
excludes

Footprint: 230KB
Performance: 23.3T/s

Footprint: 34KB
Performance: 10.5T/s

Footprint: 120KB
Performance: 10.5T/s

Minimal Buffer
Manager

Unrestricted
Buffer Manager

Footprint: 255KB
Performance: 14.5T/s

Caching
Strategies

Footprint: 67KB
Performance: 29.5T/s

Footprint: 210KB

Transaction

Transaction

Feature Code Unit Non-functional
Property

Footprint: 70KB

Interaction Constraint

excludes

Shadow Page

Footprint: 12KB

Footprint: 8KB

Database Core API Functions

Figure 5. Diagram of the integrated Software Product Line Model.

Caching Strategies. The code unit and its non-functional
properties influence the derivation process only if code unit
B-Tree fast and Unrestricted Buffer Manger are selected.
Relations can also exist between code units and features,
e.g., consider the excludes relation between code unit B-
Tree small and feature Transaction. With the ISPLM, it
is possible to constrain the variation points of the domain
space dependent on a selected code unit.

Feature Code Unit

Non-functional PropertyElement

Product Line

Relation

1 1 1

*

1

*

1

*

Mandatory Optional Alternative Or

Excludes Implies InteractionFODA Relations

*

*

1*

*

*

1

*

-derivative

-parent -child

-target-source

-source-target

-root
-implements

1

1

1*

-interact

1 *

Figure 6. UML Metamodel of the SAD Model.

5.2 Benefits of ISPLM

Semi-automated Derivation. The integration of code
units into the feature model allows to perform SAD with-
out the effort of creating and maintaining two consistent
models. It simplifies the implementation of SAD tools be-
cause information do not have to be propagated between

both models. Moreover, representing interactions of code
units inside the ISPLM provides an improved SAD because
these interactions can be responsible for changes of non-
functional properties.

User Benefits. The ISPLM allows a simplified visual-
ization of non-functional properties in a diagram because
no abstract and confusing mapping between feature model
and implementation model is needed. We reason that this
model can provide a basis for collaborating domain engi-
neers and software engineers because the interaction be-
tween domain features and code units is apparent with one
integrated model. We argue that maintaining one model is
less error-prone than two different because both engineers
use the same model which enhances the communication
during software development. In particular, this additional
information is needed for stakeholders who require imple-
mentation knowledge in deeply embedded systems and soft-
ware engineers who require domain knowledge when im-
plementing features.

Furthermore, the ISPLM explicitly allows to configure
all variation points (features and code units) instead of only
features.

Additional Benefits. Having an integrated model pro-
vides consistent changes in the domain as well as in the
implementation. When restructuring the domain model
the implementation is automatically adjusted, thus software
evolution needs less effort. For instance, if the exemplified
DBMS must run on an embedded device with feature Trans-
action but cannot fulfill the binary code size constraint, a

Proceedings VaMoS'08

29

new code unit for feature Transaction might be needed.
A software developer solely has to attach the new code
unit to the feature Transaction and may define additional
constraints to other code units. Additionally, maintenance
costs for only one model instead of two independent models
might decreased.

5.3 Discussion

The proposed model raises several discussion points, be-
cause it contradicts the well known separation of domain
model and implementation model.

Separation of SPL Models. The separation of domain
model and implementation model has the advantage of sup-
porting independent implementation models by having a
constant domain model. Ideally, the stakeholder and do-
main engineer should not need implementation knowledge
nor be restricted by implementation issues. This distinc-
tion already blurs during the implementation phase where
programming depends on domain modeling. Furthermore,
this strict separation cannot be held up because the stake-
holder obviously is interested in implementation dependent
information, he at least wants to choose out of different im-
plementations. In fact, embedded systems’ SPLs need to
mix the domain requirements with implementation require-
ments. Moreover, source code structures (e.g., variables,
classes, etc.) could be directly generated from the domain
model and their values are set up in the product derivation
phase (e.g., configured numeric values). We argue that our
SAD model is an appropriate model in areas where imple-
mentation requirements are relevant for a stakeholder.

Model Complexity. The integration of two models may
increase complexity and size of the ISPLM compared to
feature model and implementation model. Large SPLs with
hundreds of features and a similar number of code units de-
grade usability of the whole model. To handle this prob-
lem we recommend views that filter only needed informa-
tion. For example, one view could only represent the fea-
tures and their constraints (the common feature model) and
another view could show all code units including their re-
lations (implementation model). In contrast to separated
models the implementation view could contain parts of the
domain model that are needed to understand the implemen-
tation. We enable the support of views by identifying the
source and the target of relations and restrict the position of
code units and features (e.g., a feature can only occur as a
child of another feature).

6 Related Work

Several researchers aim at simplifying product deriva-
tion using SAD [2, 1, 15, 11, 27, 29]. Some researchers
also include non-functional constraints for automated rea-
soning in extended feature modules. A prominent exam-
ple is the work of Benavides et al. [5, 3, 6, 7], where non-
functional properties, e.g., costs of a feature or its devel-
opment time, are assigned to features. Automated product
derivation strongly relates to the well known constraint sat-
isfaction problem. This approach laid the basis for our work
on SAD.

The next step for SAD is to include non-functional prop-
erties of product line code units. White et al. [36] pub-
lished the tool Scatter that integrates non-functional proper-
ties into the product derivation process. In particular, Scat-
ter includes the binary size of non-code data files (pictures).
Products are derived using an extended constraint satisfac-
tion solver presented in [5]. White et al. also investigated
that code units can be modeled similar to feature models in
the product line architecture model they proposed. In con-
trast to this approach, we go further to allow SAD with any
kind of non-functional property that is related to code units
of the SPL. Scatter handle only non-code data files. We
evaluate code units of the resulting product instance. More-
over, we enable to represent changing properties of interact-
ing code units (cf. Section 5.1).

Feature modeling gains much attention in recent re-
search. Different feature models and extensions have
been proposed, typically for tree-like diagram representa-
tion [21, 15, 16], in UML [17, 13], or using the object con-
straint language [30, 33] to improve domain modeling and
domain reasoning, e.g., by adding cardinality and attributes
to features. Extensions with attributes can also represent
non-functional properties. However, our vision goes be-
yond just domain modeling and includes code units and
their properties (potentially derived automatically) there-
fore we need an integrated software product line model.

A closely related approach by Reiser et al. [28] formal-
izes a unified feature model that includes features and code
units in the same model. They argue that the heterogene-
ity of the SPL development process, methods, and tools is
difficult to manage. They propose a framework to model
artifacts and code units of a product line as an artifact prod-
uct line. In other words the global product line consists of
many small product lines which can be further decomposed
in even smaller product lines. This approach models the
implementation and makes the implementation selectable
by configuring these small artifact product lines. However,
this framework does not consider any non-functional prop-
erties, hence it does not allow the SAD process using non-
functional properties.

Ziadi et al. [38] propose the use of UML to derive

Proceedings VaMoS'08

30

products. They translate feature models into an equivalent
UML product line architecture model. Based on this archi-
tecture model they allow the configuration of product in-
stances. In contrast to our approach they do not consider
non-functional properties neither the interactions of code
units.

7 Conclusion and Further Work

In this paper we outlined our vision of semi-automated
derivation (SAD) using non-functional properties of SPL
products and discussed difficulties caused by the typical dis-
tinction between feature model and implementation model.
Product derivation is a complex task if an SPL has hundreds
of features and the implementation of features varies. To
configure such an SPL with many variation points we pro-
pose to use non-functional constraints for supporting a user
in product derivation.

We have shown that traditional approaches of model-
ing domain and implementation separately are insufficient.
They do not consider alternative implementations of one
feature nor non-functional properties completely. SAD
tools have to validate the feature model and the implemen-
tation model to enable a configuration which is not always
possible because of complex mappings between both mod-
els. In contrast, we presented a new integrated software
product line model (ISPLM) that integrates code units and
their non-functional properties into the feature model. We
argue that the ISPLM reduces the effort for the SAD process
and it improves consistency and evolution management.

In further work, we will continue to develop an SAD tool
and implement the ISPLM. This will allow us to analyze
and evaluate the resulting implementation effort and bene-
fits in contrast to existing models in a case study.

Acknowledgments

Norbert Siegmund and Marko Rosenmüller are
funded by German Research Foundation (DFG), Project
SA 465/32-1. The presented work is part of the FAME-
DBMS project2 a cooperation of Universities of Dortmund,
Erlangen-Nuremberg, Magdeburg, and Passau funded by
DFG.

References

[1] M. Antkiewicz and K. Czarnecki. FeaturePlugin: feature
modeling plug-in for Eclipse. In Proceedings of the 2004
OOPSLA Workshop on Eclipse Technology eXchange, pages
67–72. ACM Press, 2004.

2http://wwwiti.cs.uni-magdeburg.de/iti db/research/FAME

[2] D. Batory. Feature Models, Grammars, and Propositional
Formulas. In Proceedings of the International Software
Product Line Conference (SPLC), volume 3714 of Lecture
Notes in Computer Science, pages 7–20. Springer, 2005.

[3] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated
Analysis of Feature Models: Challenges Ahead. Communi-
cations of the ACM (CACM), 49(12):45–47, 2006.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE Transactions on Software Engineer-
ing (TSE), 30(6):355–371, 2004.

[5] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Auto-
mated Reasoning on Feature Models. Advanced Information
Systems Engineering: International Conference (CAiSE),
3520:491–503, 2005.

[6] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts. A
first Step towards a Framework for the Automated Analysis
of Feature Models. In Managing Variability for Software
Product Lines: Working With Variability Mechanisms, pages
45–53, 2006.

[7] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts.
FAMA: Tooling a Framework for the Automated Analy-
sis of Feature Models. In Proceeding of the First Inter-
national Workshop on Variability Modelling of Software-
intensive Systems (VAMOS), 2007.

[8] D. Beuche. pure::variants Eclipse Plugin. User Guide.,
2004.

[9] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
Variability Management with Feature Models. Science of
Computer Programming, 53(3):333–352, 2004.

[10] C. Bobineau, L. Bouganim, P. Pucheral, and P. Valduriez.
PicoDBMS: Scaling Down Database Techniques for the
Smartcard. In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 11–20, 2000.

[11] G. Botterweck, D. Nestor, A. Preuer, C. Cawley, and
S. Thiel. Towards Supporting Feature Configuration by In-
teractive Visualization. In International Workshop on Visu-
alisation in Software Product Line Engineering (ViSPLE),
pages 125–131, 2007.

[12] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2002.

[13] L. M. Cysneiros and J. C. S. do Prado Leite. Nonfunctional
requirements: From elicitation to conceptual models. IEEE
Transactions on Software Engineering (TSE), 30(5):328–
350, 2004.

[14] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[15] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged con-
figuration using feature models. In Proceedings of the Inter-
national Software Product Line Conference (SPLC), pages
266–283, 2004.

[16] K. Czarnecki, C. H. P. Kim, and K. T. Kalleberg. Fea-
ture Models are Views on Ontologies. In Proceedings of
the International Software Product Line Conference (SPLC),
pages 41–51, 2006.

[17] H. Gomaa. Designing Software Product Lines with UML.
Addison-Wesley, 2004.

[18] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

Proceedings VaMoS'08

31

[19] International Organization for Standardization (ISO). ISO
9126 Software engineering – Product quality. ISO/IEC
9126-0, 2006.

[20] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibil-
ity Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, 1990.

[21] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
FORM: A feature-oriented reuse Method with domain-
specific Reference Architectures. Annals of Software En-
gineering (ASE), 5:143–168, 1998.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-
gramming. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 1241 of
Lecture Notes in Computer Science, pages 220–242, 1997.

[23] U. Kulesza, V. Alves, A. Garcia, A. C. Neto, E. Cirilo,
C. Lucena, and P. Borba. Mapping Features to Aspects: A
model-based generative Approach. In Workshop On Early
Aspects (EA), 2007.

[24] J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refac-
toring of Legacy Applications. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages
112–121. ACM Press, 2006.

[25] F. Loesch and E. Ploedereder. Optimization of Variability in
Software Product Lines. In Proceedings of the International
Software Product Line Conference (SPLC), pages 161–160.
IEEE Computer Society, 2007.

[26] C. Prehofer. Feature-Oriented Programming: A Fresh Look
at Objects. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), volume 1241
of Lecture Notes in Computer Science, pages 419–443.
Springer, 1997.

[27] R. Rabiser, D. Dhungana, and P. Grnbacher. Tool Sup-
port for Product Derivation in Large-Scale Product Lines: A
Wizard-based Approach. In International Workshop on Vi-
sualisation in Software Product Line Engineering (ViSPLE),
pages 119–124, 2007.

[28] M.-O. Reiser, R. Tavakoli, and M. Weber. Unified Feature
Modeling as a Basis for Managing Complex System Fam-
ilies. In Proceeding of the First International Workshop
on Variability Modelling of Software-intensive Systems (VA-
MOS), pages 79–86, 2007.

[29] D. Sellier and M. Mannion. Visualizing Product Line Re-
quirement Selection Decision. In International Workshop
on Visualisation in Software Product Line Engineering (ViS-
PLE), pages 109–118, 2007.

[30] P. Sochos, I. Philippow, and M. Riebisch. Feature-Oriented
Development of Software Product Lines: Mapping Feature
Models to the Architecture. In Net.ObjectDays, pages 138–
152, 2004.

[31] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler,
W. Stolz, and S. Ferber. Introducing PLA at Bosch Gaso-
line Systems: Experiences and Practices. In Proceedings of
the International Software Product Line Conference (SPLC),
pages 34–50, 2004.

[32] D. Streitferdt, M. Riebisch, and I. Philippow. Details of For-
malized Relations in Feature Models Using OCL. Engineer-
ing of Computer-Based Systems (ECBS), 00:297–304, 2003.

[33] D. Streitferdt, P. Sochos, C. Heller, and I. Philippow. Con-
figuring Embedded System Families Using Feature Models.
In NetObjectsDay, 2005.

[34] A. Tesanovic and M. de Jonge. Exploring Effects of Feature
Mismatch to Evolution of Product Lines with Components
and Aspects. In GPCE Workshop on Aspect-Oriented Prod-
uct Line Engineering (AOPLE), 2007.

[35] R. Vingralek. GnatDb: A Small-Footprint, Secure Database
System. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 884–893, 2002.

[36] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko.
Automating Product-Line Variant Selection for Mobile De-
vices. In Proceedings of the International Software Product
Line Conference (SPLC), pages 129–140, 2007.

[37] B. Zhang and M. Hsu. Unsafe operation in B-trees. Acta
Informatica, 26(5):421–438, 1989.

[38] Ziadi, Tewfik and Jézéquel, Jean-Marc and Fondement,
Frédéric. Product Line Derivation with UML. In Proceed-
ings Software Variability Management Workshop (SVM),
2003.

Proceedings VaMoS'08

32

INCREASING THE RELIABILITY OF MODEL-DRIVEN SOFTWARE
FAMILY ENGINEERING AND PRODUCT CONFIGURATION FOR

AUTOMOTIVE CONTROLLER SOFTWARE

Frank Grimm
Software Systems Research Centre, Bournemouth University, UK

Email: fgrimm@bournemouth.ac.uk

Abstract

When software product family techniques [5, 16]
are applied to software modelling for electronic
controller units (ECUs) used in automotive
applications, problems arise when concrete software
products are to be extracted from models. This so-
called configuration process is unsafe and error-prone
because software engineers have to decide which
classes comprise a certain product and select the
correct classes from class repositories. Creating wrong
combinations of functionalities has massive negative
consequences on safety and reliability of the software
itself and may compromise human safety. These
configuration problems are discussed in detail in this
paper, and a proposal for model extensions that help
to constrain class combinations and allow for a safer,
more reliable and unambiguous configuration process
is made. These model extensions are used to describe
formal modelling rules that are used to validate models
and configurations based on these models. Thus,
dependencies between functionalities of a software
product can be fulfilled more reliably. Validated
models and configurations can then be used to
automatically generate source code that is safer and
more reliable than code generated from non-validated
models and configurations respectively.

1. Introduction

Cars contain an ever-increasing number of electronic
components. Applications of these components are
manifold; they range from safety-critical systems such
as anti-lock braking systems (ABS) and airbag control
to convenience features like parking aid and
entertainment systems. All these electronic controller
units (ECUs) are controlled by software. Today’s cars
may contain more than 50 ECUs, and this number is
likely to increase in future car generations. Due to the
vast number of ECUs, software systems are very
complex and will become more complex as even more
software-controlled applications are likely to appear in

cars. Safety and reliability of today’s cars depend to a
large extend on safety and reliability of software.

In addition to the engineering complexity that is
inherent in automotive software development—
automotive electronics are tightly coupled and software
controlling them can be looked at as a huge distributed
real-time system—, it is becoming even more
challenging as time-to-market schedules are becoming
tighter and more feature-rich software has to be
developed in shorter production cycles.

Another problem that has to be addressed is
variability in automotive software systems. Most
automotive software manufactures supply not just one
but many customers. Albeit customers may use the
same type of ECU, their controller software is likely to
vary due to different customer requirements. For
instance, gentle gear shifting is preferred for one type
of cars, but more sportive shifting for another one. To
face the variability problem, software product line
techniques are commonly used in automotive software
engineering [13, 15]. Software product lines consider
related products, their commonalities and variability.
Variability makes the main difference when comparing
product lines with single systems [15]. The ability to
include variability in software design models is
important to meet the challenging software engineering
requirements and customer needs described above.

2. Problem Statement

The approach to model-based software family
engineering discussed in this paper is OMOS [2, 3, 11].
OMOS is an industrial approach to software product
family engineering in the automotive domain. It is used
to model (on the design level) the static structure of
automotive software system produced by a global
electronics company. It is an object-oriented approach
based on UML. UML class diagrams are leveraged to
create OMOS models. OMOS models include variation
points [12, 13, 14, 17] that allow for the definition of
arbitrary variations of certain functionalities that have

Proceedings VaMoS'08

33

to be realised by an ECU software product. In OMOS,
variation points are expressed using UML class
composition. Creating a composition link between a
class representing the whole and a class representing
the part (part-class) introduces a new variation point
belonging to the part-class. This class introduces the
base variant of a specific functionality [4, 5]. By using
inheritance to create sub-classes, new variations can be
introduced. These sub-classes can make use of
functionalities provided by their base class, overwrite
these functionalities, and add new functionalities. For
example, the model shown in Figure 1 has a variation
point called Wheel that provides functionality
associated with a car’s wheel, e.g., measure its
revolutions per minute. There is a specialised version
of the wheel called ASRWheel that provides additional
functionality for Anti-Slipping Regulation (ASR). An
OMOS model contains all variants of a certain software
system. The variants are different in terms of customer
requirements, but the overall goal, i.e., to control an
ECU, and principal software structure, is the same for
all variants.

Analyses of a typical software component that is
responsible for just a part of functionality a single ECU
showed that even this component has more than one
hundred classes representing base variants, and more
than three hundred classes in total. Hence, there are
three variants for each variation point in average. A
configured software product only includes those classes
that represent variants required for the specific product.
Different variants are included in different products,
but all the products are based on the same model that
contains all the variants. Thus, variants of a specific
functionality are likely to contradict each other.

Problems arise during the product derivation
process, i.e., when a specific product is configured. The
term product is used to refer to the software that meets
the requirements of a specific customer for a specific
ECU. During product configuration, specific required
class variants have to be selected. Selecting the right
combination of variants for a certain product is error-
prone because of the huge number of variants.
Knowledge about dependent variants is currently not
explicitly included in models. When a variant of a
specific variation point implies a specific variant of
another variation point, these dependencies have to be
solved by relying on the knowledge of software
engineers who have to be aware of implicit
dependencies between variants. It is important for
software manufactures to be sure that a delivered
software product fulfils the customer's requirements
and to be able prove this to customers. A more reliable
software development process would help to create
safer and more reliable software. Hence, restricting the
combination of variants in OMOS models by defining
explicit dependencies would help to make the
configuration process more reliable by reducing
ambiguity [6] and by making the rationale behind
dependencies explicit.

Unmet dependencies can appear for two reasons.
The first reason is variation points that are not directly
related, i.e., there exist no associations between them.
When looking at the example model shown in Figure 1,
selecting ASRAxle as the concrete instance of variation
point Axle, ControllerWithASR is needed in order to
enable the ASR functionality of the system. Despite of
not being directly associated, i.e., operations of other
variants are not directly called, unrelated variants may

Fig. 1 Example model

Proceedings VaMoS'08

34

implicitly depend on each other because they are
connected indirectly. Even if variants are not directly
related, the implementation of one variant's behaviour
may affect another variant that expects different
behaviour. These errors are hard to find because they
do not result in compile- or link-time errors. They first
appear during run-time, and result in erroneous system
behaviour. They are hopefully detected when the
system is tested.

The example in Figure 1 is used to explain the
second reason why unmet dependencies arise. There
are two variation points which are associated,
Controller and Wheel. That is, Controller depends on
Wheel because it calls Wheel’s operations. Selecting
wrong variants of these dependent variations when a
product is configured cannot be prevented by the
current OMOS approach. For instance, when selecting
the more specialised variant ControllerWithASR, which
inherits the association to variation point Wheel, it
needs to communicate with an instance of variant
ASRWheel, not just Wheel, because ControllerWithASR
uses specific functionality that only the more
specialised ASRWheel provides. Such configuration
errors may be discovered during compile or link time
when interface mismatches of dependent classes
appear, e.g., ControllerWithASR calls operations that
the configured Wheel does not provide. But interface
mismatches do not appear when only implementations
differ, so these errors may even be first detected as run-
time errors when performing system tests.

Another kind of run-time errors originating from
faulty configurations appear when references to
communication partners are not configured. In a model,
communication between variants is expressed using
associations. For example, Controller references Wheel
since an association exists between these classes shown
in Figure 1. As references have to be configured on the
instance level, models alone do not provide sufficient
information because they deal with classes and not with
instances. Thus references have to be defined at
configuration time specifying the instances of the
required variants that are related to each other. For
example, a Controller instance and four Wheel
instances are created for a specific product, and one
specific Wheel instance has to be selected to be
referenced by the Controller instance. When references
are not configured, uninitialized references on the code
level will be the result. This in turn may lead to
undefined run-time behaviour.

To clarify the impact of these kinds of errors, it is
important to understand that parts of ECU software
system implementations are automatically generated
from their corresponding OMOS models using code

generation templates. OMOS models contain classes
that represent functionalities, and contain relationships
between these classes. A model is used to automatically
generate infrastructure code that corresponds with the
given model. For each class its corresponding code
representation is generated including operations,
attributes, and references to other classes (i.e., variants)
it communicates with. To create a specific product, its
corresponding configuration is used to generate code
that creates concrete instances of configured classes,
initialises attributes with the values, and initialises
references to other instances. All these aspects are
defined by a product configuration. So a model and a
configuration that is based on this model form the basis
for generating code for ECU software systems by using
code generation templates.

While code generation templates help to increase
code quality due to consistent code structures that are
defined by domain experts, and contain their
knowledge, templates cannot prevent the error issues
addressed above, because they are committed during
the configuration process. Since OMOS is a model-
driven approach to ECU software engineering, these
problems, which are unacceptable in every kind of
software system, especially in high-safety environments
like automotive systems need to be addressed at the
modelling level and not at the source code level. As
discussed in this section, OMOS models do not provide
enough information to enable a level of safety within
models and configurations that allows configuring
reliable ECU software products. OMOS models and
configurations are transformed into C source code.
Thus, it could be argued that using a more reliable and
(type-) safe implementation language than C, e.g., Ada,
could help to detect more errors during compilation
time. But the vast majority of errors results from
combining class variants that do not work together
because they realise behaviour different from the
required variants. These errors won't even be detected
when using a different implementation language
because this simply cannot be done at compile time.

Two specific meta-models for OMOS models and
their configurations are suggested in this paper. By
extending OMOS to allow for explicit modelling of
dependencies between variants, these meta-models
address the aforementioned issues that were identified
in current OMOS models and configurations. Based on
these meta-models, tools to validate OMOS models and
configurations can be developed. These tools allow
checking for the correctness of configurations
according to the models they are based on. Therefore
checking rules can be specified based on theses meta-
models. These rules can be used to check for semantic

Proceedings VaMoS'08

35

errors, such as missing communication partners or
connecting wrong variants.

Since large parts of the ECU software code are
automatically generated based on OMOS models and
configurations, quality, reliability, and safety of the
software products can be increased because a
development process can be established that allows for
the validation of models and product configurations.
Then source code generation is based on validated
models and configurations.

In the following section both meta-models are
discussed in detail and it is explained how they help to
avoid the problems described above.

3. Meta-Model-Based Approach

As suggested above, specific meta-models for OMOS
class models and configuration were created. The meta-
model for class models as shown in Figure 2 describes

the concepts that are used in the ECU software
engineering domain, thus it is a domain-specific meta-
model. For example, it contains meta-classes for 1- and
N-classes. 1-classes are instantiated at most once in an
ECU system, whereas N-classes may have arbitrary
instances. 1-classes are common in ECU software
systems which usually have limited resources. When
compared to N-classes, 1-classes allow for
implementation optimisations that result in better run-
time characteristics and memory footprint.

The class meta-model also contains meta-classes
that describe relationships between classes. Possible
relationships are: variation point definition (class
composition), variant creation (class inheritance), and
class communication. In addition, the meta-model
contains meta-classes to specify attributes and
operations belonging to classes.

Since the OMOS meta-model is a domain-specific
one, it is different to the UML meta-model [9, 10], but
an UML profile can be applied to create OMOS

Fig. 2 Class meta-model

Proceedings VaMoS'08

36

models using conventional UML CASE tools. As
described in [1] meta-models used to describe specific
domain vocabularies can be automatically transformed
into UML profiles and vice versa.

The configuration meta-model shown in Figure 3
specifies the entities of the product configuration
domain. For example, it contains an element for
variation points and associations to describe parent-
child relationships between variation points. Since a
configuration, i.e., an instance of the configuration
meta-model, is based on a class model, i.e., an instance
of the class meta-model, elements from the class meta-
model are related to the configuration meta-model and
re-appear there. Both meta-models include concepts to
explicitly manage variability in ECU software systems.

To cope with the first type of configuration errors,
i.e., when wrong class variants are included in a
product, the class meta-model is extended. It now
includes concepts to allow for a variant of a variation
point to specify that it depends on a specific variant of
another variation point. Thus, engineers are able to
specify dependencies between variants in a fine-grained
manner. Dependencies can be refined by sub-variants,
i.e., sub-classes, to redefine existing dependencies. For
a sub-variant it can be specified that it depends on a
different, possibly more specific variant than its base
variant, which originally defined the dependency.
Defining dependencies and refining them is in principal
also possible in UML. Hence, these concepts can be
implemented in a UML profile that can be created from
the OMOS class meta-model.

An extended example, shown in Figure 4,
demonstrates the refinement as follows:

1. Variant refinement: A first refinement is

introduced to refine the variation point defined by
Wheel which belongs to Axle. When one of the Axle
variation points, front or rear, is of concrete type
ASRAxle, ASRWheel has to be instantiated as well. This
refinement is represented by the two refined variation
points connected to its base variation point using the
dotted vertical directed dependency links. Both
refinements are instances of the meta-model class
VPRefinement.

2. Communication refinement: Controller is associ-
ated with Wheel, i.e., it can call operations of Wheel or
more specified sub-classes, e.g., ASRWheel. When
ControllerWithASR is instantiated, it needs to be
associated with an instance of ASRWheel to work
correctly. This communication refinement is expressed
by creating a new association from ControllerWithASR
to ASRWheel. This refinement is linked to the original
base association between Controller and Wheel as
shown by the dashed directed dependency link. This
dependency link is an instance of meta-class
CommRefinement.

3. Refinement of implicitly related variation points:
When using variant ControllerWithASR in a product
that requires ASR functionality, ASRAxle has to be
used as well. Dependencies between variants whose
base variants and variation points were not directly
related are modelled by creating directed dependency
links between the dependent variants. These
dependency links are instances of meta-class
VariantDependency.

Variant and communication refinement could also
be derived automatically without explicitly defining
such refinements in an OMOS model. This would be
possible by interpreting aggregation (whole-part) and

Fig. 3 Configuration meta-model

Proceedings VaMoS'08

37

association relationships in the following way: when a
sub-class (e.g., ASRAxle) owns an
aggregation/association end with the same name
(left/right) as one of its base classes (Axle) and the
aggregation/association end points to a class
(ASRWheel) that is a sub-class of the class associated
by the base class (Wheel), then the sub-class overrides
this aggregation/association. Such an overriding can be
seen as an implicit definition of a variant and
communication refinement, i.e., an implicit dependency
definition. However, defining such dependency in the
graphical way proposed in this paper has the advantage
that these dependencies and refinements are made
obvious and users do not need to detect overridden
relationships, i.e., implicit refinements, manually.

When compared to the general UML meta-model
[10] using domain-specific meta-models has several
advantages:

Advantage 1: The model elements represent
concepts which originate from the ECU software
engineering domain. Thus, engineers, i.e., domain
experts by definition, can think, model, and exchange
knowledge using the terminology of the domain they
are working with every day.

Advantage 2: Both meta-models are moderate in
size, and they are not as complex as the UML meta-
model. This allows domain experts to thoroughly
understand the concepts they use to model ECU
software systems and which are described in the meta-

models.
The meta-models described above help to solve the

problems of variant-rich software systems described
above in several ways. First, based on the meta-model
entities which represent ECU software system
concepts, formal rules can be defined that describe and
constrain the usage of these entities. Second, code
generation templates that are used to automatically
produce code for ECU software systems described by
OMOS models can be based on domain entities. As
these entities are understood by domain experts,
creating templates becomes significantly easier.

Rules can be defined in terms of the domain using
considerable smaller meta-models than the UML meta-
model. Since domain practitioners understand these
meta-models, rules are more expressive for them as
they are based on domain entities. Since the class meta-
model can be transformed into an UML profile, such
rules can be transformed in order to be applied to
profile elements as well.

Rules can be defined using the Object Constraint
Language (OCL) [8]. Since the Meta Object Facility
(MOF) [7] is used as the meta-meta-language of the
meta-models, OCL is a perfect fit because it is based
on MOF as well.

Rules can be used to check for semantics such as,
e.g., naming rules, composition of 1- and N-class types,
communication, inheritance, and rules that apply to the
signatures of operations. For example the following

Fig. 4 Example model showing refinement specifications

Proceedings VaMoS'08

38

rule states that communication partners need to be
initialised1

Context ConfigurationMetamodel::
VariantInstance inv:
self.omosclass.communication.receiver
 ->forAll(rcv|self.communication
 [receiver]->size() = 1 and
 self.communication[receiver]
 ->oclIsKindOf(rcv))

This rule applies to (instances of) meta-class
VariantInstance from the configuration meta-model
and navigates to (instances of) meta-class OMOSClass
from the class meta-model. Hence, both meat-models
help to overcome the second type of errors described
above, i.e., uninitialized references to communication
partners which can lead to undefined runtime
behaviour.

4. Tools for validating models and product
configurations

Based on both meta-models and on the formal rules
that were specified using elements of both meta-
models, validation tools can be developed that help to
avoid modelling errors. One scenario could be to
directly include rules related to modelling into a CASE
tool. This would allow for in-place model checking. So
errors can be avoided and detected early during the
modelling phase. Another kind of validation tool could
be a model checker that checks whether models are
well-formed before products are actually configured.
After configuration, i.e., before code generation, a
configuration checker can be used to verify whether
configurations stick to the configuration rules.

Creating validation tools by directly using the OCL
rules defined using the meta-models has the advantage,
that tools can immediately uses these formal rules. This
means that no intermediate step is required to interpret
these rules and implement them manually in the tool.
Transforming rules manually would be error-prone and
could lead to misinterpretations and loss of rules.

5. Related Work

There exist several approaches to software product
family/line engineering which focus on the usage of
UML to model the static structure by introducing
variability concepts [16, 17, 18, 19, 20, 21]. According
to [16] only three of these approaches take the process
of product derivation into account [16, 19, 20]. In [16]
product derivation is realised as a UML model

1 The sample rule does not handle refinement
and inheritance of communication.

transformation to transform a product line model into a
model for a specific product. This approach is based on
a UML profile for software product line modelling
proposed in [17]. The other two approaches that take
product derivation into account do not provide such a
detailed definition of product derivations. The
variability concepts proposed in [16] and [17] can be
applied to UML classes, packages, attributes, and
operations. In contrast, the variability concepts
presented in this paper can also be applied to whole-
part (aggregation) and communication (association)
relationship elements. Expressing variability for these
constructs is necessary since whole-part relations are
very important in automotive systems represented by
OMOS models since they are used to define the
system’s class hierarchy. The class hierarchy is
essential during product derivation process. Instances
of classes belonging to the model that the product
under configuration is based on are created based on
the whole-part relationships (aggregations) defined in
this model. Starting at the class marked with stereotype
<<root>>, an instance is created for each aggregated
class (part-class) of an aggregation. This process is
repeated for all aggregations of each part-class that is
selected for the product under configuration.

In [17], UML classes presenting variation points
are explicitly marked with the <<variation>>
stereotype. Sub-classes of such classes can be marked
with the <<variant>> stereotype to become a variant
of the respective variation point. Sub-classes that do
not have the <<variant>> stereotype are mandatory in
all products. A different approach was chosen for
OMOS: every class that has sub-classes automatically
becomes a variation point in OMOS and every sub-
class becomes a variant. While classes presenting
variation points in [18] are abstract and thus cannot be
included in a product, variation point classes in OMOS
do not have to be abstract and can be included in
products. In OMOS, a class is made optional by
becoming a part-class of a subclass (the whole-class).
Since this whole-class represents a variation, it is per se
optional; hence, its part classes are optional as well.
Due to the strict hierarchical structure of OMOS
models, it is possible to define classes as variation
points that are part-classes of variation point classes.

The OCL constraints presented in Section 3 are so-
called generic constraints [16] because they apply to all
OMOS models and present general modelling rules all
OMOS models have to obey. Constraints that are
specific for a certain model, i.e., product family or line,
are expressed within the model using the variability
refinement (dependency) elements also discussed in
Section 3. Including the constraints directly in an

Proceedings VaMoS'08

39

OMOS diagram and defining them in a graphical form
is different from the approach taken in [16] where
specific constraints for a certain model are expressed
by textual OCL constraints. While the textual approach
allows for more detailed constraints, e.g., exclusion of
certain classes when a certain variant is included in a
product, the (graphical) refinement elements presented
in this paper could easily be enabled to express such
detailed constraints as well.

5. Conclusions

Meta-models that describe elements used to create
structural models for ECU software product families in
the automotive controller software domain were
defined in this paper. These models explicitly contain
elements that allow to model for variability which is
required to re-use the same model for several software
products. These products belong to the same software
product family, i.e., they differ in their implementations
but have significant commonalities since all of the
derived software products are used to control the same
type of ECU that performs the same kinds of tasks. By
explicitly defining meta-model elements that represent
variability in models, and by defining meta-model
elements that allow to refine variability by constraining
the types of compatible variants, the risk of combining
incompatible variants is decreased. Formal rules for the
semantics of modelling ECU software systems can be
defined based on these meta-models. These rules
increase reliability and safety of ECU software
products. Since these rules apply on the model level,
code that is generated from these models is safer and
more reliable than code generated from models that
have not been validated. Hence, meta-models and rules
based on them allow for software validation in early
development phases and strengthen the use of model-
driven software engineering for automotive software
systems.

6. References

[1] A. Abouzahra, J. Bézivin, M. D. D. Fabro, and
F. Jouault. A practical approach to bridging
domain specific languages with UML profiles. In
Proceedings of the Best Practices for Model
Driven Software Development at OOPSLA 05,
2005.

[2] W. Hermsen and K.-J. Neumann. Object-oriented
modeling concept for software of electronic
control units in vehicles. it+ti -

Informationstechnik und Technische Informatik,
5, 1999.

[3] W. Hermsen and K.-J. Neumann. Application of
the object-oriented modeling concept OMOS for
signal conditioning of vehicle control units.
Technical report, SAE 2000 World Congress,
March 2000.

[4] M. Jaring and J. Bosch. Representing variability
in software product lines: A case study. In
Proceedings of the Second International
Conference on Software Product Lines (SPLC),
pages 15–36, 2002.

[5] M. Jazayeri, A. Ran, and F. van der Linden.
Software Architecture for Product Families:
Principles and Practice. Addison-Wesley, 2000.

[6] P. Knauber and S. Thiel. Session report on
product issues in product family engineering. In
Reviced Papers of the Fourth International
Workshop on Software Product-Family
Engineering (SPFE), pages 3–12, 2001.

[7] OMG. Meta Object Facility (MOF) Core
Specification Version 2.0. OMG Document
formal/2006-01-01.

[8] OMG. Object Constraint Language (OCL). OMG
Document ptc/03-10-14.

[9] OMG. UML Superstructure Specification
Version 2.0. OMG Document formal/05-07-04.

[10] OMG. UML Version 2.0 Meta-model. OMG
Document ptc/04-10-05.

[11] M. Schweizer and M. Benkel. Development of
product families - an example from the
automobile industry. Third Workshop on Object-
oriented Modeling of Embedded Real-Time
Systems (OMER3), 2005.

[12] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch.
Covamof: A framework for modeling variability
in software product families. In Proceedings of
the Third International Conference on Software
Product Lines (SPLC), pages 197–213, 2004.

[13] S. Thiel and A. Hein. Modeling and using
product line variability in automotive systems.
IEEE Software, 19(4):66–72, 2002.

[14] S. Thiel and A. Hein. Systematic integration of
variability into product line architecture design.
In Proceedings of Second International
Conference on Software Product Lines (SPLC),
pages 130–153, 2002.

[15] J. van Gurp, J. Bosch, and M. Svahnberg. On the
notion of variability in software product lines. In
Proceedings of the 2001 Working IEEE / IFIP

Proceedings VaMoS'08

40

Conference on Software Architecture (WICSA
2001), pages 45–54, 2001.

 [16] T. Ziadi et al. Product Line Engineering with the
UML: Deriving Products. In Software Product
Lines. ISBN: 978-3-540-33252-7. Springer
Verlag, 2006.

[17] T. Ziadi, L. Hélouët, and J.M. Jézéquel. Towards
a UML profile for software product lines. In
Proceedings of the 5th International Workshop
on Product Family Engineering (PFE-5). Lecture
Notes in Computer Science, vol 3014. Springer,
Verlag, pages 129–139, 2003.

[18] M. Clauß. Generic modeling using UML
extensions for variability. In Workshop on
Domain Specific Visual Languages at OOPSLA
2001, Tampa Bay, FL, USA, 2001.

[19] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practices, 1st edn (Addison-
Wesley, Reading, MA 1998).

[20] O. Flege. System family architecture description
using the UML. In Technical report, IESE-report
no. 092.00/E, IESE (December 2000).

[21] H. Gomaa. Object oriented analysis and modeling
for families of systems with UML. In: IEEE
International Conference for Software Reuse
(ICSR6), ed by Frakes, W.B., June 2000, pages
89–99, 2000.

Proceedings VaMoS'08

41

Proceedings VaMoS'08

42

1

Dealing with Changes in Service-Oriented Computing
Through Integrated Goal and Variability Modelling

Roger
Clotet1

Deepak
Dhungana3

Xavier
Franch1

Paul
Grünbacher2,3

Lidia
López1

Jordi
Marco1

Norbert
Seyff2

Universitat Politècnica
de Catalunya (UPC)1

Barcelona, Spain

Johannes Kepler Universität2
Institute for Systems Engineering

and Automation
Linz, Austria

Johannes Kepler Universität3
Christian Doppler Laboratory for
Automated Software Engineering

Linz, Austria

Abstract

Variability modelling and service-orientation are im-

portant approaches for achieving both the flexibility and
adaptability required by stakeholders of software systems.
In this paper we present an approach that integrates do-
main models captured in the i* modelling framework with
variability models to support runtime monitoring and
adaptation of service-oriented systems. We believe that
approaches integrating goal-oriented modelling and
variability management are needed to build, operate, and
evolve such systems. We illustrate our approach using
two scenarios and present a tentative tool architecture
based on an existing product line engineering tool suite.

1. Introduction

Software-intensive systems are characterized by the
heterogeneity of the platforms and networks they operate
on; the diversity of stakeholders with changing needs; and
the dynamicity of their operating environment [7]. Stake-
holders of these systems demand properties such as flexi-
bility and adaptability [27] to allow rapid evolution
caused by requirements changes, service performance
changes, service updates, new (types of) stakeholders,
new regulations, etc. Often, these systems cannot be fully
specified in advance and are under constant development,
so as to be continuously adjusted and adapted to emerging
and evolving requirements from their various stake-
holders [3]. The Service-Oriented Computing (SOC)
paradigm offers a powerful technological solution for
conceiving such flexible and evolvable systems. Services
are open components that support rapid and low-cost
composition of distributed applications.

Adapting a complex software system to different envi-
ronments and contexts is also a prime goal of variability
modelling in product line engineering [23][24]. Variabil-
ity modelling is an approach fostering software reuse and

rapid customization of systems. Not surprisingly, re-
searchers have started to explore the integration of ser-
vice-oriented systems and variability modelling to support
run-time evolution and dynamism in different domains
[18][20][26][27]. Integrating variability modelling and
service-orientation is seen promising to achieve both
flexibility and adaptability.

Dealing properly with changes in large systems, as
software-intensive systems are, demands a thorough
knowledge of the rationale of decisions, alternatives con-
sidered, as well as traceability between stakeholders’
goals and technical solution elements. Goal-oriented ap-
proaches [19] have been recognized as a powerful tech-
nique in this direction [6][13]. Among several existing
approaches, the i* framework [28] is gaining popularity to
model service-oriented and agent-based systems [22].
Researchers have started to explore new ways to enlarge
the framework with variability modelling capabili-
ties [21].

Pursuing similar goals, we have been using the i*
framework to model a service-oriented multi-stakeholder
distributed system in the travel domain [7]. The goal was
to validate the usefulness of i* in this context and to gain
a deeper understanding of the dependencies between goal
modelling and variability modelling. In an earlier work-
shop paper [17] we have presented some initial results. In
this paper we show how variability can be modelled on
different levels of abstraction. We present a set of rules
that allow to identify variability in i* models. These rules,
formulated over corresponding metamodels, help to con-
vert i* models into variability models which can then be
refined to allow monitoring and adaptation of service ori-
ented systems. We illustrate the approach using examples
and present a tool architecture based on our existing work
on meta-tools for variability modelling.

Proceedings VaMoS'08

43

2. Change Scenarios

Our fictitious example is a distributed system provided
by Travel Services Inc. (TSI), a company offering ser-
vices to travellers to search for and book trips online.
While some of these services are developed by TSI, most
are provided by third party Service Providers. Services
range from very simple (e.g., currency conversion) to
highly complex ones offering large functionality. For ex-
ample, the system relies on a payment service provider
offering payment services to TSI. Further, a number of
travel services, e.g., for booking flights or checking the
availability of hotel rooms are used. Various Travel
Agencies (TA) contract TSI’s software solution to offer a
customized online travel platform to their customers.

It is obvious that changes play an important role in
such a system. Changes such as new requirements, new
types of stakeholders or changes in the environment (e.g.,
new regulations) occur “top-down” while other changes
such as service performance variations or service updates
happen “bottom-up”.

The following scenarios highlight a top-down and a
bottom-up change and illustrate subsequent system adap-
tation. The first scenario highlights how changing needs
of stakeholders make it necessary to adapt the system.

Top-down stakeholder-driven change: TSI has so far
been used only by European travel agencies, which rely
on a payment service for money transfer within Europe.
TSI has won a new TA Transworld Travels that interacts
with clients in all continents and therefore needs a world-
wide payment solution offering more options despite ex-
pected higher costs.

1. The new requirement of Transworld Travels might
provoke a change affecting other customer TAs serviced
by TSI.

2. TSI’s software architect analyses whether the new
global payment service is interfering with the intentions
of other TA’s. He finds out that other TAs and the Pay-
ment Service Provider (PSP) are affected by this request.

3. TSI negotiates the change with the other customer
TAs. The affected TAs and the Payment Service Provider
are invited for discussions. The other TAs concur that
they are not interested in the new global service, but ac-
cept to use a new PSP if it will not increase their costs.

4. The World-Wide Payment System Berne (WWPS-
Berne) is willing to provide a more advanced service to
satisfy the requested needs and Transworld Travels is
willing to pay the extra cost for this new service.

5. Based on this decision, TSI’s software architects
confirm that Transworld Travels will use WWPS-Berne.
All other TAs will also be switched to WWPS-Berne, but
for them the service will only provide reduced functional-
ity. The architect updates the system configuration to ad-
dress this change.

The second scenario illustrates how a system change
can be trigged by a highly dynamic software environment.
We assume that customer TAs are either Austrian or
Spanish.

Bottom-up monitoring-driven change: In order to en-
sure high availability of the travel services to its custom-
ers, TSI has decided to use two world-wide available
Amadeus travel services instances, a Spanish and an Aus-
trian Amadeus server. The system configuration specifies
that each Spanish TA normally redirects customer re-
quests to the Spanish Amadeus server and Austrian TAs
primarily use the Austrian Amadeus Server. According to
the system configuration requests of Austrian customers
can be redirected to the Spanish Amadeus if necessary
and vice versa.

1. The following day Austria classifies for the Football
World Cup to be held at Barbados next summer. All Aus-
trian TAs are experiencing high load on their website as
many Austrian customers are eager to book trips. As a
result the Austrian Amadeus server is under heavy load
and the average response time is increasing considerably.
Finally, monitoring tools detect that the average response
time is higher than documented by the Service Level
Agreement (SLA) between TSI and its customer TAs.

2. The TSI operator is automatically informed that the
system is not satisfying the specification and that it is
recommended to automatically redirect some Austrian
traffic to the Spanish Amadeus server.

3. After a confirmation by the TSI operator the system
automatically updates its configuration and redirects some
Austrian traffic to the Spanish server.

4. Four hours later, the monitoring tools detect that the
load on the Austrian Amadeus server is again stabilized
and that its response time satisfies the SLA.

5. The TSI operator is automatically informed by the
monitoring system that the redirection of traffic is no
longer needed. After the operator’s confirmation the sys-
tem again redirects all traffic to the Austrian Amadeus
server.

The two scenarios show that TSI software architect
needs support to deal with top-down and bottom up
changes. For instance, he needs to understand the com-
mon and specific goals of different TSI customers. He
also needs to know the current service configuration of
customers. In order to determine the best way to proceed,
the architect relies on information about alternatives (e.g.,
the alternative for a certain service in case it fails). The
architect also needs traceability information to compre-
hend the dependencies among goals, service types, and
service instances. An up-to-date and detailed representa-
tion of the system at different levels, from stakeholders'
needs down to the concrete system configuration, is
needed to ensure a speedy and correct reaction after top-
down or bottom-up changes [7].

Proceedings VaMoS'08

44

We will show that the integrated use of i* and variabil-
ity modelling techniques allow to model these different
layers together with information traceability and variabil-
ity information to facilitate system adaptation. In the next
section we thus provide the necessary background about
i* and variability models.

3. Background

3.1 The i* Framework

In [7] we have shown the use of the i* framework to
model all the levels of our distributed system: stakeholder
needs, software architecture and running system. The dif-
ferent models are built with similar constructs, although
emphasis is different in each case. Figure 1 provides a
simplified view of the i* metamodel [1] only depicting
the elements that are relevant for variability modelling.

Figure 1. Part of i* metamodel relevant for

variability modelling.

The i* framework supports the modelling of systems
as a network of actors together with their rationale. The
network of actors is described using a Strategic Depend-
ency (SD) diagram which shows how actors depend on
each others, whilst the rationale is described through a
Strategic Rational (SR) diagram for each actor.

Our simplified metamodel describes two kinds of ac-
tors: Roles are used to represent the system stakeholders
and the different “parts” of the system. Agents are used to
represent the real software components such as services
and their instances. Agents can play roles and can be in-
stances of other agents. There is also an is-a relation to
create actor hierarchies.

An actor is composed by its intentional elements,
which are responsible to describe the actor’s
needs/requirements or responsibilities. There are four
kinds of intentional elements: goals, softgoals, tasks and
resources. The intentional elements inside an actor can be
related between them using different kinds of links:

means-end, task decomposition and contribution (these
links will be used depending on the intentional element
type). We allow a fourth link type when there are two
actors related by an is-a relation: when the actor A is-a
actor B, some intentional elements of actor A can be re-
lated to intentional elements of actor B using is-a link (see
[8] for a precise definition).

3.2 Variability Modelling

Variability modelling is a key technique in product line
engineering to define how various products in a product
line can be distinguished from each other. Orthogonal
variability modelling [2] is based on complementing ex-
isting models and artifacts with variability information
rather than using specific notations or languages for vari-
ability modelling. For instance, John and Schmid [24]
have proposed a decision-oriented approach that supports
orthogonal variability modelling for arbitrary artifacts
independent from a specific notation. Their work is based
on earlier work in the Synthesis project [25]. The benefits
of decision-oriented approaches are the flexibility gained
and traceability established by using one variability
mechanisms for different artifacts at the requirements,
design, architecture, implementation, application, and
runtime level. Our work is based on the meta-meta-model
presented in [10] which uses decision and assets as key
modelling elements (see Fig. 2). An asset model describes
the system elements and their dependencies. The decision
model describes the variability of the system through a set
of decision variables that are used to adapt a system, i.e.,
to derive a product from the product line. The included-if
relationship determines which assets will be part of the
system depending on the values of the decision variables.

Figure 2. Metamodel for Variability Management.

The first step of the approach presented in [10] is the
development of a domain-specific metamodel by identify-
ing the relevant assets and dependencies among them. For
this context we identified the following asset types: ser-
vice goal, service type, service, and service instances: A
service goal establishes the objective of a service (e.g.,
“Offer travels”). Different services types contribute to
fulfilling these goals (e.g., “Travel services provider”).
Available services realizing a service type are modelled as

Proceedings VaMoS'08

45

a service (e.g., “Amadeus”). Finally, available runtime
implementations of services can be modelled as service
instances (e.g., “Spanish Amadeus Server”). We also
identified two kinds of relationships between the assets:
The requires relationship is used whenever the selection
of a certain asset leads to the selection of another asset.
This can be a result of logical dependencies between
goals, conceptual relationships between service types,
relationships between services or functional dependencies
between service instances. The contributesTo relationship
is used to capture structural dependencies between assets
of different levels. Service instances for example contrib-
ute to services. Services contribute to service types which
contribute to goals. It is however also possible for goals to
be split up into sub-goals. Such compositional relation-
ships between goals can also be modelled using the con-
tributesTo relationship.

A decision model is used to model the variability of the
system and to describe dependencies between the varia-
tion points (cf. Table 1). Decision alternatives describe
the range of available options when taking a decision. For
example, decision alternatives can be an enumeration of
available services. The event of taking a decision triggers
the evaluation of attached rules. This includes checking
relevant conditions and identifying actions which have to
be executed. For example, deciding which travel service
shall be used could depend on the average response time
of the available services. A condition checking whether
the average response time is higher than a predefined
threshold could influence the service selection and the
identification of actions relevant for service configuration.

Table 1. Partial Decision Model.
Decision Variable Decision Alternative Has-effect-on Rule

typeOfCustomer-
Assistence

synch, asynch

typeOfTravelPayment
credit card, transfer,

worldwide

typeOfService Travel-
Provider flight, hotel, camping

if (typeOfService
 TravelProvider
 == camping) then
 whichTravel
 Service:=Amadeus

whichTravelService Amadeus, Vivaldi

whichCredit CardSer-
vice

CheapCard,
Securitas,

NorbSecureCredit,
FastAndCheap

if (whichCredit
 CardService
 == Securitas) then
 typeOfIdentifica
 tion:=FingerPrint

whichAmadeusService Austrian, Spanish

AustrianAmadeus-
AverageResponseTime

Metric [ms]

if AustrianAmadeus
 AverageRespose
 Time > 200 then
 whichAmadeus
 Service:=Spanish

4. Modelling the Variability of Service-
Oriented Systems with i*

In the previous section we have presented two different
metamodels that describe the main concepts of the i*
framework and decision modelling. We use each ap-
proach to model the same system capturing overlapping
but also different information. To guarantee model consis-
tency and traceability we first integrate the two metamod-
els and then introduce the rules for identifying candidate
variation points in i* models and their transformation to
decision models.

4.1 Metamodel Integration

Our decision-oriented variability modelling approach
has two main elements: assets and decisions. Assets are
included in the deployed system depending on the deci-
sions that the user has taken, i.e., the values of the deci-
sion variables. The different kinds of assets have a direct
relation with i* model elements which is shown in the rest
of the section. The decision model is not connected to the
i* metamodel since it is dealing with variability which is
not kept in the i* model (cf. Table 2 this information).

Table 2. Integration of Metamodels.
Variability
meta-model

element

i* metamodel
element

Constraints

Service Goal
Intentional

Element
It is not a resource

Service Type Roles Software role

Service Agents
Is playing a role and is not an
instance of another agent

Service In-
stance

Agents
Is an instance of other agent

4.2 Identification of Candidate Variation Points

The i* framework has not specific constructs for mod-
elling variability. Some authors have tackled this issue by
extending i* with explicit constructs (see Sections 6
and 7). Others consider variability as implicit in i* models
depending on the types of modelling constructs used. We
adhere to this perspective and aim at identifying candidate
variation points by analyzing the very structure of the i*
model. From our analysis of the Travel Agency example,
we have identified six different cases of candidate varia-
tion points. We present next the different cases classified
by the type of i* construct.

4.2.1 Means-end variability
A means-end link is used to describe different ways to

achieve a goal or a task, thus it may be describing a varia-

Proceedings VaMoS'08

46

tion point, usually related to external variability [23], i.e.,
the variability of artifacts that is visible to customers.

Means-end links are composed as an OR, so at least
one of the means should be attained to achieve the end.
This OR can be interpreted as a variation point when the
customer can decide the way she wants the system to
achieve his goal. For instance, customer assistance can be
either provided using asynchronous or synchronous sup-
port (see Fig. 3).

Figure 3. Variation point: Means-end case.

4.2.2 Plays variability
Agents allow modelling real services or components, and
these agents play roles. At this point we can find some
internal variation points [23] (i.e., the variability of do-
main artifacts that remains hidden from customers), be-
cause the architect can decide among the different ser-
vices (agents) that can play a role. This variability is rep-
resented using the plays link. In Figure 4 we find the
Amadeus and Schubert agents playing the same role
(Travel Services Provider) which means that the architect
has to choose between them when deploying the system.

4.2.3 Instance variability
The i* framework also allows modelling which ser-

vices instances can be deployed. The example shown in
Figure 4 highlights that there are two agents – the Spanish
and the Austrian Amadeus Server – as instances of the
agent Amadeus. The variability is modelled using the link
instance.

Figure 4. Variation point:

Plays and instance cases.

4.2.4 Role inheritance variability
Variability related with architectural features is found in
the relationship between actors. In an i* model, actors can
represent the different roles our system has to include.
These roles can be classified as a hierarchy using the is_a
link. For example, Fig. 5 shows a classification for Travel
Payment role. This example is also an external variation
point because the TAs will be able to select a kind of
payment they will provide to their customers.

Figure 5. Variation point: Inheritance case.

4.2.5 Intentional element inheritance variability
At a finer-grained scale, a superactor may have different
intentional elements refined onto the subactor. This in-
heritance relationship may take different forms (see [8]
for further details). In the case of having more than one
heir, the intentional element in the superactor becomes a
variation point. For instance, Figure 6 shows how the task
Select Destination (which is a subtask of task Buy Travel)
in the general actor Customer is refined into its heirs as
Select Destination Country in Family heir and Select Des-
tination Conference in Researcher heir. In this case there
are 2 ways of achieving the task Select Destination.

Figure 6. Variation point:

Intentional element inheritance.

4.2.6 Softgoal variability
Since the satisfaction of a softgoal is not uniquely de-

fined, we may imagine several criteria acceptable at dif-
ferent moments or contexts. For instance, Fehler! Ver-
weisquelle konnte nicht gefunden werden. shows the
softgoal Secure.

Proceedings VaMoS'08

47

Table 3. Rules for identifying variability in i* models.

Rule
identifier

Type of
variation
point

Formulation Additional Restrictions
Decision
Variable

Decision
Name Pre-

fix

Decision
Alternatives

Cardinality Asset Type

ME-VP means-end
{x1, ..., xn}
are means of
y

n > 1
AND
(is-goal(y) OR is-
task(y)) AND
(not is-resource(xi))

y TypeOf y {x1, ..., xn}
Min: � 0
Max: � n

Service
Goal

P-VP play
{a1, ..., an}
play r

n > 1
AND is-role(r)
AND is-agent(ai))

r Which r {a1, ..., an} Exactly 1 Service

I-VP instance
{a1, ..., an}
instance a

n > 1
AND is-agent(a)
AND is-agent(ai))

a Which a {a1, ..., an} Exactly 1
Service
Instance

RI-VP
role inheri-
tance

{r1, ..., rn}
 is-a r

n > 1
AND is-role(r)
AND is-role(ri))

r TypeOf r {r1, ..., rn}
Min: � 0
Max: � n

Service
Type

IEI-VP
IE inheri-
tance

{x1, ..., xn}
 is-a y

n > 1
AND is-IE(y)
AND is-IE(xi)

y TypeOf y {x1, ..., xn} Exactly 1
Same as
inherited
element

SG-VP softgoal is-softgoal(y) y LevelOf y
Metrics
available as
fit criterion

Exactly 1
Service
Goal

Figure 7. Softgoal variability.

There may be several strategies for satisfying this soft
goal. One option could be use a website that implements
SSL v3 to transfer credit card information. Another option
could be to make a phone call to a TA operator and pro-
vide the credit card information. If we choose SSL, it may
be sufficient to use an 80-bit key. Advances in cryptology
could make 80-bit keys obsolete.

4.3 Building decision tables from i* models

We have identified a set of rules to generate the corre-
sponding excerpt of a decision model from variation
points found in the i* model. We define this correspon-
dence in terms of the metamodel. The result is summa-
rized in Table 3. Also, in table 1 (see section 3.2) we
compile the excerpts of decision models built up from the
i* models presented in 4.2.

Means-end variability rule (ME-VP). This rule is ap-
plicable when a goal or a task is the end for more than one
means-end link. Only goals, softgoals and tasks are taken
into account to know if there are more than one means;

we consider that a resource as a means is an information
needed to attain the end, not one way to achieve it.

Plays variability rule (P-VP). This rule is applicable
when a role is played by several agents in the model.

Instance variability rule (I-VP). This rule is applicable
if an agent is instantiated by several other agents in the
model. This means that there exist different deployments
of the same type of service that may be selected, typically
according to SLA clauses.

Role inheritance variability rule (RI-VP). This rule is
applicable when there is a classification of roles. This
means that there are different kinds of agents, represent-
ing the same role. So one or more of the heirs will be cho-
sen depending on the user characteristics.

Intentional element inheritance variability rule (IEI-
VP). This rule is applicable for actor classifications using
inheritance if some inherited intentional elements are
modified in their heirs. In the three cases of inheritance
identified in [8] (extension, refinement and redefinition),
the intentional element placed in the parent has different
ways to be achieved. In the case of extension, the new
features are considered as alternatives to the parent. In the
other cases, each intentional element declared as an heir is
considered a way to achieve the intentional element in the
parent.

Softgoal variability rule (SG-VP). This rule is applica-
ble for every softgoal of the i* model. Since softgoals are
high-level concepts, we need here some more concrete fit
criterion, e.g. metrics or qualitative reasoning arguments
for the particular softgoal. A catalogue of such metrics
and techniques would be helpful, and then the different
items of the catalogue would be the possible decisions.

Proceedings VaMoS'08

48

It is important to mention that in all of the cases, the
rule will be applied only when the decision is relevant
(concept of relevance of a variation point). For the sake of
an example, consider a role R played by two agents A and
B, and assume that the agent A has two instances C and
D. Then, the rule I-VP over A is applied only if the deci-
sion variable Which R equals A.

5. Tool Architecture

We are currently developing a set of tools for support-
ing the type of scenarios discussed in Section 2 using the
introduced concepts. We are using software components
that are part of the DOPLER product line tools suite [11]
and plan to extend them with software components for
service monitoring and service adaptation. We have
shown that we use i* to create a domain model of our
service oriented system. Such domain models can be en-
coded using iStarML, an emerging XML-based standard
allowing model exchange among existing tools for i* [5].

We assume that monitoring and adaptation of a ser-
vice-oriented system should never be fully automated as
user feedback will be required in most domains. This
means that we need to provide an interface that enables
system administrators to (i) manually modify a service-
oriented system by exploiting the known variability or to
(ii) confirm changes suggested by the reasoning capabili-
ties of our tool architecture (e.g., when replacing one ser-
vice with another). Instead of automating the procedure
for taking decisions, the proposed tool architecture there-
fore provides a user console which is able to perform the
discussed tasks in an intuitive manner. Similar to work
reported in [27] we are adopting the DOPLER component
ConfigurationWizard for this purpose.

5.1 Architecture overview

The variability management engine is at the heart of
our tool architecture. The encoded i* domain model is
used as input for DecisionKing [9], a meta-tool for vari-
ability modelling. We are adopting DecisionKing in our
architecture to support variability modelling as described
in Section 3 [10]. DecisionKing allows managing a vari-
ability model of available service instances, services, and
stakeholder goals together with trace links. Decisions are
used to represent variation points. The rule engine JBoss
Rules1 used by DecisionKing supports reasoning needed
to compute the impact of changes stemming from moni-
tored service behaviour or user-triggered adaptations. It is
important to note that we do not aim at creating a com-
plete domain-service variability model from an existing i*

1 http://www.jboss.com/products/rules

model. We can however create candidate variation points
based on the rules described in Section 4. These initial
rules can be refined using DecisionKing’s rule language
to express dependencies and constraints more precisely.

The Monitor component acquires the monitoring pa-
rameters from the variability management engine. It pro-
vides measure instruments (MI) for measuring and moni-
toring different runtime parameters such as response time
or availability of services. The Adaptor component per-
forms the changes that are required based on the actions
carried out by the user. It performs the actual update of
the service-oriented system. Both monitors and adaptors
are unaware of the concrete technologies used to develop
and compose the service-oriented system. These software
components define generic extension points that can be
implemented to address technology-dependent aspects.
Plug-ins are used to connect the generic monitoring and
adaptation components to concrete service implementa-
tion technologies (e.g., BPEL, WSDL) We are currently
developing initial examples of these plug-ins.

The Services represents existing deployed services of
the service-oriented system. It is important to note that
these services are often developed, maintained, and de-
ployed by 3rd party service providers.

Suggestions for actions are presented to the user for
dealing with changes in the services. The suggestions are
inferred from the variability management engine, which is
constantly updated with current monitoring parameters.

Figure 8. Tool Architecture Overview.

5.2 Revisiting the scenarios

Let’s consider the impact of the framework and the us-
age of the tool by revisiting the bottom-up monitoring-
driven change scenario presented in Section 2. We ex-
plain in more detail how the framework and tools work.

Proceedings VaMoS'08

49

1. In order to ensure high availability of the travel ser-
vices to its customers TSI uses two world-wide avail-
able Amadeus travel services instances concurrently
(only one is used at the time, each TA has a primary
one it is using)

a. The technology independent information about
the Spanish Amadeus server and Austrian Ama-
deus server (e.g., service location, service name,
etc) is defined in the i* Domain Variability Model
(see Figure 8).
b. The architect configures the Variability Man-
agement Engine (VME) by adding information
about these two services.
c. The architect configures the Monitor by specify-
ing rules and deploying Measure Instruments (MI)
to check the running system. The decision model
with rules for load balancing is integrated in the
Monitor and also in the Adaptor.

2. The day after Austria classifies for the Football
World Cup to be held at Barbados next summer, all
Austrian TAs are experiencing high load on their
website as many Austrian customers are eager to
book trips. As a result the Austrian Amadeus server is
under heavy load and the average response time is
increasing considerably.

d. The corresponding MI inside the Monitor de-
tects a sharp increase of the response time.
e. The Monitor discovers that the average response
time is higher than the threshold established in the
SLA.
f. The Monitor sends a notification to the VME.
g. The VME revaluates all rules after the notifica-
tion to compute the effects of the change. The
VME suggests and “automatic” switch from Aus-
trian to Spanish Amadeus server for Austrian TA.

3. The TSI operator is automatically informed by the
system about the suggested automatic switching of
the service. The operator confirms the switch in his
configuration console.

h. The TSI operator confirms the change.
i. The Adaptor is reported to make the change.
j. The current configuration is automatically up-
dated by the Adaptor to address the service switch.
Some of the new requests are redirected to Spanish
Amadeus.
k. In a general case, we may need to inform to
Analyzer about new services or new rules for
monitoring.

4. Four hours later, the Austrian Amadeus server is
again stabilized and its response time is satisfying the
SLA.

l. The Monitor, following low-level MI measures,
reports a decrease of the response time of the Aus-
trian Amadeus server.

m. The Monitor realises that the average response
time is now below the level established in the
SLA.
n. The Monitor sends a notification to the VME.
o. The VME revaluates all rules after the notifica-
tion to compute the effects of the change. The
VME suggests an “automatic” switch from Span-
ish to Austrian Amadeus server.

5. The TSI operator is automatically informed by the
system the service switching is no longer needed.

p. The TSI operator confirms the change to the
VME. (He might also decide to update the VME
rules to better react to the situation. In this case an
updated list of rules is automatically sent to the
Analyzer).
q. The Adaptor is notified to perform the change.
r. The current configuration is automatically up-
dated by the Adaptor to address the service switch.
Every new request is redirected to Austrian Ama-
deus server.

6. Related work

Managing variability in i* models is an emergent re-
search issue. Some authors are interested in including the
variability information in i* models, while others focus on
analyzing the implicitly captured variability in these mod-
els to create the variability model:

For instance, Bibian et al. [4] include decision bounda-
ries for the easy identification of goals and the corre-
sponding features. Yu et al. [29] include new constructors
to distinguish the different types of features (Mandatory,
Optional, Alternative and Or). Some authors also include
some information about variability constraints by adding
new constructs to the i* language. Specifically, Liaskos et
al. [21] add new links to model for representing con-
strains among goals, at level of satisfaction.

Other approaches suggest analyzing models to dis-
cover variability. For example, Baxuali et al. [15] show
how studying the OR-trees goals and the contribution to
softgoals can be used for the study of variants (functional
behavior) depending on customer priorities (non-
functional attributes). Liaskos et al. [21], besides intro-
ducing constraints to the language, show how goal models
can be used to capture variability, constructing variability
frames studying the goals semantics.

Even, Baxuali et al. present a new idea about using as-
pect-orientation concepts in goal models to deal with vari-
ability [16]. In this paper they also add new constructs
such as crosscutting links to the i* language.

Numerous researchers from different areas have devel-
oped approaches and tools contributing to runtime adapta-
tion of systems: In the area of requirements engineering,
researchers have explored runtime deviations of systems

Proceedings VaMoS'08

50

from original requirements. In [12] an approach based on
goal models specified in the formal language KAOS is
presented. The approach adopts a set of agents to monitor
runtime behaviour of systems and to suggest either auto-
mated or runtime adaptation of the systems. Variability is
expressed via alternative refinements in goal models. In
[3] different levels of requirements engineering for dy-
namic adaptive systems have been explored. Their aim is
to provide a general framework bridging human-centred
requirements and machine-centred adaptation mecha-
nisms. Other approaches combine product line engineer-
ing and runtime adaptation of systems. For instance, [18]
presents a feature-oriented approach for dealing with run-
time adaptation which is based on identifying binding
units in feature models that serve as the basis for later
reconfiguration. The work of [26] shows how product line
architectures can be used to support feature adaptation in
the area of Web system personalization.

7. Conclusions and future work

Understanding the dependencies and interactions be-
tween goal modelling and variability modelling is impor-
tant to support runtime adaptation of service-oriented sys-
tems. This paper presents how a variability model can be
obtained from a goal model without including new lan-
guage constructs to the goal model to avoid unnecessary
complexity.

We have explored the possibility of including the vari-
ability explicitly in these kinds of models for instance by
adding some graphical information to show which groups
corresponds to variation points. Similar to the OR and
AND labels for means-end links in Tropos [14] the mod-
eler could include the label VP for variation points. We
realized however that it is impossible to add variability
information without negative effects on model compre-
hensibility. We thus decided to complement i* models
with an orthogonal variability modelling technique based
on decision models. Some variability can be found in i*
models although it is not explicitly modelled. In our ap-
proach we thus decided not to include variability in the
goal model but to use a set of rules to extract initial vari-
ability models by discovering variability in goal models.
While other authors analyze the variability inside actors
[15][21][16] our approach focuses on variability stem-
ming from actor relations which are particularly important
in service-oriented systems. We present a preliminary set
of rules for identifying the variation point candidates.
Most of these rules apply to links between actors (is-a,
plays, instance). The rules allow deriving an initial vari-
ability model (mainly decisions and their alternatives). To
define a complete variation model we need to manage
dependencies between decisions, rules, and cardinalities
which we manage in a separate model outside i*. Model

synchronization is supported by iStarML, a XML-based
exchange format for goal models [5].

We are currently developing different elements of the
tentative tool architecture presented in Section 5. A criti-
cal task in the near future is to validate the architecture
using reasonably complex examples. This will also re-
quire the development of service monitors for different
quality aspects. An interesting challenge is to make the
framework technology-independent such that it can be
used with different service technologies and monitoring
environments.

Acknowledgements

This work has been supported in part by the ACCIONES
INTEGRADAS program HU2005-0021 supporting bilat-
eral scientific and technological cooperation between
Austria and Spain; and the Spanish projects TIN2007-
64753 (ADICT) and SODA FIT-340000-2006-312
(PROFIT programme). The development of the DOPLER
tools has been supported by the Christian Doppler Labo-
ratory for Automated Software Engineering.

References

[1] Ayala, C.P., Cares, C., Carvallo, J.P., Grau, G., Haya, M.,
Salazar, G., Franch, X., Mayol, E., and Quer, C. "A Compara-
tive Analysis of i*-Based Goal-Oriented Modeling Languages".
In: Proceedings of The Seventeenth International Conference on
Software Engineering and Knowledge Engineering (SEKE'05).
14-16 July, 2005. Taipei, Taiwan, Republic of China. Pages: 43-
50.

[2] Bachmann, F., Goedicke, M., Leite, J., Nord, R., Pohl, K.,
Ramesh, B. and Vilbig, A., “A Meta-model for Representing
Variability in Product Family Development”, in Lecture Notes
in Computer Science: Software Product-Family Engineering.
Siena, Italy: Springer Berlin / Heidelberg, 2003, pp. 66–80.

[3] Berry, D., B. Cheng, and J. Zhang, “The Four Levels of
Requirements Engineering for and in Dynamic Adaptive Sys-
tems”, 11th International Workshop on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ'05), Porto, Portu-
gal, June 2005.

[4] Bidian, C., Yu, E.S.K. “Towards Variability Design as
Decision Boundary Placement”. Anais do WER07 - Workshop
em Engenharia de Requisitos, Toronto, Canada, May 17-18,
2007, pp 139–148.

[5] Cares, C., Franch, X., Perini, A., Susi, A. “Introduction to
iStarML”. Research report ITC/IRST, 2007.

[6] Castro, J., Kolp, M., Mylopoulos J. “Towards Require-
ments-Driven Information Systems Engineering: The Tropos
Project”. Information Systems, vol. 27, 2002.

[7] Clotet, R., X. Franch, P. Grünbacher, L. López, J. Marco,
M. Quintus, and N. Seyff, “Requirements Modeling for Multi-
Stakeholder Distributed Systems: Challenges and Techniques”,
1st Int. Conf. on Research Challenges in Information Science

Proceedings VaMoS'08

51

(RCIS), Ouarzazate, Apr. 23-26, 2007.

[8] Clotet, R., Franch, X., López, L., Marco, J., Seyff, N.,
Grünbacher, P., The Meaning of Inheritance in i*. 17th Interna-
tional Workshop on Agent-oriented Information Systems
(AOIS-2007), Trondheim, Norway, June 11, 2007.

[9] Dhungana, D., Grünbacher, P., Rabiser, R., "DecisionKing:
A Flexible and Extensible Tool for Integrated Variability Mod-
eling.", 1st International Workshop on Variability Modelling of
Software-intensive Systems, Limerick, Ireland, 2007.

[10] Dhungana, D., Grünbacher, P., Rabiser, R. “Domain-
specific Adaptations of Product Line Variability Modeling”,
IFIP WG 8.1 Working Conference on Situational Method Engi-
neering: Fundamentals and Experiences, Geneva, Sept. 2007.

[11] Dhungana, D., Rabiser, R., Grünbacher, P., Lehner, K., and
Federspiel, C., “DOPLER: An Adaptable Tool Suite for Product
Line Engineering”, 11th International Software Product Line
Conference (SPLC 2007), Kyoto, Japan, Sep. 10-14, 2007.

[12] Feather, M. S., Fickas, S. van Lamsweerde, A., and Pon-
sard, C., ”Reconciling System Requirements and Runtime Be-
havior“, Proceedings of the 9th international Workshop on
Software Specification and Design, Washington, DC, April
1998.

[13] Franch, X., Maiden, N.A.M. “Modeling Component De-
pendencies to Inform their Selection”. In: Proceedings 2nd In-
ternational Conference on COTS-Based Software Systems
(ICCBSS), Lecture Notes on Computer Science 2580, Springer,
2003.

[14] Fuxman A., Liu L., Mylopoulos J., Pistore M., Roveri M.,
Traverso P. “Specifying and Analyzing Early Requirements in
Tropos”. Requirements Engineering Journal, 9 (2), 2004.

[15] González-Baixauli, B., Leite, J.C.S.P., and Mylopoulos, J.
“Visual Variability Analysis with Goal Models”. Proc. of the
RE’2004. Sept. 2004. Kyoto, Japan. IEEE Computer Society,
2004, pp. 198–207.

[16] González-Baixauli, B., Laguna, M.A., Leite, J.C.S.P. “Us-
ing Goal Models to Analyze Variability”. First International
Workshop on Variability Modelling of Software-intensive Sys-
tems (VaMoS 07), Volume 2007-01, pp. 101–107, Jan. 2007.

[17] Grünbacher, P., Dhungana, D., Seyff, N., Quintus, M.,
Clotet, R., Franch, X., López, L., Marco, J.: Goal and Variability
Modeling for Service-oriented System: Integrating i* with Deci-
sion Models. In: Proceedings of Software and Services Variabil-
ity Management Workshop: Concepts Models and Tools. Hel-
sinki, Finland, 19-20 April 2007, pp. 99–104.

[18] Hallsteinsen, S., Stav, E., Solberg, A., and Floch, J., “Using
Product Line Techniques to Build Adaptive Systems”, Proceed-
ings of the 10th international on Software Product Line Confer-

ence, Washington, DC, Aug. 21-24, 2006, pp. 141–150.

[19] van Lamsweerde, A. “Goal-Oriented Requirements Engi-
neering: A Guided Tour”. In Proceedings 5th IEEE Interna-
tional Symposium on Requirements Engineering (RE 2001),
Toronto (Canada), 2001.

[20] Lee, J., and K.C. Kang, “A Feature-Oriented Approach to
Developing Dynamically Reconfigurable Products in Product
Line Engineering”, Proceedings of the 10th International Con-
ference on Software Product Line, Washington, DC, Aug. 21-
24, 2006, pp. 131–140.

[21] Liaskos, S. Yu, Y., Yu, E., Mylopoulos, J. “On Goal-based
Variability Acquisition and Analysis”. Proc. 14th IEEE Int’l
Requirements Engineering Conference (RE'06) (Sept 11-15,
2006). IEEE Computer Society.

[22] Penserini, L., Perini, A., Susi, A., Mylopoulos, J. "From
Stakeholder Needs to Service Requirements". Proceedings of the
2nd International Workshop on Service-Oriented Computing:
Challenges on Engineering Requirements (SOCCER), 2006.

[23] Pohl, K., Böckle, G., van der Linden, F. J., Software Prod-
uct Line Engineering: Foundations, Principles, and Techniques:
Springer, 2005.

[24] Schmid, K., John, I., "A Customizable Approach to Full-
Life Cycle Variability Management". Journal of the Science of
Computer Programming, Special Issue on Variability Man-
agement, vol. 53(3), pp. 259–284, 2004.

[25] Software Productivity Consortium, Reuse-driven Software
Processes Guidebook (SPC-92019-CMC, Version 02.00.03),
Herndon, VA, November 1993.

[26] Wang, Y., Kobsa, A., van der Hoek, A. and J. White,
“PLA-based Runtime Dynamism in Support of Privacy-
Enhanced Web Personalization”, Proceedings of the 10th inter-
national on Software Product Line Conference, Washington,
DC, Aug. 21-24, 2006, pp. 151-162.

[27] Wolfinger R., Reiter S., Dhungana D., Grünbacher P., and
Prähofer H.: Supporting Runtime System Adaptation through
Product Line Engineering and Plug-in Techniques. 7th IEEE
International Conference on Composition-Based Software Sys-
tems (ICCBSS), February, 25-29, 2008, Madrid, Spain.

[28] Yu, E. Modeling Strategic Relationships for Process Reen-
gineering, PhD Thesis, Toronto, 1995.

[29] Yu, Y., Mylopoulos, J., Lapouchnian, A., Liaskos, S., Le-
ite, J.C.S.P.”From stakeholder goals to high-variabilitysoftware
designs”. Technical Report CSRG-509, University of Toronto,
2005. Available at: ftp://ftp.cs.toronto.edu/csrgtechnical-
reports/509.

[30]

Proceedings VaMoS'08

52

Weaving Aspect Configurations for Managing System Variability

Brice Morin, Olivier Barais1 and Jean-Marc Jézéquel1
IRISA Rennes - Equipe Projet INRIA Triskell

1Université de Rennes 1
Campus de Beaulieu

F-35 042 Rennes Cedex

E-mail: {bmorin | barais | jezequel}@irisa.fr

Abstract

Variability management is a key concern in the software
industry. It allows designers to rapidly propose applica-
tions that fit the environment and the user needs, with a cer-
tain Quality-of-Service level, by choosing adapted variants.
While Aspect-Oriented Programming has been introduced
for managing variability and complexity at the code level,
the Software Product-Line community highlights the needs
for variability in the earlier phases of the software lifecycle,
where a system is generally described by means of models.
In this paper, we propose a generic approach for weaving
flexible and reusable aspects at a model level. By extend-
ing our generic Aspect-Oriented Modeling approach with
variability, we can manage variability and complexity in the
early phases of the software lifecycle.

1 Introduction

Variability management is a key concern in the software
industry. It allows designers to rapidly propose a wide range
of applications by choosing adapted variants and options.
These customized systems will fit the environment and the
user needs, with a certain Quality-of-Service level. In or-
der to improve traceability, reliability and maintainability,
variability should be explicitly modeled.

The Aspect-Oriented Software Development (AOSD)
paradigm proposes to separate distinct concerns into differ-
ent aspects e.g., security, logging or persistency, and finally
compose them into the base system. It first appeared at the
code level [15] and has more recently gained attention in
the earlier steps of the software life-cycle [4, 5, 8, 17, 28]:
requirement, architecture, design, leading to the creation
of numerous ad-hoc Aspect-Oriented Modeling (AOM) ap-
proaches, and a dispersion of effort in their tooling, docu-

mentation and adoption.
In order to manage variability, recent works [1, 2, 3,

13, 23] discuss the use of Aspect-Oriented Programming
(AOP) for implementing Software Product Lines (SPL). At
the code level, AOP offers mechanisms to encapsulate (op-
tional) cross-cutting features. In contrast, with more tra-
ditional mechanisms like conditional compiling, these fea-
tures would be tangled and scattered across the program.

Meanwhile, the SPL community points out the needs for
managing the variability during the entire software lifecy-
cle [22, 33], this in order to trace variability from require-
ments to implementation and even execution. The Model-
Driven Engineering (MDE) paradigm proposes to consider
models as first class entities during the entire life cycle. For
example, requirement models [7] represent the user needs,
class and component diagrams specify the structure of the
system, scenarios and state machines specify its behavior,
and runtime models [6] monitor the running system. MDE
techniques allow to automate the transition between the dif-
ferent steps of the life cycle. All these models conform to
different metamodels, and are generally described by Do-
main Specific Modeling Languages (DSML), or metamod-
els.

We argue that Aspect-Oriented Modeling (AOM) can
help users to design optional and variant parts of a model,
like AOP does at the code level. By weaving incremen-
tally aspects into a base model it is possible to construct
a final product step-by-step. But, to be able to weave
aspect into different kinds of model, users have to adapt
to numerous ad-hoc AOM approaches. Indeed, AOM ap-
proaches [4, 5, 8, 17, 28] often propose domain-specific
mechanisms to represent aspects. We tackle this issue
by automatically generating domain-specific AOM frame-
works that all rely on the same concepts. Thus, designers
do not need to adapt to a new AOM framework for all the
domain metamodels they have to deal with. Weaving aspect

Proceedings VaMoS'08

53

represents the first variability dimension of our approach.
Moreover, AOM approaches are often said flexible and

reusable, but actually not enough. Using these approaches,
it is often impossible to weave an aspect into a base model
if it does not exactly propose what the aspect expects. Addi-
tionnaly, when it is possible to weave an aspect into the base
model, it is always composed the same way. Based on pre-
vious work [18], we propose to integrate variability mecha-
nisms into aspects themselves to tackle the issue of the lim-
ited reusability of aspects. These mechanisms turn standard
aspects into configurable aspects, more reusable and flexi-
ble. Aspect configuration represents the second variability
dimension of our approach.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our generic approach for aspect weaving.
Section 3 details our 2-dimension approach for managing
variability of software systems. Finally, Section 4 presents
related works and Section 5 concludes and discusses future
works.

2 Our Generic Model-Driven Approach for
Aspect Weaving

This section presents our generic model-driven approach
for aspect weaving. It briefly introduces the notion of meta-
modeling, with a simple running example, and introduces
the notion of Aspect-Orientation. Then, it details our ap-
proach for automatically generating Aspect-Oriented Mod-
eling frameworks, for any domain metamodel.

2.1 Metamodeling, AOP and AOM

Metamodeling A domain metamodel describes all the
concepts of a particular domain of interest, and their re-
lations. To illustrate our approach, we introduce a simple
domain metamodel MM for state machines, illustrated in
Figure 1. A region contains several vertices and transitions,
that are the main elements of a state machine. Note that the
Vertex meta-class is abstract and cannot be instantiated
in a model, but is extended by two concrete meta-classes:
PseudoState and State. A transition must declare a
source and a target vertex.

This metamodel allows designers to represent state ma-
chines, with any number of transitions and vertices, in any
configuration. Then, it is possible to simulate models or
generate other artifacts, using Model-Driven Engineering
techniques and dedicated tools like Kermeta [26], an open-
source environment1 for metamodel engineering. There ex-
ists metamodels for state machines, components, scenarios,
class diagrams, etc.

1available at www.kermeta.org/download

Figure 1. A Domain-Metamodel (MM)

Aspect-Oriented Programming (AOP) The Aspect-
Oriented paradigm first appeared at the code level [15] and
has been popularized with the AspectJ [14] programming
language. AspectJ extends Java with the following con-
cepts:

1. Join Point: point of interest in a program e.g., method
execution/call, attribute reading/writing.

2. Pointcut: it defines a set of join points where the as-
pect will intervene e.g., all the calls to a given method.

3. Advice: it specifies the additional behavior that will
modify the base program. It is executed in all the join
points identified by a pointcut.

AOP allows users to encapsulate cross-cutting concerns
into advice, and implicitly weave them into a base program,
in all the join points identified by a pointcut. AOP signifi-
cantly reduces the complexity of softwares a the code-level,
by limiting the scattered and tangled code.

Aspect-Oriented Modeling (AOM) At a model level,
AOM approaches [5, 10, 18, 29, 32] propose to encapsu-
late cross-cutting and reusable concerns. AOM concepts are
comparable to AOP ones. But, as opposed to AOP, AOM
mainly focus on the composition of structural and behav-
ioral models, in the early phases of the software lifecycle,
before implementation.

Template models represent what the aspect expects from
the base model i.e., the model elements needed to be able
to weave the aspect into the base model, and their relations.
Template do not need to be consistent models, for example,
it can only be composed of a single operation, without rep-
resenting its containing class, that is normally mandatory.
Templates could be assimilated as pointcuts.

Then, aspect are woven into a base model. This is simi-
lar to advice weaving in AOP. On the one hand, symmet-
ric AOM approaches [5, 10, 29, 32], that do not differ-
entiate aspect and base, propose to systematically merge

Proceedings VaMoS'08

54

all the corresponding concepts, and specify how to intro-
duce non-shared ones. On the other hand, asymmetric ap-
proaches [18, 24, 30], that clearly differentiate aspect and
base, propose to specify how to integrate the aspect. Gen-
erally, symmetric composition is a better way to compose
homogeneous views of a given system, using a partially au-
tomated procedure, whereas asymmetric composition is a
better way to introduce new concerns into models, and of-
ten offers better reusability, but the composition protocol
must be explicited.

In the remainder of this paper, our running example fo-
cuses on state machines. However, our asymmetric ap-
proach is completely independent from any domain meta-
model.

2.2 Generating the pointcut language

The previously introduced domain metamodel allows
users to design consistent state machines, but it is too re-
strictive for designing aspects. For example, a template
model might only be composed of a region with a vertex
(whatever its type), a final state and a transition that links
the vertex to the final state. We may also want the vertex
to be an indirect source of the transition i.e., it is possible
to fire the (dashed) transition from vertex, directly or not.
This model does not conform to MM because the Vertex
meta-class cannot be instantiated and MM does not con-
sider the semantic notion of indirect source. This template
model is illustrated in Figure 2. Moreover, we want to be
able to declare some elements as roles i.e., elements that
must be substituted by actual base model elements, whereas
other elements can be seen as structural constraints that the
pattern must respect. For example, if we want to modify
all the quitTransitions from the region, we will declare the
transition and the region as roles to be able to manipulate
them. The other elements are just structural constrains: the
transition must link a vertex to a final state.

Figure 2. A Simple Template Model

In order to be able to describe more easily target
models, we construct on demand a more flexible meta-
model [27] MM’, using a model transformation written in
Kermeta [26]. MM’ is equivalent to MM, except that:

1. No invariant or pre-condition is defined in MM’;
2. All features of all meta-classes in MM’ are optional;

3. MM’ has no abstract element.
This model transformation is generic because instead of

manipulating the domain elements (Vertex, Transition, . . .),
it manipulates higher-level concepts provided by ECore,
MOF or EMOF for describing metamodels. Consequently,
MM’ can be generated for any input metamodel MM. Fig-
ure 3 illustrates the result of this transformation applied to
the metamodel for state machines (Figure 1).

Figure 3. The Unconstrained Metamodel MM’

In MM’ (Figure 3), we can see that a transition can de-
clare no source/target vertex and can be instanciated without
its containing region. Moreover, if a user wants to match a
vertex, whatever its real type, he can now instantiate the
Vertex meta-class. Additionally, we introduce two se-
mantic associations (allTargets and allSources) to
represent states (in)directly after or before a given transi-
tion. We also weave these associations as derived proper-
ties into MM to be able to compute all the state before/after
a transition. Note that weaving derived properties does not
change the metamodel, it only adds semantic.

In order to ease the detection of model elements that can
match roles, we use a Prolog-based pattern matching en-
gine [27], implemented in Kermeta [26]. The domain meta-
model is automatically mapped onto a Prolog knowledge
base. Then, patterns with roles are transformed into a Pro-
log queries over this knowledge base. Finally, the Prolog re-
sults are converted back into a Kermeta data-structure. This
process is totally hidden from the user who only designs
model snippets like the one presented in Figure 2.

2.3 Generating Adaptations

The second step of an Aspect-Oriented approach is the
weaving process. It consists in composing aspects into the
base model, at the places identified by the template model.
The key concept is the adapter [18, 19], that describes the
aspect structure (what will be woven), a template model
with roles(where it will be woven) and a composition pro-
tocol (how it will be woven). The composition protocol is

Proceedings VaMoS'08

55

described by adaptations, that are weaving operations ma-
nipulating the concepts of the domain. For example, in the
context of class diagrams, an adaptation can add a super
class to another class, introduce methods or attributes in a
class, etc. These concepts are structured in the adaptation
metamodel illustrated in the top-part of Figure 4.

Figure 4. A Framework for Aspect Weaving

This metamodel is composed of three parts: i) a generic
part describing the concept of adapter, adaptations and as-
pect (structure and target), ii) the unconstrained metamodel
MM’ that is linked to the generic part by introducing the
meta-class PObject as the root element of MM’, and iii)
domain specific adaptations extending the generic meta-
class Adaptation (bottom-part of Figure 4).

We propose a systematic way to generate
domain-specific adaptations. For each meta-classes
MyMetaClass of a metamodel MM, we generate four
adaptations:

1. SetPropertiesOfMyMetaClass: this adaptation al-
lows user to set or update (addition) any property of
MyMetaClass. For example, SetPropertiesOfRe-
gion allows designers to add states and transitions in a
region.

2. UnsetPropertiesOfMyMetaClass: this adaptation al-
lows user to unset or update (removal) any property of
MyMetaClass. Similarly, UnsetPropertiesOfRe-
gion allows designers to remove states and transitions
in a region.

3. CreateMyMetaClass: this adaptation allows user to
create a new instance of MyMetaClass. It is gen-
erated only if MyMetaClass is concrete. For ex-
ample, CreateState allows designers to create a new
state, that can be manipulated in the remainder of the
composition protocol.

4. CloneMyMetaClass: this adaptation allows user to
clone an existing instance of MyMetaClass. It is
generated only if MyMetaClass is concrete. Simi-
larly, CloneState allows designers to clone an existing,
and manipulate it.

The generation of these adaptations is also generic and
can be done for any metamodel MM: we navigate the meta-
classes and their properties and use Kermeta Emitter Tem-
plate (KET) to generate all the above adaptations, specific
to a domain metamodel. In our approach, we use KET to
generate Kermeta files, but we can generate any kind of
files such as Java code or textual documentation, by defining
template. A template describes the structure of the output
files (Kermeta, Java, text, etc), and the navigation is written
in Kermeta, encapsulated in specific marks2.

All these generated adaptations can manipulate elements
from the template model or from the aspect structure i.e.,
composition protocols written with these adaptations are to-
tally independent from any base model, and can be reused
in different contexts.

This section briefly exposed the principles of our generic
model driven approach for aspect weaving. Our approach
can be customized for any domain metamodel, to obtain
a domain specific AO framework, through two extension
points (Figure 4):

1. PObject: represents an abstraction of any (uncon-
strained) domain metamodel that allows us to describe
the adaptation metamodel with no domain concepts.
When we specialize the framework for a given do-
main, PObject is automatically introduced as the
root meta-class of all the element of MM’, with a
model transformation written in Kermeta [26].

2. Adaptation: represents an abstraction of any domain-
specific weaving operation. All the domain-specific
adaptations must extend this meta-class, declare some
attributes, and implement the execute method that de-
scribes a composition between some model elements.
We automatically generate some basic adaptations, but
designers can create some additional adaptations that
extends Adaptation, or modify existing ones.

3 Two-Dimension Variability Management

In the previous section we present our approach for gen-
erating Aspect-Oriented Modeling frameworks, for any do-
main with a well defined metamodel. In this section, we ex-
tend these AOM frameworks and describe our 2-dimension
approach for managing the variability of software systems.

2similarly to Java code encapsulated in JSP or JET

Proceedings VaMoS'08

56

The main idea is that each aspect is considered as a vari-
ability dimension i.e., aspects integrate variability mecha-
nisms to make them configurable and reusable in different
contexts. Then, different configurations of an aspect can be
woven (or not) in order to propose different variants of the
system.

3.1 Variability Mechanisms for Aspects

The variability mechanisms we propose to integrate in
the aspects are inspired by SPL approaches [31, 34]3:

• Alternatives/Variants: specify that there exist sev-
eral possible ways to compose the aspect (composi-
tion variability) and/or several different places where
to compose it (targeting variability). All the variants
are exclusive i.e., we can only choose exactly one vari-
ant per alternative.

• Options: specify that some adaptations may be exe-
cuted or not, and that some elements from the template
model are not mandatory i.e., they may be present or
not in the base model where we want to weave the as-
pect.

• Constraints: control the variability mechanisms and
limit the number of derived aspects to sensible ones.
Without constraints, the number of possible combina-
tions may become huge, and most of them would not
be sensible. For example, we can easily imagine that
some options or variants require (dependency) or ex-
clude (mutual exclusion) some others.

We propose variability both for the composition protocol
and for the targeting. For composition variability, we only
need to apply the above concepts on adaptations, and inte-
grate them in the adaptation metamodel. For the targeting
variability, MM’ does not allow designers to propose the
full possible range of variability in their snippets because it
is not possible to propose variants on certain features that
have for example a [0..1] cardinality. For example, we can
imagine that we want to instantiate a transition that targets
either a pseudo-state or a state, and not simply a vertex,
because the composition protocol uses adaptations that are
specific to pseudo-state or state, in two distinct variants of
an alternative. In order to propose variability in the target
model, we propose to generate the maximum metamodel
MM” that is equivalent to MM’, except that all the features
can be multiple i.e., all the upper bound are set to * (possi-
bly infinite).

In order to allow composition and target variability, we
extend the adaptation metamodel (Figure 4) presented in
Section 2 with the following key concepts (see Figure 5):

3see http://www.sei.cmu.edu/productlines/ and http://www.splc.net

• Derivable Adapter: a derivable adapter is an adapter
that contains variability i.e., alternatives, options and
constraints. It proposes both composition and targeting
variability.

• Adapter Element: an adapter element is an element
that can be optional or involved in an alternative:
adaptation, target, alternative, conjunction (group of
adapter elements). It is introduced as a super meta-
class for all these elements.

• Alternative: an alternative describes several possible
variants that are mutually exclusive. Each variant is an
adapter element.

• Constraints: a constraint describes either a depen-
dency or a mutual exclusion between some adapter el-
ements. A dependency specifies that a source element
requires some other elements, and an exclusion spec-
ifies that some elements are mutually exclusive i.e.,
two elements cannot be present at the same time, af-
ter derivation.

• Derivation: a derivation allows designers to derive a
derivable adapter i.e., to fix variability. It allows de-
signers to select options, and choose one variant, for
each alternative.

• Conjunction: a conjunction is a block of dependent
adapter elements. It allows to define optional blocks
and variant blocks in an alternative.

To illustrate some of the variability mechanisms, the gen-
erated adaptations and the target model specific to state ma-
chines, we will describe an aspect that adds a Log state be-
fore reaching the final state e.g., for logging errors. Op-
tionally, we propose to come back to a previous vertex after
logging an error, instead of reaching the final state. The tar-
get model and the aspect structure are the model snippets
shown in Figure 6.

In the target model, the containing region, the final state,
the transition that targets the final state are mandatory i.e.,
they must be matched by actual base model elements before
weaving the aspect into a base model. An option specify
that we can target any vertex before the transition. All the
elements of the target model are associated to roles, because
we want these elements to be bound to base model elements,
in order to modify the base model.

Now, we need to define the composition protocol that
will describe how the structure will be woven into any base
model. Note that the composition protocol is totally defined
with elements from the target model and from the aspect
structure i.e., it does not reference elements from any base
model. This protocol is illustrated in Figure 7.

The composition protocol describes the operations
needed for integrating the aspect. In this example, all the

Proceedings VaMoS'08

57

Figure 5. Extended Adaptation Metamodel

Figure 6. Target Model and Structure

adaptations are Set* adaptations because the aspect only
adds model elements that exist in the aspect structure.

The concrete syntax we propose for adaptations is very
basic. For example, the first adaptations (Line 01) is called
introduceStruct and its real type is SetRegion. Its first
parameter is the region to set (Line 01-a), and all the follow-
ing parameters refer to the element we want to introduce in
the targeted region: some subvertices (Line 01-b) and tran-
sitions (Line 01-c). The three following adaptations aims at
connecting the transitions (Lines 2 and 3) and renaming the
Log state (Line 04) to fit its context. Finally, we declare an
optional conjunction (Lines 5) that aims at introducing and
connecting the backTransition.

Note that MDE tools like Sintaks4 [25] can easily bridge
abstract syntax (metamodel) and concrete syntax (text), by
parsing texts into models, and transforming models into
texts, according to rules defined in a Sintaks model.

4available at http://www.kermeta.org/sintaks

Figure 7. Composition Protocol

3.2 Weaving Aspect Configurations

The previous sub-section details the first variability di-
mension i.e., the integration of variability mechanisms into
aspects. This sub-section details the second variability di-
mension: the configuration, or derivation of aspects and the
weaving process.

The aspect presented in the previous sub-section (Fig-
ures 6 and 7) can be configured in two different ways, and
consequently there are three possible variants:

• Variant 1: Do not weave the aspect
• Variant 2: Just add the Log state
• Variant 3: Variant 2, and we add a transition back to a

previous state
If we consider several aspects, we can easily propose

many different variants of the system by configuring aspects
and weaving them, or not, into the base system. The deriva-
tion process can be summarized as follows:

1. Constraints: we check that the derivation d provided
by the user respects all the constraints of the deriv-
able adapter. We just call the check(d) method for all
the constraints of the adapter, that is implemented di-
rectly in the adaptation metamodel (see Constraint
in Figure 5), with Kermeta. If one constraint is not
reached, the framework raises an exception telling the
user that his derivation is not well-formed.

2. Adaptations: the composition protocol (adaptations) of
the derived adapter is built in a positive way i.e., se-
lected options and variants are added into the derived
adapter.

3. Target Model: the target model is (un)built in a nega-
tive way i.e., the model elements that are not selected

Proceedings VaMoS'08

58

(non-chosen options and variants) are deleted from the
target model.

4. Post-condition: after derivation, the target model must
conform to MM’, and not only to MM”. Otherwise it
means that a cardinality is over the maximum bounds,
and consequently the target model cannot be matched
by any model snippet.

When an aspect is successfully configured, it can be wo-
ven into a base model, following this process:

1. Binding phase: the user provides a binding that links
target model elements to actual base model elements.
Note that bindings can automatically be found/checked
using the pattern matching framework of Ramos et
al. [27], to guide the user.

2. Weaving phase: for each binding selected by the user,
we apply the composition protocol. In the adaptations,
the target model elements are substituted with their
corresponding actual base model elements, according
to the binding. Between each binding, some elements
of the aspect structure, or cloned/created elements
(Clone/Create* adaptations), can be cloned, or re-
main unchanged. This choice depends on whether the
user wants to use the same instances or introduce new
instances, for each binding.

3. Post-condition : after composition, the modified base
model must conform to MM, and not only to MM’
or MM”. Otherwise it would mean that the composi-
tion protocol violates some constraints (e.g., it removes
mandatory features), or adds too many elements. In
this case, we roll back to the initial base model.

The process can be applied several times and is po-
tentially infinite and/or nondeterministic: if we con-
sider that the process has been applied (n-1) times,
we denote resp. configurationn, bindingn, weavingn,
resp. the aspect configuration, the chosen binding
and the result after weaving, for the n-th time. We
have: bindingn=f(configurationn, weavingn−1) and weav-
ingn=g(configurationn, bindingn)=h(configurationn, weav-
ingn−1). The configuration of an aspect may change the
target model, and the previous weaving modify the base
model, and potentially adds/removes possible targets, so the
binding is dependent from the configuration and the previ-
ous weaving. The weaving depends on the aspect config-
uration (the selected adaptations) and on the selected bind-
ing, and consequently, it depends on the previous weaving.
For this reason, the process is not fully automated: the user
configures the aspect, then he chooses the binding and the
composition protocol is applied. Next, he can reconfigure
the aspect, choose another binding, etc.

Figure 8. Basic behavior of a phone

Figure 8 illustrates a base model representing the behav-
ior of a simple phone.

Figure 9 illustrates the composition of the aspect when
no option is selected. In this case, we only introduce a Log
state before reaching the final state.

Figure 9. Behavior of a phone with error log-
ging

Finally, Figure 10 illustrates the composition of the as-
pect when the option is selected. In this case, we also in-
troduce a Log state before reaching the final state. Addi-
tionally, we introduce a roll-back transition that targets a
previous state.

Figure 10. Behavior of a phone with error log-
ging and roll-back

Note that is possible to combine different combination
of the aspect to exactly fit the user needs.

4 Related Works

Our approach extends the SMARTADAPTERS ap-
proach [18, 19] by i) generalizing its concepts to any do-
main metamodel [24] (not only Java programs and UML

Proceedings VaMoS'08

59

class diagrams), and ii) representing targets as model snip-
pets [27], instead of declaring targets and constraints one
by one. In [18], we introduce variability mechanisms in the
base SMARTADAPTERS approach for class diagrams. In our
generic approach, we also integrate these mechanisms (Sec-
tion 3), in a slightly different way. Thus, we can propose
configurable aspect, and weave them into models conform-
ing to any domain metamodel.

Recent works discuss the use of Aspect-Oriented Pro-
gramming (AOP) for managing variability at the code level,
and implementing Software Product Lines (SPL). Some of
these approaches advocate AOP for managing optional and
variants cross-cutting features [2], or extracting and evolv-
ing SPL from a single application [1], and propose different
variants, while some approaches like [13], insist on limi-
tations and drawbacks of AspectJ for SPL implementation:
code readability and maintainability, pointcut fragility mak-
ing aspect weaving difficult. Moreover they point out that
most of the mechanisms specific to AspectJ are not use-
ful in most of the cases. Mezini et al. [23] point out the
limitations of feature-oriented approach and AspectJ, espe-
cially its pointcut mechanism, and propose to use CaesarJ
for resolving these problems. AOP is an interesting but still
immature technology for managing variability. The com-
bination of Aspect-Oriented Modeling (AOM) and Model-
Driven Engineering (MDE) makes our approach more ab-
stract and independent from problems inherent to the source
code level. Unlike AspectJ pointcuts, our target models
are totally independent from any base models and our as-
pect can be reused in different contexts, by binding target
model elements to actual base model elements. There is
no need for modifying the target model (pointcut), the as-
pect structure or the composition protocol (advice). Finally,
AOP approaches for managing variability only propose one
variability dimension and do not propose variability into the
aspect itself, as we do.

In [21], Loughran et al. propose an approach that com-
bines notions from AOP, frame technology and Feature-
Oriented Domain Analysis (FODA). AOP aims at modular-
izing cross-cutting concerns and frame technology provide
some means to configure aspects and make them context-
independent and thus, more reusable. Using our approach,
designers can also define context independent aspects using
targets and adaptations that only reference elements from
the aspect template or structure, and not directly base model
elements. They use the variability mechanisms (alternative
and options) of FODA models to represent the whole sys-
tem e.g., a generic cache. Then, they can delineate framed
aspects and implement them in a reusable way using the
frame technology. Frame is a fine mechanism to parameter-
ize for example, the name and the type of attribute, method,
parameters. In our approach, we use alternatives, options
and constraints inside the aspect itself, for managing the

different possible configurations. Frames are similar to our
target model: both framed parameter and target model el-
ements are substituted with actual elements from the base
program/model, using bindings. Framed-aspect do not re-
ally propose internal variability, only configuration. Finally,
both approach propose two variability dimensions, but they
mainly focus on the system variability while we mainly fo-
cus on the aspect variability.

In [30], Schauerhuber et al. propose a common refer-
ence architecture for Aspect-Oriented Modeling. The con-
cepts they identify are quite similar to the ones identified by
Lahire et al. in the SMARTADAPTERS approach [18, 19],
that we leverage to generalize the concepts of AOM to any
domain metamodel. The approach of Schauerhuber et al. is
also language-independent and may be applied for any do-
main metamodel. But, they do not propose means to gener-
ate the pointcut language nor domain-specific adaptations.
Our generative approach, based on MDE techniques, allows
designers to automatically specialize our framework, for
any domain, by generating an unconstrained domain meta-
model for designing target models (pointcuts), and generat-
ing domain-specific adaptations dealing with updating (ad-
dition/removal), creating and cloning elements. Moreover,
they do not propose variability mechanisms, whereas we in-
troduce mechanisms inspired by Software Product Line ap-
proaches.

In [16], Kim et al. combine this reference AOM architec-
ture with a component-based SPL architecture. They pro-
pose to model variability using aspects, as we do in this pa-
per. The variability mechanism is the variability point that
is equivalent to our alternatives and options. In their archi-
tectures, they do not reify the notions of constraints, and do
not really explicit how variants are selected, with their vari-
ability point bindings. In our metamodel, constraints and
derivation clearly specify the dependencies between vari-
ants, and how to derive variants.

In [12], Whittle et al. propose the MATA (Modeling As-
pects Using a Transformation Approach) tool for compos-
ing features in UML models (class diagrams, state charts
and scenarios), based on graph rewriting. MATA allows
user to describe the composition using stereotypes directly
in feature models. The stereotypes they propose for com-
posing features are similar to our Create/Set/Unset adapta-
tions, but we also propose cloning adaptations. This can
be useful, for example to implement a proxy, where all
the operation needs to duplicate. Their notion of vari-
able is equivalent to our notion of role i.e., elements that
can be substituted. With MM’ and MM”, we can create
more generic pattern by instantianting abstract elements and
defining unconstrained models. Moreover, we propose vari-
ability mechanisms both for the matching and the composi-
tion whereas they only propose one variability dimension.

In [10], Fleurey et al. generalize the Composition Di-

Proceedings VaMoS'08

60

rectives approach [29] and propose “a generic approach for
automatic model composition”, that can be adapted to any
metamodel. This approach is based on signature matching
and systematic merging of model elements. Their symmet-
ric approach aims at merging different views of the same
system e.g., marketing and management views in order to
obtain an integrated view of the system, using an automated
weaving process that can be customized. Our asymmet-
ric approach is different and aims at composing aspects,
that can be considered as reusable patterns, into different
base models, using parameterized composition protocols.
Fleurey et al. do not propose variability mechanisms, but
users can customize the matching by defining the signa-
ture of model elements, and customize the merging with
context-specific composition directives. They do not pro-
pose alternatives, options and constraints for managing all
the possible variants and consequently designers have to de-
fine as many aspects as possible configurations. Our ap-
proach allows designers to model an aspect per concern,
with all the possible configurations. Then users select the
most appropriate configurations to weave into their models.

In [11], Heidenreich et al. propose to extend the “Aspect
Orientation for Your Language of Choice”. Their generic
approach is based on the Invasive Software Composition
(ISC). Both base model and aspect model elements are an-
notated with Slot, Hook and Anchor. A slot indicates that
a base element can be replaced by an aspect element with
an anchor whereas a hook indicates a place in the base
model where some anchored elements from the aspect can
be added. They illustrate their approach on a UML class
diagram and a Java program. Our approach is also generic
but do not need to modify base models to make them aspect
aware, letting base model oblivious of the aspect. We only
use a binding mechanism before composition.

5 Conclusion

In this paper, we have presented our generic model-
driven approach for aspect weaving: for any metamodel
describing a given language or domain, we can generate
both the targeting language and some weaving instructions
that allow users to design reusable aspects. Then, we
have extended this generic approach with variability mech-
anisms, and presented our 2-dimension approach for vari-
ability management. After deriving an aspect by choosing
most appropriate variants and options, aspect configurations
can be woven into base models, to integrate new features
and propose different variants of the system.

In future work, we will extend our 2-dimension approach
for variability management to runtime models [6], in the
context of self-adaptive systems. The main idea is to use
aspects at a model level, to adapt the running system, in-
stead of hard-coding the adaptation logic at the platform

level. Then, using a causal connection, modifications on
the runtime model should be reflected on the running sys-
tem. Moving models from design-time to runtime will re-
duce the complexity of runtime adaptations, by providing a
higher level of abstraction. We are currently working on the
implementation of the causal for the Fractal [20] component
model. However, our causal link is not Fractal-specific and
may be applied to other platforms like OpenCOM [9].

References

[1] V. Alves, P. M. Jr., L. Cole, P. Borba, and G. Ramalho. Ex-
tracting and Evolving Mobile Games Product Lines. In J. H.
Obbink and K. Pohl, editors, SPLC’05: 9th International
Conference on Software Product Lines, volume 3714, pages
70–81, Rennes, France, 2005.

[2] M. Anastasopoulos and D. Muthig. An evaluation of aspect-
oriented programming as a product line implementation
technology. In ICSR’04: 8th International Conference on
Software Reuse: Methods, Techniques and Tools, pages 141–
156, Madrid, Spain, 2004.

[3] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers:
Aspects and Features in Concert. In ICSE ’06: Proceeding of
the 28th international conference on Software engineering,
pages 122–131, New York, NY, USA, 2006. ACM Press.

[4] J. Araújo, J. Whittle, and D. K. Kim. Modeling and Compos-
ing Scenario-Based Requirements with Aspects. In RE’04:
Proceedings of the 12th IEEE International Conference on
Requirements Engineering, pages 58–67, Washington, DC,
USA, 2004. IEEE Computer Society.

[5] E. Baniassad and S. Clarke. Theme: An Approach for
Aspect-Oriented Analysis and Design. In ICSE’04: Pro-
ceedings of the 26th International Conference on Software
Engineering, pages 158–167, Washington, DC, USA, 2004.
IEEE Computer Society.

[6] N. Bencomo. Proceedings of the Models@run.time
(at MoDELS) workshops. www.comp.lancs.ac.uk/ ben-
como/MRT06/
www.comp.lancs.ac.uk/ bencomo/MRT07/.

[7] E. Brottier, B. Baudry, Y. L. Traon, D. Touzet, and B. Nico-
las. Producing a Global Requirement Model from Multi-
ple Requirement Specifications. In EDOC’07: Proceedings
of the 11th Enterprise Computing Conference, Annapolis,
Maryland, USA, 2007.

[8] T. Cottenier, A. van den Berg, and T. Elrad. Joinpoint In-
ference from Behavioral Specification to Implementation.
ECOOP’07: Proceedings of the 21st European Conference
on Object-Oriented Programming, 2007.

[9] G. Coulson, G. S. Blair, M. Clarke, and N. Parlavantzas. The
Design of a Configurable and Reconfigurable Middleware
Platform. Distrib. Comput., 15(2):109–126, 2002.

[10] F. Fleurey, B. Baudry, R. France, and S. Ghosh. A
Generic Approach For Automatic Model Composition.
In AOM@MoDELS’07: 11th International Workshop on
Aspect-Oriented Modeling, Nashville TN USA, Oct 2007.

[11] F. Heidenreich, J. Johannes, and S. Zschaler. Aspect-
Orientation for Your Language of Choice. In
AOM@MoDELS’07: 11th International Workshop on
Aspect-Oriented Modeling, Nashville TN USA, Oct 2007.

Proceedings VaMoS'08

61

[12] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa.
Model Composition in Product Lines and Feature Interac-
tion Detection Using Critical Pair Analysis. In MoDELS’07:
Proceedings of the 10th International Conference on Model
Driven Engineering Languages and Systems, LNCS, pages
151–165, Nashville TN USA, Oct. 2007. Vanderbilt Univer-
sity, Springer-Verlag.

[13] C. Kästner, S. Apel, and D. Batory. A Case Study Imple-
menting Features using AspectJ. In SPLC’07: 11th Interna-
tional Software Product Line Conference, September 2007.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An Overview of AspectJ. In ECOOP’01:
Proceedings of the 15th European Conference on Object-
Oriented Programming, pages 327–353, London, UK, 2001.
Springer-Verlag.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In ECOOP’97: Proceedings of the 11th Euro-
pean Conference on Object-Oriented Programming, volume
1241, pages 220–242, Berlin, Heidelberg, and New York,
1997. Springer-Verlag.

[16] Y. Kim, M. Moon, and K. Yeom. An Aspect-Oriented Ap-
proach for Reprensenting Variability in Product Line Archi-
tecture. In VaMoS’07: 1st International Workshop on Vari-
ability Modelling of Software-intensive Systems, 2007.

[17] J. Klein, F. Fleurey, and J. Jézéquel. Weaving Multiple As-
pects in Sequence Diagrams. To appear in Transactions on
Aspect-Oriented Software Development (TAOSD), 2007.

[18] P. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard,
O. Barais, and J. M. Jézéquel. Introducing Variability into
Aspect-Oriented Modeling Approaches. In MoDELS’07:
Proceedings of the 10th International Conference on Model
Driven Engineering Languages and Systems, LNCS, pages
498–513, Nashville TN USA, Oct. 2007. Vanderbilt Univer-
sity, Springer-Verlag.

[19] P. Lahire and L. Quintian. New Perspective To Improve
Reusability in Object-Oriented Languages. Journal Of Ob-
ject Technology (JOT), 5(1):117–138, 2006.

[20] M. Leclercq, A. E. Ozcan, V. Quema, and J.-B. Stefani. Sup-
porting Heterogeneous Architecture Descriptions in an Ex-
tensible Toolset. In ICSE’07: Proceedings of the 29th Inter-
national Conference on Software Engineering, pages 209–
219, Washington, DC, USA, 2007. IEEE Computer Society.

[21] N. Loughran and A. Rashid. Framed Aspects: Supporting
Variability and Configurability for AOP. In ICSR’04: 8th In-
ternational Conference on Software Reuse: Methods, Tech-
niques and Tools, volume 3107 of Lecture Notes in Computer
Science, pages 127–140, Madrid, Spain, 2004. Springer.

[22] N. Loughran, A. Sampaio, and A. Rashid. From Require-
ments Documents to Feature Models for Aspect Oriented
Product Line Implementation. In MoDELS Satellite Events,
pages 262–271, 2005.

[23] M. Mezini and K. Ostermann. Variability Management with
Feature-Oriented Programming and Aspects. SIGSOFT Soft-
ware Engineering Notes, 29(6):127–136, 2004.

[24] B. Morin, O. Barais, J. M. Jézéquel, and R. Ramos. To-
wards a Generic Aspect-Oriented Modeling Framework. In
3rd International ECOOP’07 Workshop on Models and As-
pects - Handling Crosscutting Concerns in MDSD, Berlin,
Germany, August 2007.

[25] P. Muller, F. Fleurey, F. Fondement, M. Hassenforder,
R. Schneckenburger, S. Gérard, and J. Jézéquel. Model-
Driven Analysis and Synthesis of Concrete Syntax. In
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, edi-
tors, MoDELS’06 : 9th International Conference on Model
Driven Engineering Languages and Systems, volume 4199
of Lecture Notes in Computer Science, pages 98–110, Gen-
ova, Italy, 2006. Springer.

[26] P. Muller, F. Fleurey, and J. M. Jézéquel. Weaving Exe-
cutability into Object-Oriented Meta-languages. In MoD-
ELS’05: Proceedings of the 8th International Conference on
Model Driven Engineering Languages and Systems, volume
3713 of Lecture Notes in Computer Science, pages 264–278,
Montego Bay, Jamaica, Oct 2005. Springer.

[27] R. Ramos, O. Barais, and J. M. Jézéquel. Matching Model
Snippets. In MoDELS’07: Proceedings of the 10th Interna-
tional Conference on Model Driven Engineering Languages
and Systems, LNCS, page 15, Nashville TN USA, Oct. 2007.
Vanderbilt University, Springer-Verlag.

[28] A. Rashid, A. Moreira, and J. Araújo. Modularisation and
Composition of Aspectual Requirements. In AOSD’03: Pro-
ceedings of the 2nd International Conference on Aspect-
Oriented Software Development, pages 11–20, New York,
NY, USA, 2003. ACM Press.

[29] Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M. Bie-
man, N. McEachen, E. Song, and G. Georg. Directives for
Composing Aspect-Oriented Design Class Models. Trans-
actions on Aspect-Oriented Software Development I, LNCS
3880:75–105, 2006.

[30] A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Rets-
chitzegger, and M. Wimmer. Towards a Common Ref-
erence Architecture for Aspect-Oriented Modeling. In
AOM’06@AOSD: 8th International Workshop on Aspect-
Oriented Modeling at AOSD, 2006.

[31] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COV-
AMOF: A Framework for Modeling Variability in Software
Product Families. In R. L. Nord, editor, SPLC’04: 3rd In-
ternational Conference on Software Product Lines, volume
3154 of Lecture Notes in Computer Science, pages 197–213,
Boston, MA, USA, 2004. Springer.

[32] G. Straw, G. Georg, E. Song, S. Ghosh, R. B. France, and
J. M. Bieman. Model Composition Directives. In T. Baar,
A. Strohmeier, A. Moreira, and S. Mellor, editors, UML’04:
Proceedings of the 7th Conference on the Unified Modeling
Language, volume 3273 of LNCS, pages 84–97. Springer,
Oct 2004.

[33] J. Van Gurp, J. Bosch, and M. Svahnberg. On the Notion of
Variability in Software Product Lines. In WICSA ’01: Pro-
ceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA’01), page 45, Washington, DC, USA,
2001. IEEE Computer Society.

[34] T. Ziadi and J. Jézéquel. Families Research Book, chapter
Product Line Engineering with the UML: Products Deriva-
tion, pages 557–588. LNCS. Springer Verlag, 2006.

Proceedings VaMoS'08

62

Model-Based Implementation of Meta-Variability Constructs:
A Case Study using Aspects

Klaus Schmid, Holger Eichelberger
University of Hildesheim, Institute of Computer Science

Marienburger Platz 22
D-31141 Hildesheim, Germany

+49 5121 883 761/
{schmid, eichelberger}@sse.uni-hildesheim.de

Abstract
In this paper, we introduce the concept of meta-
variability, i.e., variability with respect to basic vari-
ability attributes like binding time or constraints.
While the main focus of this paper is on the introduc-
tion of the concept, we will also illustrate the concept
by providing a case study.
The case study will feature a simple implementation
environment based on aspect-oriented programming
and will include an example that will exhibit some key
characteristics of the envisioned production process.

1. Motivation

Product line engineering has become increasingly rec-
ognized in the last few years as a successful approach
to dramatically reduce costs, reduce time-to-market
and improve quality. It has also achieved significant
acceptance in industry [12].

Along with the increasing recognition of product
line engineering in industry, various approaches to
variability modeling were proposed. In particular, fea-
ture modeling concepts are widely discussed and par-
tially used in industry [6, 9, 10, 16], but a large range
of other approaches have been proposed as well, e.g.
[4, 14, 17, 19, 20].

So far all these approaches share (at least) one
commonality as they focus on variability as variation
of specific attributes of the final product (e.g., func-
tional or non-functional properties). Thus, they neglect
the variability that may occur with respect to the char-
acteristics of a specific variability itself. We term such
variability of a variability attribute meta-variability.

Thus, meta-variability relates to variability that may
occur with respect to production processes of subsets
of the product line. For example, for some products a
specific variability may be bound at compile time,
while other products still support a sub-range of vari-
ability and the final binding happens during product
initialization. Thus, the binding time itself may vary.
Similar examples can be given for other variability
attributes as well.

At first glance, the issue of meta-variability may
seem very esoteric; however, it is firmly grounded in
industrial practice.

A simple example, which we observed in one com-
pany, was that some variation was relevant to both
high-end and low-end products. While the low-end
product was produced in high volume, the high-end
product was produced only in low volume. As a con-
sequence, their production processes were different
due to economic reasons. Some variations were com-
mon to these products, but for the low-end product,
which also had less memory and processing power was
reduced, the variation had to be bound at compile time.
This way, each variant was produced independently
and as this did save resources in the final variant and
thus production costs, this was cost-effective.

On the other hand, for the high-end product the
variability had to be bound at initialization time (prior
to sales, but after shipping to country offices). The
reason for this was that sales personal in the various
countries could determine the final product variant in
order to adapt to fluctuations in demand. As the vol-
ume of these high-end products was low, the added
production costs were not relevant in comparison with
the increased flexibility.

Proceedings VaMoS'08

63

This episode shows a clear need for variation with
respect to binding time. More precisely, two different
binding times could be selected alternatively for the
same variability.

In the following sections we will first discuss dif-
ferent approaches to dealing with meta-variability. In
Section 3, we will then describe some basic concepts
of a prototypical production environment that we used
as a basis for supporting meta-variability. In Section 4,
we describe a simple case study. Finally, in Section 5
we will provide our conclusions and illustrations of
possible future work.

2. Dealing with Meta-Variability

To our knowledge, the problem of meta-variability has
so far not been explicitly addressed. Only few ap-
proaches explicitly allow multiple binding times for a
single variability. One example is [19], however, the
approach does not provide a precise interpretation and
semantic foundation of multiple binding times. An
early case study that used this concept is described in
[18].

While the problem sketched above is not uncom-
mon in industry, so far we have not seen it being fully
addressed. Instead an approach is typically taken that
can be interpreted as reification: the meta-variability is
represented as a different variability in the form shown
in Figure 1a.

As this figure shows, reification leads to duplica-
tion of the respective variant information. In practice,

this is often handled implicitly, by modeling the varia-
tion as something like Figure 1b and handling the case
that both variants are selected in a special manner, by
providing additional initialization code, without actu-
ally modeling this as variability. However, this actually
means that variability is only partially modeled. In cur-
rent industrial practice, where variability is usually not
modeled at all, or at least not completely, this is not yet
an issue, but if the underlying goal is to move towards
more systematic (and automatic) variant-based soft-
ware production processes, this becomes a major prob-
lem. Thus, we propose to deal with meta-variability
explicitly and to accept it as a first class modeling ele-
ment. This implies that variation of variability attrib-
utes must be modeled explicitly. This approach in turn
provides the advantage that the various product instan-
tiations can be produced automatically. We will de-
scribe this approach below and discuss it based on a
case study.

3. Concepts of a Production Environment

In this paper, we provide a vision of how future soft-
ware production environments that explicitly support
variability can look like. We do not yet present a full-
fledged product derivation environment.

We sketch a production environment that supports
the automatic product derivation and instantiation of
variability. The core idea is to use the variability
model, together with the current variant selection to
produce the binding of the variant parts. Depending on

compile

time

f1 f2

f1 f2

initialization

time

compile

time

f1 f2
Figure 1 (a) Reification of binding time (b) alternative modeling

Decision Model
Representation

Annotated
Production Code

Decision
Values

Intermediate
Stage Code

Weaving
Final Product

Figure 2 The Production Process

Proceedings VaMoS'08

64

the binding time, the variant parts are bound in a dif-
ferent way. Thus, variation in binding time directly
influences the model-based production process and
leads to the production of different code. This is de-
picted in Figure 2.

The specific form of the production environment
and of the production process depends on numerous
parameters, including the type of artifacts supported,
the programming languages used, etc. Here, we will
focus on a particular example based on Java, which we
tried to keep as simple as possible for illustration pur-
poses. Of course, the implementation could be com-
bined with context-oriented or feature-oriented pro-
gramming [5, 13], instead of the straight-forward ap-
proach we use here. However, the key issue we address
is not the implementation technique, but the need of
communicating meta-variability in the product instan-
tiation process between product developer and the final
product. This goes beyond the existing approaches.

In order to evaluate the feasibility and appropriate-
ness of this idea, we constructed a simple, prototypical
production environment. The core idea of this envi-
ronment is the stringent separation of functional code
and the variability implementation, which we achieved
in a very simple way for our example, a more sophisti-
cated approach could include ideas from feature-
oriented or context-oriented programming.

3.1 Domain Engineering

The approach to product line modeling which is used
in our case study is based on decision modeling, an
approach initially devised in the Reuse-Driven Soft-
ware Process Guidebook [20]. The approach has been
later extended in several ways, e.g., [4, 19]. Here, we
will build in particular on the extensions as described
in [19]. However, we believe the basic approach is not
specifically influenced by the choice of variability
modeling approach and could be integrated in a similar
way with feature modeling or other approaches.

In accordance with the decision modeling ap-
proach, we capture the decisions that are relevant for
deciding about the product characteristics. Further, we
allow that for a single decision multiple appropriate
binding times can be recorded. So far, we have not yet
extended the modeling mechanism as far as enabling to
define constraints on binding times, thus, the semantics
is simply (as was initially defined in [19]) that during
instantiation any of the previously specified binding
times can be chosen for a concrete decision.

Besides the variability model (here the decision
model) the basic information about the product line
must be modeled. In general, this can happen in an
arbitrary modeling language, respectively, by a combi-

nation of multiple modeling approaches. There is no
specific restriction with respect to forms of modeling
that can be used. In the case study, that we will discuss
in Section 4 we will restrict our domain modeling actu-
ally to a Java implementation as this is a widely used
and well-known implementation language. Of course,
different types of artifacts may only allow for certain
variability attributes. For example, a runtime adapta-
tion of a UML model does not make too much sense.

Finally, a relation must be established between the
various decisions and the artifacts that are impacted by
these decisions. A high-level categorization of mecha-
nisms to realize artifact variability was given in [20]:
o Physical Separation, i.e. to represent variant ele-

ments as physically distinct entities, e.g. as sepa-
rate files.

o Target-Language specific mechanisms, e.g. tem-
plates, generics, alternatives in combination with
constants, etc.

o Metaprogramming mechanisms to superimpose a
language for handling variations on top of the tar-
get language.

In our example, we will exclusively rely on mecha-
nisms that are yet supported by the target language and
in related IDEs, i.e. existing editing and refactoring
mechanisms or well-known add-ons e.g. by using
available IDE plugins and libraries.

As one interesting approach aspect-orientation
lends itself to variability implementation. Thus, we
decided to use AspectJ as part of the production envi-
ronment. Of course different choices would have been
possible as our case study does not depend on specific
realization techniques. The realization of variability
will be done by referring to the production code with
pointcuts as defined in aspect oriented programming
[11] and by the use of special purpose variables. The
use of special purpose variables is a target-language
specific mechanism that, in particular, relies on the
target language compiler (e.g. static evaluation of con-
stants, code elimination and inlining). Aspect oriented
programming may appear as a metaprogramming
mechanism (e.g. additional keywords are introduced as
in AspectJ versions prior to version 5) or as a mecha-
nism that relies on meta-information represented by
constructs of the target language (support of Java an-
notations since AspectJ 5). Combined with physical
separation and conditional packaging of the resulting
binaries, aspect oriented mechanisms act in our exam-
ple as a tool to easily realize binding at startup time
and runtime. An alternative, probably with some more
architectural effort, could be applying layers of col-
laborations or polymorphic selection and default ob-
jects [15].

Proceedings VaMoS'08

65

As stated earlier, the specific form of the realization
of the instantation technique depends on a number of
parameters, including the programming language.
Other programming languages will require explicit
preprocessing mechanisms (categorized as metapro-
gramming in [20]) like the well known C preprocessor.
As we will rely on Java in our example, such preproc-
essing mechanisms are substituted by the use of if-
clauses with constant expressions, which are defined in
Java to be equivalent to preprocessing. We combine
this with target-language specific mechanisms facilities
of the core language like special purpose variables and
aspect oriented programming as described above.

3.2 Application Engineering

The aim of application engineering is to derive the
final product. Thus, based on values for the various
decisions (including the determination of the binding
time), feature artifact elements from the product line
model must be selected and combined (cf. Figure 3).
So far, this is very much the standard approach as it
has been realized in numerous other product line mod-
eling tools (e.g., [3]). This becomes more of an issue as
soon as binding times that involve runtime decisions
must be addressed. In this case, the code that binds
together the various feature implementations should be
generated.

In our approach, we generate variability code from
the decision model information and combine it with a
simple runtime part provided by the production envi-
ronment. Thus, if values and binding time are assigned
to a decision so that full instantiation is possible at de-
velopment time, the necessary artifact elements are

combined. If runtime decision making is required (e.g.,
during start-up), this decision must be modeled on the
level and in the representation of the artifact in ques-
tion. In our case study, as we will only deal with Java
Code, this will relate to the actual activation code.

This concept is shown in Figure 3. This figure
shows two possible artifact elements. They are related
by binding elements. These binding elements may take
different forms, depending on the kind of decision
taken and the binding time:
� In case the decision is taken to have only one of

those elements (and this is valid at development
time), the binding element simply needs to inte-
grate the artifact element with the remainder of the
model.

� In case the decision is taken to have both elements
present at runtime (and this decision is taken at
development time), the binding element must be-
come a connector that connects both elements si-
multaneously.

� In case the decision is taken to have one of the
elements, but the final decision which one is taken
at runtime, this needs to turn into a connector that
is evaluated at runtime.

Though this discussion is still rather abstract at this
point, it will probably become somewhat clearer as we
illustrate it in the next section based on a case study.

4. Case Study

In order to analyze the possibilities and implications of
making meta-variability explicit and treating it as a
first class citizen, we conducted a case study based on
an existing software system, with which we were al-
ready well acquainted: the SVNControl system [2].

4.1 Prototype Realization of the Production
Environment

The prototypical production environment contains
� the domain modeling view, an Eclipse plugin,

which maintains the decision definition table from
domain engineering (see section 4.3). The editor
allows creating, editing and deleting domain deci-
sions. In particular, for each domain decision the
allowed binding times, i.e. the binding range, and
a value range (currently boolean values, arbitrary
integer ranges and arbitrary enumerations are sup-
ported) constraining the instantiation of the deci-
sion can be specified. The domain definition table
is stored as a file in XMI format.

� the product derivation view, also part of the
Eclipse plugin used to specify the values of con-

Feature A
Artifact E

lem
ents

Feature A
A

rtifact E
lem

ents

Feature B
Artifact E

lem
ents

Feature B
A

rtifact E
lem

ents

Binding
Elements
Binding

Elements

Figure 3 Instantiated Artifact Elements Model

Proceedings VaMoS'08

66

crete decisions (as described in section 4.4). The
derivation view allows to provide values to non-
instantiated decisions, and the editing and deleting
of the concrete decisions. The concrete decision
values are stored as a file in XMI format, which is
linked to the domain definition table file.

� the code generator (as described in section 4.3)
and build management support, i.e. appropriate
ANT [1] tasks to
o Configure and run the code generator by

specifying the product decisions file and the
names of the classes to be generated.

o Optionally execute a Java specific C-style pre-
processor based on the values of the product
decisions. Currently, the preprocessor is in-
tended to prepare the environment for other
target languages.

o Clean up empty class files that result from the
execution of a preprocessor.

� the runtime core to be included into the final prod-
uct if decisions are left to the user and must be
made e.g. during startup or runtime. The runtime
core contains a default mechanism for user deci-
sion making and the implementation of value
range types in order to validate the user input.

The individual parts of the production environment
will be described along with the case study in the next
section.

4.2 The Base System

Our case study is based on the SVNControl system,
which provides a network based management interface
to the subversion system. The system was initially de-
veloped at the University of Hildesheim, but has been
released as Open Source [2]. Currently, it is still under
development and has been taken up by organizations
like UBS, GDV (association of German insurances),
and many others.

SVNControl is a remote administration tool with
graphical user interface for the version management
system Subversion. SVNControl supports the admini-
stration on repository level (e.g. to create, rename or
delete repositories consistently), user or group level,
access permission level and on scripting level, i.e. to
take control over several hooks controlling valid
check-ins etc.

Basic administrative functions are relevant to all
users and should therefore be treated as commonalities
in a product line. However, some more advanced fea-
tures like scheduling of permissions as well as script-
ing and hooks are candidates for a special distribution
for advanced administrators. Based on discussions with

users, also the entire user management is in question in
some environments, because often in organizations,
users and user attributes like groups are centrally ad-
ministered, e.g. by LDAP or ActiveDirectory and
therefore, this functionality should not be available.

While currently the product is built without vari-
ability, we decided it makes a good case study, as a
need for variability can be clearly identified and the
code is well known to the second author.

4.3 Modeling Variability

Following the brief introduction of SVNControl in the
section above, we will now discuss how we repre-
sented the variability using our prototypical production
environment in terms of the decision model approach
as described in [19]. Due to space limitations, we will
restrict ourselves to the variabilities for the scheduling
and the hook functionality.

The definition of a decision consists of:
� A unique name used to reference the decision.
� The relevancy specifies the circumstances under

which the definition is meaningful.
� A textual description of the decision.
� A range to define or restrict the values that the

decision can take. The cardinality defines how
many values the decision (seen as a set) may have.

� Constraints among values of the various decision
variables

� Binding times: Define a range of points in time,
which describe when the decision can be bound to
a concrete value.

As mentioned above, we will discuss two decisions
in this case study. They refer to the capability of the
resulting product to administrate

o permissions using a scheduler.
o the hook scripting mechanism.

Figure 4 depicts the decision modeling view of our
production environment showing those decisions for
SVNControl. The definitions of the decisions can be
maintained in the domain decision table in the upper
left part. In particular, the user can specify a value
range (e.g. boolean values) and an individual binding
time range for each decision (in the lower part). In this
case study we will neither consider the relevance nor
the constraints of the decisions.

When the domain decision model is specified, the
information on the decisions must be transformed into
source code related information. Therefore, depending
on the binding time range of the individual decisions,
the code generator of our prototypical production envi-
ronment will produce a set of constants for each avail-

Proceedings VaMoS'08

67

able binding time. We will now discuss how the rela-
tion between the decisions and the variant artifacts can
be realized for Java as target language.

In Java, compile time decisions can simply be rep-
resented as constant values to be evaluated as expres-
sions in alternatives (if-statements), because, according
to the Java Language Specification [8], the compiler
will evaluate the constants during compile time and
inline or exclude the source code influenced by the
alternative. Consequently, the if-statement in Java in
combination with constants acts like a preprocessor
statement in other languages. Of course, it would be
clearer to have an explicit preprocessing step, but this
is the way Java is defined. This confusion of preproc-
essing-IF and runtime-IF can be considered a short-
coming of the Java-language definition.

For example, if the decision is made at compile
time that the scheduling functionality should be avail-
able, the code generator will produce a constant class
containing a constant named according to the identifi-
cation of the decision and initialized with the given
default value as follows:

/**
 * Configuration constant for the
 * decision "Can user or group …?".
 */
 public static final boolean
 OPT_SCHEDULES = false;

The production code itself may now contain appro-
priate alternatives depending on the value of the com-
pile time decision, e.g. in our case study code to dis-
play the related GUI elements in the case that the deci-

sion value is true.
So far, this was standard implementation of a com-

pile time variability. However, the interesting part is
that the production environment can handle also
startup and runtime binding for the same decisions.

For these decisions more information must be taken
into account in order to construct an appropriate deci-
sion-making mechanism at startup time or runtime.
Taking the domain decision table as input, the model-
based generator will produce object constants (enum
values) that will carry additional information to be pro-
vided to the runtime decision-making mechanism.
Even if constants are generated, the related concrete
decision values may change during runtime of the pro-
gram, e.g. using a dialog which initializes itself accord-
ing to a set of these enum constants. The following
source code fragment depicts one of the produced
enum constants showing also some additional informa-
tion from the decision model like the description and
the value range:

 /**
 * Configuration constant for the
 * decision "Can user or group …?".
 */
 OPT_SCHEDULES("Can user or group…?"
 ,BooleanValueRange.
 BOOLEAN_RANGE, …),

Only two more steps are needed to make startup or
runtime decisions work: The decision-making dialog
must be called at an appropriate point of time in the
production code of SVNControl and SVNControl itself
must be able to react when a certain decision is made.

Figure 4 The decision modeling view of our production environment.

Proceedings VaMoS'08

68

To address both issues, we resort to using AspectJ
pointcuts to introduce startup calling code and to insert
the necessary code fragments from runtime variability
into the code. Other approaches (e.g., preprocessing)
could have been used as well for this task, however,
we use AspectJ as it provides rather clear and well-
known mechanisms. In addition, we used a legacy sys-
tem as a basis for our case study. Thus, it was a key
requirement to use technologies that enable the intro-
duction of variability with as little restructuring of ar-
chitecture and code as possible.

The examples shown in this case study are given in
the old style of AspectJ – AspectJ 5 facilitates Java
annotations so that no proprietary keywords are neces-
sary anymore. From a strict viewpoint, using the old
style of AspectJ implies the use of a metaprogramming
approach that is outside the target language. We will
ignore this minor issue here, because the example
could easily be refactored to new style and the well-
known notation simplifies reading this paper.

Using AspectJ, the Java compiler as well as the
runtime environment of the final product will be en-
hanced by code weaving facilities as indicated in
Figure 2. The following example shows the pointcut
related to the startup time decision for permission
schedules in SVNControl. StartupConfigura-
tion is assumed to be the enum class produced by the
code generator for startup time decisions. Method pa-
rameters are not shown to keep the example simple.

aspect Startup_Schedules {

 pointcut myClass():
 within(MainWindow);

 pointcut myMethod(): myClass() &&
 execution(void MainWindow.
 initializeDynamicElements());

 before(): myMethod() {
 if (StartupConfiguration.
 OPT_SCHEDULES.getBooleanValue()) {
 // activate the scheduler UI
 }
}

The code artifacts to be injected for runtime deci-
sions look similar. A runtime related aspect defines the
call to the decision-making mechanism, e.g. as an ac-
tion of a special menu item. To notify SVNControl
about changes of the runtime decision value, the point-

cut may register an observer [7] in the runtime core of
our production environment. The concrete application
may then react appropriately when a value is changed,
i.e. in the case of SVNControl by enabling or disabling
GUI parts related to the decision.

Due to the architecture of SVNControl, all vari-
abilities sketched in this paper can be realized in a
similar way as presented in this section.

By providing information on all binding times of
each decision specified in the domain decision table
and by separating the binding time related code into
several aspects, we gain the flexibility to relate the
realizing artifacts to decisions at development time and
to postpone the decision on the concrete binding times
until product derivation time and finally to smoothly
switch among the available binding opportunities while
product derivation time. In the next section, the mecha-
nisms related to product derivation will be discussed.

4.3 Deriving the Products

Based on the results of the variability modeling and the
domain engineering, i.e. the domain decision table, the
initially generated constant sets for the supported bind-
ing times and the (implemented) pointcuts, now our
production environment can be used to derive concrete
products by instantiating the decisions and to build the
individual products.

Using the product derivation view shown in Figure
5, the product engineer can now determine the concrete
(initial) value, the binding time of all decisions previ-
ously specified in the domain decision table and the
related code artifacts. Then, by executing the model-
based code generator, the constant sets in the produc-
tion code are (re)generated and the concrete values are
stored in the production code of SVNControl. In par-
ticular, this step is important for the compile time deci-
sions, because it determines the concrete values of the
constants. Thereby, additional build information for the
following build steps is gathered in order to give the
current decision values control over the binary packag-
ing process and, therefore, to influence which classes
or pointcuts will be present in the final product. The
next build step removes existing binaries from previ-
ous builds and calls the compiler with respect to the
relevant pointcuts. Finally, based on the generated
packaging information, only the binaries related to the
selected decisions will be assembled together into ex-
ecutable Java archives.

Proceedings VaMoS'08

69

4.4 Results

We have applied our prototypical production environ-
ment to introduce and realize compile-time, startup-
time and runtime decisions in the context of the
SVNControl application. Based on the decision model
maintained by the domain and application modeling
view of the Eclipse plugin, the generated constant
classes, the runtime part and the build support, it was
easy to realize the discussed decisions and therefore
the intended variability. In particular, with little over-
head also binding times postponed to application deci-
sions can be realized easily.

The code produced by the model-based code gen-
erator is easy to read and fits to usual source code con-
ventions. Beside tests whether the intended binding
time for the decisions is realized and functional, we
were also interested, whether the proper binary parts
appear in the packaged result and whether the binaries
related to disabled binding times disappear. Therefore,
all tests were carried out after rebuilding and repackag-
ing SVNControl. The intended functionality was fully
functional and only the binary parts selected by the
binding times in concrete decisions appeared in the
packaged application, i.e. unintended binary fragments
were completely absent. Thus, the production process
that has been set actually achieved its underlying goals.

5. Summary and Outlook

In this paper, we argued for the importance of meta-
variability. This concept describes the variation of
variation attributes (as opposed to the mere variation of
product characteristics). Meta-Variability, especially in
its form of binding time variability is actually relevant,
but has so far not been dealt with.

We showed that by setting up an adequate produc-
tion environment for variant code, we are able to deal
with binding time variability very easily and in a ca-
nonical manner. We presented a case study of a system
that is currently in daily use, introduced the variabili-
ties artificially in order to have a “clean” test-bed.

The prototypical production environment showed
that systematic support of binding time variability is
possible.

In the future, we will study also other forms of
meta-variability (e.g., the variability of constraints) and
will aim to enhance our production environment along
these lines. Furthermore, specific editors are planned to
also support arbitrary artifacts.

We will further study possibilities of integrating
our model-based generation with our forms of model-
based code generation, in order to arrive at a seamless
integration with target-language independent model-
based development.

References

[1] Project homepage ANT, 2007. Online available at:
http://ant.apache.org/.
[2] Project homepage SVNControl, 2007. Online available
at: http://svncontrol.tirgirs.org/.
[3] M. Antkiewicz and K. Czarnecki. FeaturePlugin: Fea-
ture modeling plug-in for Eclipse. In OOPSLA’04 Eclipse
Technology eXchange (ETX) Workshop, 2004.
[4] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties,
O. Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wüst, and
J. Zettel. Component-based Product Line Engineering with
UML. Addison-Wesley, 2002.
[5] P. Costanza, R. Hirschfeld, and W. De Meuter. Effi-
cient layer activation for switching context-dependent behav-
ior. In D. Lightfoot and C. Szyperski, editors, JMLC 2006,
volume 4228 of Lecture Notes in Computer Science, Berlin /
Heidelberg, 2006. SpringerVerlag Inc.
[6] K. Czarnecki and U. W. Eisenecker. Generative Pro-
gramming: Methods, Techniques, and Applications. Addison-
Wesley, 1999.
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, Massachusetts, 2000.
[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, 3. edition. Addison-Wesley, 2005.
[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21
ESD-90-TR-222, Software Engineering Institute Carnegie
Mellon University, 1990.
[10] Kyo C. Kang, Jaejoon Lee, and Patrick Donohoe. Fea-
ture-Oriented Product Line Engineering. IEEE Software,
19(4):58–65, 2002.
[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proceedings of the European Conference

Figure 5 The product derivation view of our
production environment.

Proceedings VaMoS'08

70

on Object-Oriented Programming, volume 1241 of Lecture
Notes in Computer Science. SpringerVerlag Inc., 1997.
[12] F. van der Linden, K. Schmid, and E. Rommes. Soft-
ware Product Lines in Action - The Best Industrial Practice
in Product Line Engineering. Springer, 2007. http://www.spl-
book.net/.
[13] M. Mezini and K. Ostermann. Variability management
with feature-oriented programming and aspects. In SIGSOFT
'04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software engi-
neering, pages 127–136, New York, NY 10036, USA, 2004.
ACM Press.
[14] D. Muthig. A Light-weight Approach Facilitating an
Evolutionary Transition Towards Software Product Lines.
PhD thesis, Fraunhofer-Institut für Experimentelles Software
Engineering IESE, Kaiserslautern, University of Kaiserslau-
tern, Germany, 2002.
[15] D. Muthig and T. Patzke. Generic implementation of
product line components. In Proceedings of the
Net.ObjectDays (NODE’02), Erfurt, Germany, October 2002.
[16] I. Pashov, M. Riebisch, and I. Philippow. Supporting
Architectural Restructuring by Analyzing Feature Models. In
Proceedings 8th European Conf. On Software Maintenance
and Reengineering, Tampere, Finland, March 24-26, 2004,
pages 25–33, 2004.
[17] Klaus Pohl, Günter Böckle, and Frank van der Linden.
Software Product Line Engineering: Foundations, Princi-
ples, and Techniques. SpringerVerlag Inc., August 2005.
[18] K. Schmid, U. Becker-Kornstaedt, P. Knauber, and
F. Bernauer. Introducing a software modeling concept in a
medium-sized company. In International Conference on
Software Engineering (ICSE’22), New York, NY 10036,
USA, 2000. ACM Press.
[19] K. Schmid and I. John. A Customizable Approach To
Full-Life Cycle Variability Management. Science of Com-
puter Programming, 53(3):259–284, 2004.
[20] Software Productivity Consortium Services Corpora-
tion, Technical Report SPC-92019-CMC. Reuse-Driven
Software Processes Guidebook, Version 02.00.03, November
1993.

Proceedings VaMoS'08

71

Proceedings VaMoS'08

72

Value-Based Elicitation of Product Line Variability: An Experience Report

Rick Rabiser Deepak Dhungana Paul Grünbacher Benedikt Burgstaller
Christian Doppler Laboratory

 for Automated Software Engineering
Johannes Kepler University Linz, Austria

{rabiser, dhungana, gruenbacher, burgstaller}@ase.jku.at

Abstract

Understanding and modeling the variability of an

existing system is a highly critical and challenging task
when adopting a product line approach. Only little
guidance is available for identifying the variable ele-
ments in a complex system and for choosing the ap-
propriate level of granularity for modeling. Also,
product line engineers have to find a balance between
the technically feasible variability and the externally
visible variability reflecting the business perspective of
an organization. In this paper we describe experiences
in developing and applying a value-based process for
eliciting product line variability which aims at inte-
grating the technical and business perspectives in
product line engineering. We developed the process in
a series of workshops carried out with our industry
partner Siemens VAI, the world’s leading company in
plant building for the iron, steel, and aluminum indus-
tries.

1. Introduction and Motivation

Numerous variability modeling approaches and
tools are available in software product line engineering
(SPLE), e.g., [1, 2, 13, 17, 18]. While these approaches
provide good support for managing and formally de-
scribing variability, the elicitation of the variability of
existing systems still remains a challenging task when
adopting a product line approach. Explicit support for
variability elicitation is thus needed to acquire knowl-
edge about variability from both technical and business
stakeholders.

In our ongoing research cooperation with Siemens
VAI we have been developing a decision-oriented ap-
proach for SPLE [6, 15]. When creating initial vari-
ability models using our modeling language and tools
[7, 14] we noticed a lack of elicitation techniques for
identifying and understanding the variability of exist-

ing systems, capturing the tacit knowledge of different
stakeholders, and choosing the right level of granular-
ity for modeling variability.

Today’s highly customizable, component-based
software architectures offer an extremely high degree
of technical variability. However, not all technically
possible variants of a system are also relevant for cus-
tomers. A key challenge of SPLE thus lies in simulta-
neously understanding both the technically feasible
variability and the externally visible variability [12].
Product line scoping approaches, e.g., [16], address
some of these issues. However, little guidance is avail-
able for finding the right balance between what could
be modeled and what should be modeled. Finding the
right level of granularity is challenging as both techni-
cal and business requirements need to be met.

Linking business and technology issues has re-
ceived increased attention in software engineering. For
example, the field of value-based software engineering
(VBSE) [3] aims to overcome the traditional value-
neutral approach in software engineering that treats all
artifacts as equally important. Value-based variability
modeling means to consider the business value and the
associated risks of variability. Furthermore, VBSE
suggests that variability management must not be seen
as a pure modeling problem. Extracting tacit variability
knowledge from diverse heterogeneous stakeholders is
a collaborative process [8, 10, 11] that relies on involv-
ing software engineers that have been developing the
reusable assets as well as people marketing and selling
these assets need. Collaborative methods in software
engineering emphasize stakeholder involvement. For
instance, the EasyWinWin approach [4] has demon-
strated the use of collaborative techniques to elicit
stakeholder value propositions in requirements engi-
neering. The field of collaboration engineering (CE)
[5] provides further insights into general patterns of
group collaboration that are also useful to define vari-
ability elicitation processes.

Proceedings VaMoS'08

73

In this paper we describe a process for eliciting
product line variability that aims at integrating three
research areas: (i) SPLE with a focus on variability
modeling and management, (ii) VBSE and in particular
the question: how much is enough in variability model-
ing?, as well as (iii) CE with patterns of collaboration
that enable different people working together to pro-
duce mutually satisfactory results. The process
emerged in course of several variability modeling
workshops we conducted with our industry partner.
The paper is structured as follows: In Section 2 we
describe how we iteratively developed the process and
discuss lessons learned. In Section 3 we present the
resulting process model. Section 4 rounds out the pa-
per with a conclusion and an outlook on future work.

2. Defining the Process

We conducted a series of workshops with engineers
and project managers of Siemens VAI to elicit the vari-
ability of a complex software system supporting con-
tinuous casting in steel plants [9]. The goals of these
workshops were to understand the variability of differ-
ent parts of the system and to define a repeatable proc-
ess for eliciting variability which can be used by prod-
uct line engineers in their daily practice. We started
with a tentative process and tested it in an initial work-
shop. Based on experiences and feedback from partici-
pants we iteratively adapted and enhanced the process
in further workshops. In total, three 3-hour workshops
were conducted to capture the most relevant variability
of the six largest and most complex subsystems of the
software system. Relevance in this context means that
the variability addresses a development risk (high loss
if a certain decision is not taken or taken delayed dur-
ing derivation) and an important business aspect (di-
rectly creating customer value in application engineer-
ing). More specifically the workshops aimed at the
following goals (italics denote refinements of the ini-
tial goals based on experiences).

(G1) Finding the most important differences be-
tween products previously developed.

(G2) Analyzing these differences to develop a
shared understanding of the system’s variability and
variability management in general.

(G3) Documenting the rationale and importance
(value, risk) of the identified variability together with
known consequences for engineering and development.

(G4) Developing a shared understanding of the im-
pact of the identified variability on engineering. This
includes for instance how and why the identified vari-
ability is implemented in the system.

(G5) Defining the variability in understandable
terms (e.g., in the form of questions to be answered
during product derivation).

(G6) Prioritizing variability for application engi-
neering and product derivation to find the most essen-
tial aspects for later modeling.

2.1. Workshop Activities

The first workshop involved two groups with ex-
perience in two large and important subsystems of
Siemens VAI’s software system. Each group consisted
of three engineers that had been involved in the devel-
opment of the subsystem. The workshop was organ-
ized to collaboratively develop one flipchart per sub-
system (Figure 1), with yellow cards describing the
variability, blue cards describing the rationale of the
variability, and red cards describing the variation
points in the form of questions representing decisions
to be taken during product derivation. A moderator
facilitated the process. One scribe took care of arrang-
ing the materials on the flipcharts. Another scribe took
notes about observations and lessons learned in the
process.

Figure 1: Participants use cards to capture the
variability for selected subsystems.

Firstly, as stated in goal G1, participants collected

the most important differences between previously
developed products. Each difference was written on a
separate yellow card. In the following moderated ple-
nary discussion (G2) these differences were analyzed
and rephrased or adapted where necessary to develop a
shared understanding of variability and to improve
clarity. When discussing the rationale for the collected
variability (i.e., customer requirements or internal or-
ganizational decisions) participants requested docu-
menting the consequences of this variability for devel-
opment. We adjusted the tentative process as well as

Proceedings VaMoS'08

74

goal G3 (cf. the parts in italics) as follows: Each group
discussed the implementation of the variability in their
subsystem and documented how it affects the product
derivation process. In a moderated plenary discussion,
the collected consequences were analyzed and ad-
justed, put on blue cards, and arranged with yellow
cards describing the variability.

While conducting the two new activities, an addi-
tional activity based on a new goal (see G6) turned out
to be crucial. While discussing the consequences, par-
ticipants explored possible risks and the relevancy of
variability. This confirmed the need of value-based
elements in the process. In a moderated plenary discus-
sion, the team therefore defined: (i) whether a decision
on the identified variability must be taken early in
product derivation (i.e., at the first milestone in appli-
cation engineering) and (ii) whether the decision has a
local impact within the subsystem and/or system-wide
impact affecting the entire system. A table arranged
beside the cards on the flipchart, with the columns M1
(important for first milestone), local (significant local
influence on subsystem), and system (significant sys-
tem-wide influence) was used to capture the results of
this discussion (cf. Figure 1).

Finally, variation points were elicited in the form of
questions representing decisions to be taken during
product derivation. These were put on red cards and
arranged with existing cards (Figure 1). In additional
iterations variation points were reprioritized, dropped
if considered unimportant or rephrased if necessary to
increase clarity. Also, the relevancy table was adjusted
in some cases.

The first workshop took 3 hours. Based on the ad-
justed tentative process two more workshops were
conducted with the same moderator and scribes but
different developers and architects of Siemens VAI.
During these two additional workshops another ad-
justment to the process was made. It turned out to be
insufficient to deal with variation points in one subsys-
tem only. Participants found it important to also elicit
variability of other subsystems that influences local
variability. Selected variability in other subsystems
was thus also captured but marked as external (by put-
ting the source subsystem on the yellow cards in
brackets, cf. Figure 1).

2.2. Lessons Learned

Time Boxing. Precisely defined time boxes for each
process activity turned out to be very useful. There is a
constant danger that activities take longer than antici-
pated (often caused by fruitless discussions). Modera-
tors have to guide participants towards mutually ac-
cepted agreements. This is however not always possi-

ble in the workshop. Points not agreed upon can be
recorded and dealt with later. Participants also appreci-
ate smoothly run workshops as the time they could
spend in workshops was typically limited.

Prioritization. Moderators should not ask partici-
pants to focus on the most important variability only as
this might limit the creative process in the initial steps.
However, moderators have to ensure to focus on vari-
ability with the highest importance during subsequent
moderated plenary discussions.

Feedback. It is also important to use the elicited in-
formation to create initial variability models shortly
after the workshop to provide quick feedback. Work-
shop participants and especially senior management
need these concrete models to justify the effort spent
and to validate the work results.

Facilitation. It was useful that both a moderator and
a scribe conducted the process. While the moderator
guides the participants and the discussions, the scribe
is responsible for protocols and documentation.

Levels of Variability. Due to the involvement of dif-
ferent stakeholders, a large palette of variability is elic-
ited ranging from technical details to marketing con-
siderations. Figure 2 shows a simple model of decision
layers we found useful to guide post-workshop model-
ing activities.

Figure 2: Layers of variability.

Complement results with variability recovery tools.

Not all types of variability can be elicited in collabora-
tive workshops. It is beneficial to complement work-
shop results with results from variability recovery tools
such as parsers analyzing existing architecture models
and configuration files.

Proceedings VaMoS'08

75

3. Model of the Collaborative Process

The feedback and experiences from the workshops
allowed us to define a repeatable process for variability
elicitation. The process is value-based as is relies on
stakeholder involvement in the variability modeling
process and on consequent assessment of the identified
variability with respect to relevancy, i.e., both risk im-
pact and business value of variability. The process is
collaborative as it implements the general patterns of
group collaboration known from CE [5]: (i) generate
(a group moves from having fewer to having more
concepts with which to work; i.e., subgroups elicit
differences), (ii) reduce (the group moves from having
many to focusing on a few concepts deemed worthy of
more attention; e.g., discussing collected differences in
a moderated plenary discussion), and (iii) organize (a
group derives shared understanding of the relation-
ships among concepts; e.g., discussing importance and
impact of variability).

The process consists of the following activities also
depicted in Figure 3:

Explain goals and agenda. This can be seen as a
“warm-up” step. The moderator explains the goals of
the workshop and the agenda. Participants report on
the key functionality of subsystems they are responsi-
ble for to provide a starting point for further discus-
sion.

Assign participants. The moderator confirms as-
signment of participants to subgroups focusing on se-
lected subsystems based on their knowledge and back-
ground.

Describe significant variability of subsystem. Each
subgroup discusses the most significant variability
regarding a particular subsystem by analyzing the last
few projects they have been involved in. Participants
also consider the variability of other subsystems influ-
encing the variability of their own subsystem. Partici-
pants write one statement about a variability one a yel-
low variability card.

Discuss identified variability. In a moderated ple-
nary discussion the variability elicited by each group is
discussed one by one, rephrased where necessary de-
pending on participants’ comments, and posted on a
flipchart (one per subsystem) by the scribe.

Figure 3: A value-based, collaborative process for eliciting product line variability.

Proceedings VaMoS'08

76

Reason about the impact of identified variability.
Each subgroup discusses the impact of the identified
variability on engineering and/or business. The mod-
erator asks questions such as: Why is this variability
important for engineering? Why is this variability im-
portant for business and application engineering? What
are the possible consequences of not taking the vari-
ability into account? Participants write each impact
statement on separate blue rationale cards.

Discuss rationale cards. In a moderated plenary
discussion captured impacts are discussed one by one,
adapted where necessary, and posted on the respective
flipchart besides the variability they belong to.

Define importance and impact of variability. Impor-
tance and impact of variability are assessed in a mod-
erated plenary discussion using the rationale cards.
Different categories (e.g., based on development
phases or scope of impacts) are used to analyze the
value of elicited variability. The scribe captures the
following information in a table arranged at the right
of each flipchart: “importance in early project phases
(i.e., for milestone 1)”, “local impact within the sub-
system”, and “system-wide impact beyond the subsys-
tem”. Variability is important for early project phases
if not handling it would lead to major problems in
terms of development effort, cost, or possible failures.

Find questions. Based on the variability cards, the
related rationale cards, and the information regarding
importance and impact, each group suggests questions
that might be asked to stakeholders to address the iden-
tified variability in product derivation. Questions have
to be found at least for that variability marked as im-
portant early in a project and/or having a significant
system-wide impact. Participants put down each ques-
tion on separate red question cards.

Discuss questions. Guided by the moderator all par-
ticipants discuss each question one-by-one and re-
phrase it where necessary. The scribe puts them on the
flipchart for the subsystem they belong to.

The output of the process typically is one flipchart
per discussed subsystem containing the following in-
formation (cf. Figure 1):

Variability cards describe the differences that oc-
curred in the last few projects. Variability from other
subsystems that influenced the local variability of the
subsystem is also described.

Rationale cards denote why the variability is impor-
tant for engineering and/or business.

Question cards represent the variation points to be
modeled in form of questions. The possible answers to
these questions are described on the variability cards.
Answering questions means choosing certain variants.

 The importance and impact table describes the im-
portance of variability for early phases of a project

(i.e., for milestone 1) and whether it has local (subsys-
tem) and/or system-wide impact.

This information can be used to create an initial
variability model. As we follow a decision-oriented
approach [6] the variability models can be easily cre-
ated based on the question cards providing the ques-
tion and name of the decision, the variability cards
providing the possible answers, and the rationale cards
allowing to model meta-information for decisions. The
importance and impact table informs the modeler about
the priorities.

The variability elicited by the process is a good
starting point for variability modeling. However, we
stress that it needs to be complemented with variability
modeling activities on the more technical level. For
example, we use automated tools to find potential vari-
ability in existing architectural models and system con-
figuration files.

We have also developed an electronic process guide
that captures the process in a more formal manner. The
process guide was created using the Process Composer
tool (see Figure 4) provided as part of the Eclipse
Process Framework1. The different activities are mod-
eled as tasks and the outcomes (i.e., the various cards)
as work products. Disciplines group similar tasks to-
gether (e.g., moderated plenary discussions). The proc-
ess guide is available as a hypertext allowing users to
use the process from various perspectives.

Figure 4: Process Guide.

1 www.eclipse.org/epf/

Proceedings VaMoS'08

77

4. Conclusions and Future Work

We presented a collaborative process for eliciting
variability during product line adoption that incorpo-
rates value-based principles and involves people with
an intimate knowledge about a subsystem’s variability
(developers, software architects, etc.). The process
aims to capture the most relevant variability, i.e., vari-
ability that addresses development risks and important
business aspects in application engineering.

We successfully applied the approach in several
workshops conducted with technical stakeholders such
as software architects, developers, and technical pro-
ject managers of our industry partner Siemens VAI.
We learned that such a process is highly valuable to
find out what variability should be modeled at which
level of granularity – an aspect that most existing ap-
proaches do not address.

We believe that collaborative approaches nicely
complement more technical approaches to variability
modeling. Collaborative processes have been defined
in diverse domains based on the same general patterns
of group collaboration we also adopted in our process
[4, 11]. The process was developed in the context of
our decision-oriented SPLE approach in mind. We
believe, however, that it is general enough to be useful
for other variability modeling approaches too, espe-
cially because of the use of well-known and proven
collaboration engineering patterns.

Collaborative technologies such as Group Support
Systems2 can be applied to support the collection,
structuring, and assessment of ideas in the process. The
successful use of such technologies has been demon-
strated in related areas such as requirements negotia-
tion [4] or product line scoping [11].

We plan to conduct further workshops with Sie-
mens VAI and other companies in the future to en-
hance and validate our process. We also plan to run
workshops with sales people and marketing staff in
order to also elicit variability based on business objec-
tives and marketing decisions.

Acknowledgements

This work has been conducted in cooperation with
Siemens VAI and supported by the Christian Doppler
Forschungsgesellschaft, Austria. We would like to
express our sincere gratitude to the staff of Siemens
VAI for their support and for sharing valuable insights.

2 http://www.groupsystems.com

References

[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laiten-
berger, R. Laqua, D. Muthig, B. Paech, J. Wüst, and J. Zettel,
Component-Based Product Line Engineering with UML:
Addison-Wesley, 2002.
[2] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B.
Ramesh, and A. Vilbig, "A Meta-model for Representing
Variability in Product Family Development," in Lecture
Notes in Computer Science: Software Product-Family Engi-
neering, 5th International Workshop, PFE 2003, vol. LNCS
3014, F. van der Linden, Ed.: Springer Berlin / Heidelberg,
2003, pp. 66-80.
[3] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.
Grünbacher, Value-Based Software Engineering: Springer,
2005.
[4] B. W. Boehm, P. Grünbacher, and R. O. Briggs, "Devel-
oping groupware for requirements negotiation: lessons
learned," IEEE Software, vol. 18(3), pp. 46-55, 2001.
[5] R. O. Briggs, G. J. de Vreede, and J. F. Nunamaker Jr.,
"Collaboration Engineering with ThinkLets to Pursue Sus-
tained Success with Group Support Systems," Journal of
Management Information Systems, vol. 19(4), pp. 31-64,
2003.
[6] D. Dhungana, R. Rabiser, and P. Grünbacher, "Decision-
Oriented Modeling of Product Line Architectures,"Proc. of
the Sixth Working IEEE/IFIP Conference on Software Archi-
tecture, Mumbai, India, IEEE Computer Society, 2007.
[7] D. Dhungana, P. Grünbacher, and R. Rabiser, "Deci-
sionKing: A Flexible and Extensible Tool for Integrated
Variability Modeling," in First International Workshop on
Variability Modelling of Software-intensive Systems - Pro-
ceedings, K. Pohl, P. Heymans, K.-C. Kang, and A. Metzger,
Eds. Limerick, Ireland: Lero - Technical Report 2007-01,
2007, pp. 119-128.
[8] D. Dhungana, R. Rabiser, P. Grünbacher, H. Prähofer, C.
Federspiel, and K. Lehner, "Architectural Knowledge in
Product Line Engineering: An Industrial Case Study,"Proc.
of the 32nd Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), Cavtat/Dubrovnik,
Croatia, IEEE Computer Society, 2006.
[9] C. Federspiel, J. Bogner, N. Hübner, R. Leitner, W.
Oberaigner, K. König, and L. Lindenberger, "Next Genera-
tion Level2 Systems for Continuous Casting,"Proc. of the 5th
European Continuous Casting Conference (ECCC), Nice,
France, IOM Communications Ltd, 2005.
[10] T. Käkölä and J. C. Duenas, Software Product Lines -
Research Issues in Engineering and Management: Springer,
2006.
[11] M. A. Noor, R. Rabiser, and P. Grünbacher, "Agile
product line planning: A collaborative approach and a case
study," The Journal of Systems and Software (to appear),
2007, (doi:10.1016/j.jss.2007.10.028).
[12] K. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles, and
Techniques: Springer, 2005.
[13] pure systems GmbH, "Variant Management with
pure::variants, Technical Whitepaper," http://www.pure-

Proceedings VaMoS'08

78

systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf,
2006.
[14] R. Rabiser, P. Grünbacher, and D. Dhungana, "Support-
ing Product Derivation by Adapting and Augmenting Vari-
ability Models,"Proc. of the 11th International Software
Product Line Conference (SPLC 2007), Kyoto, Japan, IEEE
CS, 2007.
[15] R. Rabiser, D. Dhungana, P. Grünbacher, K. Lehner,
and C. Federspiel, "Product Con�guration Support for Non-
technicians: Customer-Centered Software Product-Line En-
gineering," IEEE Intelligent Systems, vol. 22(1), pp. 85-87,
2007.
[16] K. Schmid, "Planning Software Reuse – A Disciplined
Scoping Approach for Software Product Lines," PhD Theses

in Experimental Software Engineering, Fraunhofer IRB,
2003.
[17] K. Schmid and I. John, "A Customizable Approach to
Full-Life Cycle Variability Management," Journal of the
Science of Computer Programming, Special Issue on Vari-
ability Management, vol. 53(3), pp. 259-284, 2004.
[18] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch,
"COVAMOF: A Framework for Modeling Variability in
Software Product Families," in Lecture Notes in Computer
Science: Third Software Product Line Conference (SPLC
2004), R. Nord, Ed.: Springer Berlin / Heidelberg, 2004, pp.
197-213.

Proceedings VaMoS'08

79

Proceedings VaMoS'08

80

Tracing between Features and Use Cases: A Model-Driven Approach

Mauricio Alférez1 Uirá Kulesza1 Ana Moreira1 João Araújo1 Vasco Amaral1

1CITI/Dept. Informática, FCT, Universidade Nova de Lisboa
2829-516 Caparica, Portugal

{mauricio.alferez, uira, amm, ja, vasco.amaral}@di.fct.unl.pt

Abstract

Use cases and features applied together could form
the basis for a systematic method to identify and model
SPL requirements. This paper presents a model-driven
approach which addresses the tracing between
features and use cases. This adopts a simple and
flexible metamodel integration strategy to support the
tracing between variability and requirements models.
It also defines a set of activities in domain engineering
to model, specify and trace SPL requirements and
features. These activities are illustrated using a home
automation system product line.

1. Introduction

Software product lines have emerged as a feasible
and relevant software development paradigm that
allows to the companies to perform important
improvements in time to market, cost, productivity and
quality [1-3]. This is achieved by enabling the strategic
management of common and variable features of a
system family. A system family is defined as a set of
programs that shares common functionalities and
maintain specific functionalities that vary according to
specific family members. A Software Product Line
(SPL) can be seen as a system family that addresses a
specific market segment [1].

Several SPL development approaches have been
proposed [1-5]. Most of them include activities of
identification of common and variable features of the
SPL by means of domain analysis activities. A feature
can be seen as a system property or functionality that is
relevant to some stakeholders and is used to capture
commonalities or discriminate among products in SPLs
[4]. The SPL features are generally represented in
domain analysis using feature models [6], however,
other requirements models, such as, use cases,

scenarios and state machines, could be also used to
better describe the SPL requirements. In the
subsequent SPL development stages, the feature
models, as well as the complementary requirements
models are used along all the process as a reference to
guide the SPL development.

The majority of the SPL approaches offer processes
to elaborate feature and additional requirements
models, however, most of them do not address
traceability between these models explicitly. Some
authors [3, 7-9] have presented some directions on
how to manage the traceability between use cases and
features. Nevertheless, they do not offer an easy to
evolve and to implement strategy based on current and
available model-driven tools and techniques. In
addition, most of them do not show explicitly how to
use the traceability information between feature and
requirements models to generate important traceability
views or specific models according to different SPL
configurations.

This paper proposes a base metamodelling strategy
and some domain engineering activities that allow to
the developer to trace between variability and
requirements models. This approach aims at being
extensible and adaptable to any variability and
requirements engineering modeling technique with a
well-defined metamodel. In this paper, we have
focused on exemplifying it with feature and use case
models as the variability and SPL requirements
models, respectively.

Our approach is supported by model-driven tools
and techniques which use the information provided by
the trace links to automatically derive other useful
models such as different traceability views of the
requirements artifacts. With this work we aim at to
establish a first stepping stone to support the future
incorporation of more domain and application
engineering activities.

Proceedings VaMoS'08

81

This paper starts with an overview of our approach
in Section 2 and follows by illustrating the approach
main activities using a home automation system case
study, in Section 3. Section 4 discusses lessons
learned, Section 5 shows related work and, finally,
Section 6 concludes the paper and presents some future
work.

2. A Model-driven tracing approach

To model, specify and trace SPL requirements, we
followed a model-driven approach wherein the process
is supported by models, metamodels and bindings
between them. The adopted strategy and the approach
main activities are described next.

2.1. Approach strategy overview

Figure 1(a) shows an overview of the strategy we
have adopted in our approach. In this strategy, a
variability model is used to represent the common and
variable SPL features, one or more requirements
models are used to detail the complete specification of
the SPL requirements, and a tracing metamodel is used
to link abstractions between the variability and the
requirements models to enable the navigation between
them using MDD techniques and tools.

Figure 1(b) presents a general schema of the
metamodel organization when use cases and feature
models are used to accomplish the strategy shown in
Figure 1(a). The tracing between use cases and
features is supported by the definition of a traceability
metamodel. It allows linking relevant abstractions of
the use case model (e.g., use cases and actors,
summarized in Figure 1(a) as “Use Case Element”)
and feature models, to integrate requirements and
variability artifacts.

Feature
Metamodel

Tracing Metamodel Use Case
Metamodel

Feature

TracingModel

TraceLink
Traceable
Element

1 1
0..*

Use Case Element

(b) Our Approach

Variability
Metamodel

Tracing
Metamodel

Requirement
MetamodelTracesTraces

(a) General Strategy Adopted

Figure 1. Our approach overview

2.2. Approach main activities

Our approach is organized in a set of activities from
the domain and application engineering perspectives.
In this paper, we focus only on some of the domain
analysis activities in the domain engineering
perspective. Figure 2 shows how the activities are
organized and the artifacts produced during their
execution1.

Identify and Cluster
 Requirements into

Features

Refactor
Requirements
and Features

Model Features
and Use Cases

Generate Use
Cases Annotated

with Features

Relate Features wth
Use Cases

Feature
Model

Trace Links
Table

SPL Use
Case Model

SPL Use Case Model
Annotated with Features

Domain Engineering (Domain Analysis)

Figure 2. Main activities and artifacts

At the domain analysis level, our approach models
and specifies the SPL requirements and generates
tracing views of the relationships between the artifacts.
This is achieved by performing the following
activities:

(i) Identify and cluster requirements into
features. The SPL requirements can be elicited using
traditional requirements engineering techniques.
During this activity, the requirements are also
organized in clusters according to the specific SPL
features they are related to.

(ii) Refactor requirements and features. The SPL
requirements could result to be linked to more than one
feature during the requirements clustering activity. We
propose to refactor such requirements to try to assure
that each one of them is related to only one common or
variable feature. As a consequence of the requirements
refactoring, the features must be also refactored to
accommodate the new requirements clusters.

(iii) Model features and use cases. This activity
structures and represents the SPL requirements and the
variability using use case and feature models. Use case
models specify the functional requirements and feature
models specify the SPL features and variability
information.

(iv) Relate features with use cases. The
relationships between features and use cases are
explicitly marked in a table, as a first step towards
supporting traceability between them.

1 Although these activities are organized sequentially, they are
typically executed iteratively.

Proceedings VaMoS'08

82

(v) Generate use cases annotated with features.
In this activity, the relationships between features and
use cases, as well as the SPL use case and features
models are used by a MDD tool developed for our
approach to automatically generate specific use case
models annotated with features [10]. In the annotated
model, each use case is shown with the respective
features related to it. Therefore, it is also possible to
obtain the set of use cases related to a specific feature.
This allows to the domain analysis engineers and
architects to reason about how each use case is related
to the SPL features and to analyze the impact of
changing specific features in SPL requirements.

3. Applying the approach to an example

To illustrate the activities described in the previous
section, we have chosen a home automation system,
called Smart Home (see also [3]). Smart homes have a
wide variety of electronic and electrical devices which
include lights, thermostats, blinds and fire detection
sensors, security devices such as cameras, glass break
and motion detection sensors, white goods such as
washing machines, communication devices such as
phones and entertainment devices such as televisions.

The Smart Home system is designed to coordinate
the behavior of the devices to fulfill complex tasks
automatically. It also enables the inhabitants to
visualize and control the status of the devices from a
common user interface.

This system is a SPL case study that is being
developed in the context of the European AMPLE
project [11]. Due to its complexity, we will focus only
on a subset of the security module.

3.1. Identify and cluster requirements into
features

Requirements identification can be accomplished
by inspecting existing documents that describe the
problem domain (i.e., existing catalogues [12]),
stakeholders interview transcripts or by using mining
techniques [13, 14]. Other approaches such as [7] and
[3] already address this activity in detail.

During requirements identification we obtained a
subset of the requirements (Ri) of the Smart Home
security module. By inspecting these requirements they
were clustered into features (Fi) as shown in the
following tabular descriptions (Table 1).

Table 1. Smart Home security module requirements and
clusters

F1. Room Surveillance
R1. The system shall provide room surveillance.
F2. Indoor Camera Surveillance and Indoor Motion Detection
R2. Room surveillance shall be accomplished by indoor camera

surveillance or indoor motion detection.
R3. Indoor motion detection and camera surveillance shall be

configured and activated to be used.
R4. The system shall activate indoor camera surveillance when

activates indoor security.
F3. Admittance Control
R5. The system shall be able to identify users.
R6. The system shall automatically open the front door when it has

identified an authorized user.
R7. The system shall automatically close the door after 2 minutes.
R8. The system will be used by the inhabitants and the house owner

that may or may not be also an inhabitant.
R9. The home owner shall be able to configure all the security

services.
F4. Identify User by Biometrical Analysis, Smart Card or PIN
R10. The system shall be able to identify users by means of

biometrical analysis, smart card or PIN.
F5. Intrusion Detection
R11. The inhabitant shall be able to activate indoor and outdoor

security through configuring security management.
F6. Glass Break Detection
R12. Glass break detection shall be configured and activated to be

used.
R13. The system shall activate as minimum glass break detection as

an intrusion detection mechanism.
F7. Outdoor Motion Detection and Camera Surveillance
R14. Outdoor security shall be accomplished by motion detection or

camera surveillance.
R15. Outdoor motion detection and camera surveillance shall be

configured and activated to be used.

3.2. Refactor requirements

During the identification of the SPL requirements
and their clustering into features, we refactor,
whenever possible, the requirements to be related to
only one feature. In addition, the features must be also
refactored to accommodate new requirements clusters.
Refactoring is important to facilitate the definition of
trace links between requirements and features. It also
contributes to a better modularization of the SPL
requirements by improving the separation of the
variable parts of each requirement [15].

Table 2 shows the refactorizations of some of the
requirements shown in Table 1. For example,
requirements R2 and R3 were refactored into R2A and
R3A to address Indoor Camera Surveillance, and R2B
and R3B to address Indoor Motion Detection
separately. R2 and R3 refactoring motivated to refactor
the feature F2 which was split into feature F2A, to
group the parts of the R2 and R3 requirements
addressing Indoor Camera Surveillance (i.e., R2A and
R3A); and feature F2B, to group the parts of the R2

Proceedings VaMoS'08

83

and R3 requirements addressing Indoor Motion
Detection (i.e., R2B and R3B).

Table 2. Refactoring of some of the Smart Home security
module requirements and features

F2A. Indoor Camera Surveillance
R2A. Room surveillance shall be accomplished by camera
surveillance.
R3A. Indoor camera surveillance shall be configured and activated to
be used.
R4. The system shall activate indoor camera surveillance when
activates indoor security.
F2B. Indoor Motion Detection
R2B. Room surveillance shall be accomplished by indoor motion
detection.
R3B. Indoor motion detection shall be configured and activated to be
used.
F4A. Identify User by Biometrical Analysis
R10A. The system shall be able to identify users by means of
biometrical analysis.
F4B. Identify User by Smart Card
R10B. The system shall be able to identify users by means of smart
cards.
F4C. Identify User by PIN
R10C. The system shall be able to identify users by means of a PIN.
F7A. Outdoor Camera Surveillance
R14A. Outdoor surveillance shall be accomplished by camera
surveillance
R15A. Outdoor camera surveillance shall be configured and
activated to be used.
F7B. Outdoor Motion Detection
R14B. Outdoor surveillance shall be accomplished by outdoor
motion detection.
R15B. Outdoor motion detection shall be configured and activated to
be used.

3.3. Model use cases and features

It is possible for textual requirements to express
variability by using a certain set of keywords or
phrases. However, documenting requirements
variabilities in that manner could lead to ambiguities
[3]. Variability at the requirements level must be
documented systematically and unambiguously to
support traceability between different kinds of
artifacts. To achieve this goal, we model and specify
SPL requirements and variabilities in models, such as
use case and feature models.

After refactoring requirements and features (Section
3.2), we build the feature model. Figure 2 shows the
feature model for the Smart Home security module.
This model has three main features: Room
Surveillance, Admittance Control and Intrusion
Detection. Room Surveillance is an optional feature
that includes Indoor Camera Surveillance and,
optionally, Indoor Motion Detection. The inhabitant
can be admitted to enter the house after passing either
a Biometrical Analysis, Smart Card, or entering a PIN.
In case of selecting intrusion detection, the Glass

Break Detection is included and optionally, motion
detection sensors and/or cameras for outdoor security.

We can derive the SPL use cases from the
requirements and features identified previously. Use
case modeling is used to better structure the SPL
requirements and add more semantics to the features
[16]. These, together with feature modeling are used in
the SPL development process to guide and help the
developers’ activities.

Figure 2. Feature model for the Smart Home security
module

Figure 3 shows the use case model of our case
study. This diagram shows that Activate Indoor
Security includes Activate Camera Surveillance and
can eventually extend its behavior with Activate
Motion Detection. Similarly, Activate Outdoor Security
includes to Activate Glass Break Detection and can
eventually extend its behavior with Activate Motion
Detection. To open the front door, the inhabitant must
be identified and this can be done by using a smart
card, a PIN or a more sophisticated process such as
biometrical analysis. Finally, the House Owner actor is
the person in charge to configure the security options.

Identify User by
Biometrical Analysis

Configure Security
 Management

Activate Outdoor
 Security

Activate Camera
 Surveillance

Activate Glass
 Break Detection

Activate Motion
 Detection

Activate Indoor
 Security

Indentify User
by Smart Card

Open Front Door

Identify User
 by PIN

Identify User

House Owner

Inhabitant <<include>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<include>>

Figure 3. Use case model of the Smart Home security
module

Proceedings VaMoS'08

84

The first identified SPL features and use cases can be
refined and incremented to consider new variabilities
or products that need to be included in the family. Both
use case and feature models must be updated when
new features are considered or existing ones need to be
modified or removed.

3.4. Relate features to use cases

The relationships between features and use cases in
the Smart Home security module are specified in the
Table 3. By inspecting the requirements and features in
Sections 3.1 and 3.2, we related, for example, the Open
Front Door use case with Admittance Control, refined
into Biometrical Analysis, Smart Card, and PIN
features because to open the front door, the system
requires Admittance Control.

Table 3. Relationships between use cases and features

Id
en

tif
y

U
se

r

Id
en

tif
y

U
se

r b
y

B
io

m
et

ric
al

 A
na

ly
si

s

Id
en

tif
y

U
se

r b
y

Sm
ar

t C
ar

d

Id
en

tif
y

U
se

r b
y

PI
N

O
pe

n
Fr

on
t D

oo
r

A
ct

iv
at

e
In

do
or

 S
ec

ur
ity

A
ct

iv
at

e
O

ut
do

or
 S

ec
ur

ity

A
ct

iv
at

e
M

ot
io

n
D

et
ec

tio
n

A
ct

iv
at

e
G

la
ss

 B
re

ak
 D

et
ec

tio
n

A
ct

iv
at

e
C

am
er

a
Su

rv
ei

lla
nc

e

C
on

fig
ur

e
Se

cu
rit

y
M

an
ag

em
en

t

Room Surveillance x x x x

Indoor Camera
Surveillance

 x x x

Indoor Motion
Detection

 x x x

Admittance
Control

x x x

Biometrical Analysis x x x

Smart Card x x x

PIN x x x

Intrusion Detection x x

Glass break detection x x x

Outdoor Motion
Detection

 x x x

Outdoor Camera
Surveillance

 x x x

The information provided by this kind relationships
table is used as the basis to support forward and
backward traceability between features and use cases;
and the reasoning about the impact of feature
interactions in the SPL requirements expressed by
means of the use cases models. In this paper, we focus
on the description of the traceability functionalities.
The information about feature interactions offered by
our approach will be useful during the elaboration and

design of product line architectures to allow an
adequate modularization and implementation of their
respective features.

3.5. Generate use cases annotated with features

The relationships established in the previous
activity allow the generation of special use case
models annotated with features.

Different kinds of traceability views can be
implemented to represent features and use cases. These
views allow the domain analysis engineers and
architects to reason about the domain analysis artifacts
interdependencies. Currently, the traceability views
that our approach generates in this activity are: (i) A
tree structure that shows the list of use cases with the
related features and optionally, the list of features with
the related use cases; and (ii) a use case model
annotated with the respective related features.

Figures 4 and 5 are examples of the first type of
traceability view between the features and use cases of
our case study. The expanded branch in Figure 4
shows the features related to the use case Open Front
Door.

Figure 4. Features related to use cases

Figure 5. Use cases related to features

Features

Use Cases

Proceedings VaMoS'08

85

Similar to the Figure 4, Figure 5 depicts the use
cases related to a specific feature from our case study.
It shows that the feature Smart Card is related to the
use cases: Identify User by Smart Card, Open Front
Door and Configure Security Management.

4. Discussions and lessons learned

Some of the lessons learned during the execution of
this work are discussed next.

Benefits of implementing this approach.
Traceability between the variability and requirements
models has been addressed using a traceability
metamodel which integrates and unifies the feature and
use cases metamodels (section 2.1). This base unifying
strategy has some benefits like flexibility, simplicity,
maintainability and extensibility. Flexibility, because
the strategy can be applied to any requirements
notation or technique with a well-defined metamodel.
Simplicity, because the integration between the
metamodels of the feature and requirements models is
easy to understand and to implement. Maintainability,
because each one of the main concerns in the
metamodel, i.e., variability, requirements and
traceability, can be modified and evolved relatively in
isolation, causing few side-effects in the other
metamodels and the MDD tools that use them. Finally,
it is extensible because new elements in the tracing
metamodel could be added with relative ease, e.g,
abstractions that allow recording the rational employed
to establish the relationships.

Tracing between features and use cases.
Currently, our approach relates the use case behavior
to specific SPL features. However, there are cases
where only a “portion” of the use case is related with a
specific feature. In those cases, the following strategies
can be adopted: (i) refactor the use case to “extract”
the variable part to an extension use case; or (ii)
represent more fine grained relationships between
features and use cases. The first strategy is compatible
with our approach and it does not require any change
on the approach models and tool. On the other hand,
the adoption of strategy (ii) can be addressed by
specifying each use case by means of activity diagrams
and by allowing their customization using composition
rules. Both strategies are being investigated to improve
our approach.

Non-functional requirements modeling. Currently,
our approach does not offer explicit support for
specifying and modeling non-functional requirements
(NFRs). We are investigating two different ways to
incorporate the modeling of NFRs: (i) to represent the
NFRs directly in the feature model, thus making
possible the creation of relationships between NFRs

(modeled as features) and use cases in our traceability
table; and (ii) to adopt additional NFRs modeling
notations, such as goal models [12], and to define the
tracing between the NFRs and the SPL features.
Although we intend to explore and compare both
alternatives, we have already identified that the
adoption of the first strategy brings the benefit to allow
to reason about NFRs interdependence as a problem of
feature interaction [17].

5. Related work

Some approaches have addressed the modeling of
SPL requirements using feature models and UML
(e.g., use cases models). For example, Czarnecki et al
[16] and Bragança et al [18] use graphical elements in
their models, such as, presence conditions or notes, to
indicate variability. Similarly, Gomaa [9] requires the
use of stereotypes to indicate common or variable parts
in the UML models. As a result, all these mechanisms
scatter and pollute variability information over the
UML models which difficult their traceability and
evolution.

On the other hand, Gomaa [9], Pohl [3] and Griss
et al [7] describe their processes that include
traceability activities, but do not provide any specific
tool support for modeling, tracing and generate SPL
requirements. Other authors like Eriksson et al [8]
employ existing commercial requirements tools to
represent the artifacts. However, they do not show how
existing model-driven development technologies can
be adopted to promote the seamless tracing between
the different SPL requirements models used.

We believe that the feature model should be used as
the higher level view of the product family. Variability
must be only expressed in the feature models to avoid
polluting other models with variability information
(usually expressed in notes, presence conditions or
stereotypes). Finally, we recognize that it is also
fundamental to define how existing model-driven
development technologies can be used to allow the
composition and tracing between all the SPL
requirements models. In this paper, we set the base of
an approach that addresses all these needs.
Additionally, we show how model-driven development
techniques can be used to process feature and
requirements models to support traceability and also to
derive other useful models.

6. Conclusions and future work

In this paper, we presented a model-driven
approach to model, specify and trace SPL features and

Proceedings VaMoS'08

86

requirements. We adopted a simple metamodel
integration strategy to allow the tracing between
features and use cases. We also illustrated some of the
domain analysis activities in the domain engineering
perspective, using part of the security module of a
home automation system SPL called Smart Home.

We are currently extending our approach and
supporting tool [10] to address some other concerns,
such as: (i) to support the modeling and tracing of
NFRs in the context of SPLs; (ii) to offer interesting
trace views to reason about feature and requirement
interactions; (iii) to show how the scenario technique
can be used as a complementary technique to describe
the requirements; (iv) to deal with volatile
requirements and support the modeling of activity
diagrams and composition rules as proposed by the
Volatile Concerns approach [15].

 Finally, in the context of the AMPLE project, we
are defining a more complete approach, which
provides support to trace from features and
requirements models to artifacts of latter software
development stages, such as, architecture models and
source code.

Acknowledgement. The authors are partially
supported by European Commission Grant IST-33710:
Aspect-Oriented, Model-Driven Product Line
Engineering (AMPLE).

References

[1] P. Clements and L. M. Northrop, Software Product
Lines: Practices and Patterns. Boston, MA, USA: Addison-
Wesley, 2002.
[2] D. M. Weiss and C. T. R. Lai, Software Product-line
Engineering: a Family-based Software Development Process.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1999.
[3] K. Pohl, G. Böckle, and F. van der Linden, Software
Product Line Engineering: Foundations, Principles and
Techniques. Berlin, Germany: Springer, 2005.
[4] K. Czarnecki and U. W. Eisenecker, Generative
Programming: Methods, Tools, and Applications: ACM
Press/Addison-Wesley Publishing Co., 2000.
[5] J. Greenfield and K. Short, Software Factories:
Assembling Applications with Patterns, Models,
Frameworks, and Tools. Indianapolis, IN, USA: Wiley,
2004.
[6] K. Kang, S. Cohen, J. Hess, W. Novak, and A.
Peterson, "Feature-Oriented Domain Analysis (FODA)
Feasibility Study", Software Engineering Institute, Technical
report, CMU/SEI-90-TR-021, 1990.
[7] M. L. Griss, J. Favaro, and M. d' Alessandro,
"Integrating Feature Modeling with the RSEB", presented at
5th International Conference on Software Reuse, 1998.

[8] M. Eriksson, J. Börstler, and K. Borg, "The PLUSS
Approach - Domain Modeling with Features, Use Cases and
Use Case Realizations", in 9th International Conference on
Software Product Lines, Rennes, France, Springer, 2005, pp.
33-44.
[9] H. Gomaa, Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures: Addison-Wesley, 2004.
[10] "AMPLE Project Research Group at FCT/UNL",
http://ample.di.fct.unl.pt/.
[11] AMPLE, "Ample Project", http://www.ample-
project.net/.
[12] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering, 1 ed:
Kluwer Academic Publishers, 1999.
[13] A. Sampaio, R. Chitchyan, A. Rashid, and P. Rayson,
"EA-Miner: A Tool for Automating Aspect-Oriented
Requirements Identification", in Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering, Long Beach, CA, USA, ACM Press, 2005, pp.
352-355.
[14] I. John, J. Dörr, and K. Schmid, "User Documentation
Based Product Line Modeling", Fraunhofer IESE, Technical
report No. 004.04/E version 1.0, 2004.
[15] A. Moreira, J. Araújo, and J. Whittle, "Modeling
Volatile Concerns as Aspects", presented at 18th Conference
on Advanced Information Systems Engineering, Luxemburg,
Luxemburg, 2006.
[16] K. Czarnecki and M. Antkiewicz, "Mapping Features
to Models: A Template Approach Based on Superimposed
Variants", presented at 4th International Conference on
Generative Programming and Component Engineering,
Tallinn, Estonia, 2005.
[17] M. Jackson and P. Zave, "Distributed Feature
Composition: A Virtual Architecture for
Telecommunications Services", IEEE Transactions on
Software Engineering, vol. 24, pp. 831-847, 1998.
[18] A. Bragança and R. J. Machado, "Automating
Mappings between Use Case Diagrams and Feature Models
for Software Product Lines", in Proceedings of the 11th
International Software Product Line Conference, Kyoto,
Japan, IEEE Computer Society, pp. pp. 3-12.

Proceedings VaMoS'08

87

Proceedings VaMoS'08

88

Svamp — An Integrated Approach to Modeling Functional and Quality
Variability

Mikko Raatikainen∗, Eila Niemelä†, Varvana Myllärniemi∗, Tomi Männistö∗
∗Helsinki University of Technology (TKK), †VTT Technical Research Centre of Finland

∗{Mikko.Raatikainen,Varvana.Myllarniemi,Tomi.Mannisto}@tkk.fi, †Eila.Niemela@vtt.fi

Abstract

Software variability modeling is a complex task. To
manage this complexity, we introduce an approach called
Svamp. The main contribution of Svamp is to model con-
cepts through ontologies and offer tool support for captur-
ing functional and quality variability in software product
family architectures. Variability description languages are
defined by different ontologies that provide meta-models.
For structural and functional descriptions, the concepts,
properties, and rules are defined by Kumbang ontology.
Quality Attribute ontology defines the domain knowledge of
a specific quality attribute, while Quality Variability ontol-
ogy provides the concepts and rules related to quality vari-
ation. The approach is exemplified by our integrated tool
suite, provided as a plug-in for the Eclipse platform.

1. Introduction

Variability is the ability of software to be efficiently ex-
tended, changed, customized, or configured for use in a par-
ticular context [23]. Typically, variability is defined in soft-
ware when software is developed for reuse. For example,
variability is defined in the assets and the architecture of
a software product family during the domain engineering
phase. The developed variability is then taken advantage
for differentiation of software. For example, defined vari-
ability in the assets of a software product family is used to
derive the different products of a software product family.
Software, which differs from other software by taking ad-
vantage of variability, is referred to as a variant.

Variability can become complex, since the number of po-
tential variants grows exponentially when new variability
is introduced. In addition, variability concerns and affects
not only functionality but also quality attributes of software.
Consequently, in order to ensure correctness of functional-
ity of a variant and predict its quality properties even in the
most complex circumstances, variability needs to be expli-

cated such that it can be efficiently managed and even au-
tomated with tool support. Toward this end, an essential
characteristic is clarity of underlying concepts for different
software artifacts. Conceptual clarity is especially impor-
tant when variability spans different software artifacts such
as requirements, architectural elements, functionality, and
quality. Such variability can even affect diverse concerns of
stakeholders in an organization.

In this paper, we discuss an approach to capturing vari-
ability of a software product family called Software vari-
ability modeling practices (Svamp). For given functional
and quality requirements, we outline concepts for modeling
the structure of features and components that contribute to
the functionality and quality attributes of the components.
The modeling concepts have been defined rigorously as on-
tologies. The feasibility of the concepts is shown with an
integrated tool suite. With the resulting model, derivation
of system variants seems feasible such that the variants ful-
fill functional and quality requirements.

The rest of the paper is organized as follows. Section 2
provides background of the method. Section 3 describes
the approach. In Section 4, the developed tool suite is in-
troduced. In Section 5, we discuss experiences and future
research. Section 6 draws conclusions.

2. Background

Software variability management has emerged recently,
especially in the area of software product families that fo-
cus on enhancing development of a set of different variants
within an organization [3]. A key issue in and a lesson
learned about the success of software product families is
that the products of a software product family follow the
same fundamental structure, referred to as a software prod-
uct family architecture [2]. Consequently, software product
family architecture seems to be especially relevant from the
point of view of variability, although other development ar-
tifacts are affected as well.

A software architecture describes the high-level structure

Proceedings VaMoS'08

89

of a software system. Software architecture is an impor-
tant means, for example, for performing different types of
analysis and for achieving different quality attributes, and
communication. Variability is added to software family ar-
chitecture while still retaining other key aspects of software
architecture. The state of the art and practice for managing
software architecture is based on views and viewpoints. A
view is ”a representation of a whole system from the per-
spective of a related set of concerns” [8]. The guidelines for
constructing and using a view are described in a viewpoint.
The rationale for using different viewpoints is to take into
account different stakeholder concerns, which are, in fact, a
major intention of view-based approaches.

Several modeling approaches have been proposed to ex-
press variability. Feature models [11] are one of the first
widely known approaches that take into account variabil-
ity. A feature refers to user visible characteristics of a
system. Recently, other modeling approaches peculiar to
variability have emerged, such as ConIPF [7] and decision-
oriented modeling [4]. These approaches introduce a mod-
eling method with constructs for modeling software assets
and variability within the assets.

In addition, different approaches to modeling variability
in existing models of software assets have emerged. For ex-
ample, orthogonal variability modeling [19] augments ex-
isting models with variability specific information. Cova-
mof [22] augments existing models with a variability spe-
cific model and another model that captures dependencies
of a variability model. The methods can therefore be used in
conjunction with any software artifact such as requirements
or detailed design, or with any architectural viewpoint.

The modeling concepts, however, focus typically on
functionality or structure of software. Quality attribute vari-
ability, especially at the architectural level, seems still to be
a research challenge [13].

3. Svamp modeling concepts

The Svamp approach is to model functional and quality
variability at the architectural level. The approach adheres
to state-of-the-practice in architecture description by apply-
ing different viewpoints. More specifically, a feature and
structural viewpoint specifies the structure and functional-
ity, and also variability within these. The structural view-
point is also referred to informally as a component view-
point. The elements in a structural viewpoint, that is, its
components, are then augmented with quality attributes and,
further, quality variability information. The architectural
level was selected in the present approach since it seems to
be especially significant for variability, as argued above.

Consequently, the approach uses several integrated mod-
els to model a software product family (Figure 1): a Kum-
bang model, consisting of structural and feature viewpoints

Figure 1. Svamp variability models and on-
tologies.

for functional and structural characteristics; a quality at-
tribute profile, consisting of a quality attribute model for
each quality attribute of the components in the structural
viewpoint of the Kumbang model; and a quality variabil-
ity model for expressing variability within these quality at-
tributes. Each of these three models is defined in its own on-
tology; the corresponding ontology provides a meta-model
for the modeling concepts.

Kumbang concepts form the basis for modeling since
other models use the components defined in a Kumbang
model; hence, the Kumbang model needs to be specified
first. Roughly, Kumbang concepts synthesize existing fea-
ture modeling methods and structural modeling of archi-
tectural components, in particular Koala [25]. Kumbang
adds explicit variability concepts into these methods and
provides formal semantics for the concepts. In the follow-
ing, we only briefly outline basic capabilities of Kumbang,
whereas a comprehensive description can be found in [1].

The feature viewpoint is used for modeling feature types,
which represent user visible functional characteristics of a
system. Kumbang uses the term ”type” to refer to an ele-
ment in the variability model, while elements referring to
a specific variant are, e.g., feature instances or simply fea-
tures. Features can be composed such that other features are
their subfeatures. Such a composition structure is specified
within a feature type using subfeature definitions, which
specify the cardinality and possible types of composed fea-
tures. Further, feature types can inherit each other. Feature
types can be characterized with attribute definitions, which
represent name/value pairs. Finally, constraints can be used
to specify more elaborate rules for selection of different fea-
ture instances; in a very simple case, by specifying that a
certain feature requires another feature. Hence, Kumbang

Proceedings VaMoS'08

90

feature modeling concepts synthesize many existing feature
modeling methods, and can be used to capture typical vari-
ability constructs found in other feature modeling methods.

Structural viewpoint specifies component types. A com-
ponent type represents a distinguishable architectural ele-
ment with explicitly defined interfaces. The approach is ig-
norant as to whether a component actually refers to, e.g.,
a run-time or design-time element or a specific component
technology, as far as the component adheres to this defi-
nition. Again, the term ”component type” is used in the
variability model similarly as in features. An interface type
represents a set of operation signatures; these are attached
to component types using interface definitions. Interface di-
rection is provided or required and the interface can be op-
tional. Components can be composed with each other. The
construct used for specifying component composition is a
part definition that specifies the cardinality of possible types
of composed components. Similarly to feature types, com-
ponent types can inherit each other, be characterized by at-
tribute definitions, and specify constraints that restrict how
instances in the structural viewpoint can be selected. Hence,
the variants of structural viewpoint can differ in terms of
composition of components, connections between the inter-
faces, and attribute values defined.

In order to integrate feature and structural viewpoint, im-
plementation constraints can be used to specify relation-
ships between them. In a very simple case, a specific fea-
ture may require a specific component. In general, the con-
straints can be bi-directional and impose many-to-many re-
lations between viewpoints. Consequently, the implementa-
tion constraints can be as complex as can be specified with
Kumbang constraint language [12].

To address quality attributes, the variability model needs
to be then augmented with information on its quality char-
acteristics. This is done by specifying the quality properties
using the quality attribute model (QA model) and the qual-
ity variability model (QV model), defined separately from
Kumbang (cf. Figure 1). The components of the structural
viewpoint are supplemented with relevant quality profiles.
Similarly to Kumbang, both QA model and QV model have
been defined as ontology, the former as quality attribute
(QA) ontologies and the latter as quality variability (QV)
ontology.

Each QA ontology defines the technical dimension of the
quality attribute. For example, the main concepts of the se-
curity QA ontology are security assets, attributes, threats,
solutions, and metrics (Figure 2) [20], whereas the reliabil-
ity QA ontology defines processes, methods, models, and
metrics [26]. That is, QA ontologies are quality attribute
specific, and, hence, the concepts in each ontology are dif-
ferent. QA ontologies are orthogonal and managed sepa-
rately because different expertise is required for defining
different QA ontologies. Furthermore, the concepts defined

Figure 2. The security QA ontology [12].

in a QA ontology depend on the dissected entity: in defin-
ing the security QA ontology, the focus was on information
security of service centric systems, while in the reliability
QA ontology, the focus was on reliability-aware architect-
ing. Thus, the scope of the reliability QA ontology is larger;
therefore, more concepts have been defined.

The QA metrics concept (Figure 3) consists of metrics
classes, e.g., strength metrics and weakness metrics. Con-
cepts of QA metrics are common for all quality attributes,
whereas only part of the metrics classes and actual metrics
in the metrics classes can be shared by different QA on-
tologies and the others are quality attribute specific. Each
metric has the following properties: description; purpose;
target, i.e., where the metric can be used; applicability, i.e.,
when the metric can be used; a set of formulas; range value
for the measurement; and the best value of the measurement
unit. A rule set constrains the formulas and the used mea-
surement unit by defining the set of targets of measurement,
the set of value ranges for the measurement unit, and the
time when the metric is valid.

The QV model is defined by four concepts: importance,
scope, binding time, and dependency map. The importance
of the QA is defined by three distinct property values, i.e.,
high, medium and low. The importance property is required
for making decisions on QA variation. Rules related to
the importance property define whether QA variation can
take place, for example, QA of high importance cannot be
changed at run-time or it can be lowered to the medium level
only; in what circumstances QA variation is allowed, for ex-
ample, QA of low importance can be removed while making

Proceedings VaMoS'08

91

Figure 3. Concepts related to metrics of the
QA ontology.

tradeoffs; and how quality attribute variation is to be carried
out, for example, QA has to be fixed in product derivation.
Some of the rules can be generic, but more often they are
software product family specific.

The scope defines four granularity levels for QA varia-
tion. That is, scope determines where quality attribute varia-
tion can take place by defining a set of boundary types, pos-
sible values being family, product, service, or component.
One of the values has to be selected. Scope selection re-
stricts the types of appropriate metrics and measuring tech-
niques. For example, at the family and product levels, only
those metrics intended for system-level use (cf. Target in
Figure 3) can be used. Thus, there are relations between the
QA ontologies and the QV model that are considered while
defining QA profiles by the QPE tool (see section 4.2).

Binding time defines when quality attribute variation can
take place; quality attribute can be changed at design-time,
in assembly, in start-up, or at run-time. The binding time
is needed for making design decisions and required adapta-
tions and tradeoffs, i.e., QA variation, between quality at-
tributes. Design time tradeoffs are made by determining
the optimal architecture with the help of quality evaluation
methods and supporting tools, e.g., estimating reliability
by the RAP method [9]. Run-time adaptation is made by
specific algorithms implemented as part of middleware ser-
vices. In [18], an example of run-time performance adapta-
tion is given.

The dependency map describes relations between vari-
able quality attributes. This information is required for
making tradeoffs between quality attributes. So far, meth-
ods exist for making tradeoffs at design-time but no generic
solution for making run-time tradeoffs. The QV model is
defined in more detail in [16].

4. Tool support

The Svamp approach is supported with a tool suite de-
veloped as plug-ins on the Eclipse Platform [5]. Kumbang

Modeler is used to model the structural and feature view-
point whereas Quality Profile Editor (QPE) is used to model
quality properties.

4.1. Kumbang Modeler

Kumbang Modeler [14] is a tool that can be used for cre-
ating the Kumbang model, that is, to model functional and
structural variability in a software product family architec-
ture from feature and structural points of view. The user
can specify product family features, architectural elements,
and relations between them using constraints. Kumbang
Modeler hides the complexity of concrete syntax behind a
graphical user interface (Figure 4) and guides the user in the
modeling task.

Kumbang Modeler checks the model for syntactic cor-
rectness. Further, it checks that at least one valid product
configuration can be derived from the model. That is, it
checks that all required interfaces can be connected to cor-
responding interfaces, all constraints can be satisfied, and
no cyclic loops exist in inheritance or part structures. This
checking is implemented using an efficient smodels infer-
ence engine [21], a general-purpose inference tool based on
the stable model semantics of logic programs.

After the structural and functional modeling is com-
pleted, the user of the tool can augment the model with qual-
ity profiles. For this purpose, the tool suite transforms the
relevant information of the Kumbang model into the UML2
model specified by Eclipse UML2 meta-model, which is the
format understood by the QPE plug-in. The process of us-
ing the QPE tool is described in the following.

4.2. Quality Profile Editor

The Quality Profile Editor (QPE) tool [6] takes QA on-
tologies as input. These ontologies are defined by the
quality engineers by using an ontology definition tool, e.g.
Protégé. In addition, the software family architect respon-
sible for modeling also needs a list of quality requirements.
The user interface of the QPE tool helps in instantiation of
QA ontologies. QA ontologies are imported in OWL (Web
Ontology Language) files [17] for the QPE tool.

The QPE tool produces a QA profile that instantiates the
related QA and QV ontologies and, hence, contains the de-
fined quality properties with metrics, quality variation rules,
and dependencies on other quality properties in the same
QA profile or in other QA profiles. In QA profiles, the QA
properties are defined as UML stereotypes. UML defines
profiles as a lightweight mechanism to extend the UML
meta-model for adapting the language with domain specific
constructs. These extensions are defined by stereotypes that
can also contain properties and tag definitions used to set
values to property attributes.

Proceedings VaMoS'08

92

Figure 4. Kumbang Modeler graphical user interface[14].

Figure 5 depicts the user interface of the QPE tool. The
left side is used to define quality properties that the family
architecture has to meet. On the right side, the architect can
select a quality property and bind an appropriate QA metric
from one of the QA ontologies to it. Finally, dependencies
on other quality properties are linked. For example in Fig-
ure 5, Req2 from Demo profile and R3 from the Reliability
profile are linked to the Rel1 property.

QA profiles are stored as separate files because of their
evolution management; new QA properties can be added
and existing ones removed without affecting other QA pro-
files. However, the software family architect is responsible
for checking dependencies between QA properties (inside
one QA profile or between the properties in different QA
profiles), because the QPE does not check dependencies au-
tomatically while the QA profiles are updated.

The stereotypes in the QA profiles are used for mapping
the QA properties to the structural elements of the family

model (Figure 6). Thus, quality properties as UML2 stereo-
types facilitate the viewpoint based approach by enabling
a separate focus on components, features, and quality at-
tributes. The only concept the family architect can select
while mapping QA properties to the architecture models is
Binding time. The reason is that the architecture design
is the earliest possible phase when a decision about tim-
ing of QA variation can be made. Mapping of QA proper-
ties to structural elements can be made with any Eclipse
UML2 compatible plug-in; in the case of Svamp it was
TOPCASED [24].

The QA property information incorporated into the mod-
els is used while evaluating the software product family
architecture. Evaluation is made using appropriate evalu-
ation tools, i.e., the evaluation tools are QA specific. The
RAP tool [10] supports reliability and availability predic-
tion from the models of software product family. Thus, to
evaluate the satisfaction of reliability aspects, UML2 mod-

Proceedings VaMoS'08

93

Figure 5. Defining quality properties with the QPE tool.

els produced by the TOPCASED tool are imported in the
RAP tool and QA property information used in reliability
and availability prediction.

5. Discussion and Further Work

The Svamp approach has been applied to example cases
carried out in a laboratory. So far, the following observa-
tions have been made:

Functional variability modeling supports functional and
structural views, but variability also occurs, e.g., in behavior
and deployment views. Despite being feasible for modeling
even dynamic concepts, Kumbang concepts per se are not
convenient for modeling complex behavior; hence, exten-
sions are needed.

Quality variability modeling supports security and relia-
bility modeling in regard to metrics. More exploratory work
is required for facilitating quality-aware architecting, such
as performance ontology and quality-driven adaptation of
software product families, i.e., tradeoffs made at run-time.
In addition, other execution qualities need to be considered
together with reliability and security. Further, feasibility of
modeling different quality attributes and analyzing them de-
sign time needs to be studied in more depth.

As a result of the common tooling platform, tools are in-
dependent modules that can be integrated with other tools
that conform to the Eclipse Platform and UML2. However,
the tool suite needs further improvement, especially in re-
gard to interoperability and automatic transformation of dif-
ferent models. Nevertheless, our experiences with Eclipse
as a common platform are encouraging.

We have currently provided concepts and a tool suite for

modeling variability. However, in order to take full advan-
tage of variability modeling, a derivation tool and quality
evaluation tools using the models are needed. Kumbang
Configurator [15] can be used to automate product deriva-
tion by checking completeness, consequences, and consis-
tency. Kumbang Configurator supports derivation based
on Kumbang models, but currently does not take into ac-
count quality attributes. On the one hand, it seems feasi-
ble to extend Kumbang Configurator to support quality at-
tributes during derivation; however, this requires further re-
search. On the other hand, the RAP [10] tool supports relia-
bility and availability prediction, but model transformation
between Kumbang Configurator and the RAP tool has not
been studied.

6. Conclusion

This paper introduced a new approach to modeling vari-
ability of software product families by combining func-
tional and quality attribute variability modeling. The con-
cepts have been defined as multiple ontologies with differ-
ent purposes: Kumbang ontology defines concepts for func-
tional variability, Quality Attribute ontologies define con-
cepts related to specific quality attributes, and Quality Vari-
ability ontology defines the meta-model for quality varia-
tion. The use of ontology orientation has enabled the de-
velopment of automated tool support, constructed on the
commonly used tooling platform Eclipse. The approach has
been tested for feasibility with a simple example. However,
more research is needed, especially for more complex sys-
tems and derivation support.

Proceedings VaMoS'08

94

Figure 6. Mapping quality properties to the architectural elements of the structural view.

Acknowledgments

We thank our colleagues Timo Asikainen, Antti Evesti,
Hanna Koivu, Pekka Savolainen, and Jiehan Zhou, who par-
ticipated in the Svamp project by making valuable contribu-
tions to specific parts of the presented work. This work was
funded by the Finnish Funding Agency for Technology and
Innovation (Tekes) and by VTT.

References

[1] T. Asikainen, T. Männistö, and T. Soininen. Kumbang:
A domain ontology for modelling variability in software
product families. Advanced Engineering Informatics, 21(1),
2007.

[2] J. Bosch. Design and Use of Software Architecture.
Addison-Wesley, 2000.

[3] P. Clements and L. M. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[4] D. Dhungana, R. Rabiser, and P. Grunbacher. Decision-
oriented modeling of product line architectures. In WICSA
’07: Proceedings of the Sixth Working IEEE/IFIP Confer-
ence on Software Architecture, 2007.

[5] Eclipse platform. http://www.eclipse.org/, 2008. Visited
January 2008.

[6] A. Evesti. Quality-oriented software architecture develop-
ment. Technical report, VTT Publications, 2007.

[7] L. Hotz, K. Wolter, T. Krebs, S. Deelstra, M. Sinnema, J. Ni-
jhuis, and J. MacGregor. Configuration in Industrial Prod-
uct Families. IOS Press, 2006.

[8] IEEE. IEEE Std 1471-2000 IEEE Recommended Practice
for Architectural Description of Software-Intensive Systems
-Description, 2000.

[9] A. Immonen. A method for predicting reliability and avail-
ability at the architectural level. In T. Käkölä and J. Duenas,
editors, Software Product-Lines - Research Issues in Engi-
neering and Management. 2006.

Proceedings VaMoS'08

95

[10] A. Immonen and A. Niskanen. A tool for reliability and
availability prediction. In EUROMICRO ’05: Proceedings
of the 31st EUROMICRO Conference on Software Engineer-
ing and Advanced Applications, 2005.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, SEI, 1990.

[12] KumbangTools. http://www.soberit.hut.fi/KumbangTools/,
2007.

[13] V. Myllärniemi, T. Männistö, and M. Raatikainen. Quality
attribute variability within a software product family archi-
tecture. In Short paper in Conference on the Quality of Soft-
ware Architectures (QoSA), 2006.

[14] V. Myllärniemi, M. Raatikainen, and T. Männistö. Kumbang
tools. In Software Product Line Conference, 2007.

[15] V. Myllärniemi, M. Raatikainen, and T. Männistö. Kum-
bangSec: An approach for modelling functional and secu-
rity variability in software architectures. In 1st Workshop on
Variability Modelling of Software-intensive Systems, 2007.

[16] E. Niemelä, A. Evesti, and P. Savolainen. Modeling quality
attribute variability. In ENASE 2008, Submitted.

[17] OWL. http://www.w3.org/TR/owlfeatures/, 2008. Visited
January 2008.

[18] D. Pakkala, J. Perälä, and E. Niemelä. A component model
for adaptive middleware services and applications. In EU-
ROMICRO ’07: Proceedings of the 33rd EUROMICRO
Conference on Software Engineering and Advanced Appli-
cations (EUROMICRO 2007), 2007.

[19] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques.
Springer, 2005.

[20] P. Savolainen, E. Niemelä, and R. Savola. A taxonomy of in-
formation security for service-centric systems. In EUROMI-
CRO ’07: Proceedings of the 33rd EUROMICRO Confer-
ence on Software Engineering and Advanced Applications
(EUROMICRO 2007), 2007.

[21] P. Simons, I. Niemelä, and T. Soininen. Extending and im-
plementing the stable model semantics. Artificial Intelli-
gence, 138(1-2), 2002.

[22] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. Covamof:
A framework for modeling variability in software product
families. In Proceedings of Software Product Line Confer-
ence (SPLC), pages 197–213, 2004.

[23] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques. Software — Practice and
Experience, 35, 2005.

[24] TOPCASED. http://topcasedmm.gforge.enseeiht.fr/website,
2008. Visited January 2008.

[25] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala component model for consumer elec-
tronics software. Computer, 33(3):78–85, Mar. 2000.

[26] J. Zhou and E. Niemelä. Ontology-based software reliability
modeling. In Software and Services Variability Management
- Concepts, Models and Tools, 2007.

Proceedings VaMoS'08

96

How complex is my Product Line? The case for Variation Point Metrics

Roberto E. Lopez-Herrejon
Computing Laboratory
University of Oxford

rlopez@comlab.ox.ac.uk

Salvador Trujillo
IKERLAN Research Centre

STrujillo@ikerlan.es

Abstract

Software Product Lines aim at capturing the variability
and commonality of a family of related programs that share
a common set of assets. Variation points capture variabil-
ity on the artifacts that constitute a product line. Depend-
ing on the feature configuration, the variation points are
bound according to instantiation logic or mechanism to re-
alize an actual program variant. We argue that this crucial
role played by variation points makes them prime subjects
for the development of metrics that could provide insights
into qualitative and quantitative properties of product lines.
In this paper, we show how a basic structural complexity
metric can be adapted to variation points and apply it to
a case study. We believe that further research on variation
point metrics and corresponding tool support can signifi-
cantly contribute to the current understanding of variability
management specially for software intensive systems.

1. Introduction

Software Product Lines (SPL) aim at capturing the vari-
ability and commonality of a family of related programs that
share a common set of assets [6, 8, 19]. Variation points
capture variability on the artifacts that constitute a product
line and are broadly defined as places in the design or imple-
mentation where variation can occur [12]. In this paper, we
use a more concise definition provided by Pohl’s et al. that
defines a variation point as the representation of a variabil-
ity subject within domain artifacts enriched by contextual
information [19]. The context mentioned in this definition
refers to the instantiation logic or mechanism to realize an
actual artifact variant.

Extensive research has shown how measuring prop-
erties like complexity, understandability, maintainability,
reusability, etc. can greatly improve, influence and guide
software development practices [9, 14, 15]. Several metrics
for product lines have been proposed [1, 2, 5, 10, 21, 24],
but despite this effort the field remains largely unexplored.

Furthermore, the need of SPL metrics has been highlighted
as one of the crucial items in the research agenda of the area
[11].

Because of their importance for expressing variability,
we argue that variation points are prime subjects for the de-
velopment of metrics that could provide insights into qual-
itative and quantitative properties of product lines. To sup-
port this claim, we show how a basic structural complexity
metric can be adapted to variation points and apply it to
a case study. We believe that further research on variation
point metrics and corresponding tool support can have a sig-
nificant impact on the current understanding of variability
management.

2. Cyclomatic Complexity

Software quality is typically evaluated using metrics,
which are measurements of software attributes or proper-
ties. Extensive research has produced metrics to assess,
with different degrees of success, several of these proper-
ties [9, 14, 15].

Structural complexity metrics aim at providing insights
into and quantify the relations and interactions of the
components or modules that constitute a software system
[14, 15]. A basic metric is McCabe’s cyclomatic complex-
ity that measures the number of linearly-independent paths
through a program module [16]. To define paths, a mod-
ule is represented as a strongly connected graph where the
nodes represent program statements and the edges indicate
control flow. The formula that captures cyclomatic com-
plexity is:

V (G) = e − n + 2 (1)

where V(G) is the cyclomatic complexity, e the number of
edges and n the number of nodes.

Alternatively, V(G) can be computed as the number of
binary decisions plus one as follows:

V (G) = bd + 1 (2)

where bd is the number of binary decisions. In the case

Proceedings VaMoS'08

97

Figure 1. Cyclomatic Complexity Example.

where n-way decisions exists (like Java’s switch statement)
they are modeled as n-1 binary decisions.

An important property to note of this metric is that it is
additive, thus the cyclomatic complexity of a set of modules
is the summation of the value of each module. Let us con-
sider the example in Figure 1. It shows a piece of Java code
and its corresponding graph representation. Node 1 repre-
sents the switch statement with its corresponding cases
represented by nodes 2, 3, and 4 . Consider case C. It con-
tains an if-else statement that splits the control flow in
two, represented by nodes 6 and 7. Finally, node 8 repre-
sents the next statement after switch. Thus the cyclomatic
complexity for this example is V(G) = 11 - 8 + 2 = 5.

Based on empirical studies, McCabe and others have
proposed threshold values for different complexity ranges
[15, 16, 22]. For example, a module with value lower than
10 is considered as simple, whereas one with value greater
than 50 is considered as extremely complex.

3. Variation Point Cyclomatic Complexity

It is a common practice in many variability implemen-
tation techniques to intermingle common and variable code
within a single artifact. In such cases the variable code rei-
fies the variation points and embeds the logic required to
instantiate the different variants. This logic is described in
a variability language specific to an implementation tech-
nique. This type of language is commonly built using simi-
lar constructs present in high level languages. For example,
consider the following code written in XML-based Variant
Configuration Language (XVCL) [13]1:

<s e l e c t o p t i o n =”SHIFT DATA”>
<o p t i o n v a l u e =”EXPLICIT”>

r e t u r n c i r c u l a r S h i f t s . e l emen t At (l i n eNu mb er) . t o S t r i n g () ;
</o p t i o n>

<o p t i o n v a l u e =”IMPLICIT”>
P a i r s p a i r = (P a i r s) c i r c u l a r S h i f t s . e l emen t At (l i n eNu mb er) ;
S t r i n g o r i g i n a l L i n e = l i n e S t o r a g e . g e t L i n e (p a i r . Get In d ex ()) ;
S t r i n g c i r c u l a r S h i f t e d l i n e =

o r i g i n a l L i n e . s u b s t r i n g (p a i r . G e t O f f s e t ()) + ” ” +
o r i g i n a l L i n e . s u b s t r i n g (0 , p a i r . G e t O f f s e t ()) ;

r e t u r n c i r c u l a r S h i f t e d l i n e ;
</o p t i o n>

</ s e l e c t>

This code describes the logic that realizes a varia-
tion point by selecting between two options, denoted as
option tags, that produce two different sets of Java state-
ments contained within each option tag. Furthermore, the

1Example taken from file x CircularShift.

XML tags select and option behave like switch and
case Java statements; namely, its execution chooses an op-
tion depending on the value of a variable, SHIFT DATA in
our case. Thus we argue that a metric defined for standard
programming languages can be applied to variability lan-
guages provided that the latter support the constructs and
abstractions required by the metric. In our example, be-
cause XVCL supports standard control flow constructs it
is possible to create a graph based on the XVCL tags from
which cyclomatic complexity can be computed. In next sec-
tion we describe this process, apply the metric to a case
study, and analyze the results.

4. KWIC Product Line

We applied our metric to the KeyWord In Context
(KWIC) product line case study of Zhang and Jarzabek [23].
This product line is based on the KWIC index systems pro-
posed by Parnas to study different criteria for modular soft-
ware decomposition [18]. These systems accept ordered set
of lines, each formed with an ordered set of words which
in turn consists of ordered sets of characters. The lines can
be shifted so that the first word of a line is removed and ap-
pended to its line. The output is a list of all circular shifts in
alphabetical order. For the KWIC product line, Zhang and
Jarzabek consider the following variants [23]:

• A list of noise words that can be removed when shifted.

• Input method that can either be from a file or console.

• Output method that can be also from a file or console.

• Case sensitive or insensitive.

• Shift processing by line or by all lines.

• Shift data that can be store explicitly (sets of strings)
or implicitly (pairs of index and offset).

These variants yield a total of 10 different system in-
stances. For their implementation 13 x-frames, XVCL
artifacts, were used2. We manually computed our com-
plexity metric for those x-frames by considering each
select-option tag construct as an n-way binary de-
cision and each while construct as a binary decision.
We found that x AlphabeticShiftswhich coordinates
both sort algorithms and ErrorHandling are the most
complex modules with a value of five. They are followed
by x Input and FileIO with a value of four. Figure 2
summarizes the results.

All the values we obtained fall within the range of simple
as considered by McCabe and others. However, when the
product line is viewed as a whole, the complexity value is
thirty two3 which falls in the range of complex. This prod-

2We obtained the source code from [13].
3Computed using the additive property of the metric.

Proceedings VaMoS'08

98

Figure 2. Complexity Values.

uct line was intentionally designed for illustration purposes
with reduced complexity in mind. What our metric reveals
is a way to quantify this complexity.

5. The Case for Variation Point Metrics

Variation points are undoubtedly a cornerstone of vari-
ability management. Despite this prominent role, current
product line metrics measure variability at other different
levels: lines of code, asset development, service utilization,
etc. We argue that by shifting the focus to variation points
it could be possible to leverage some of the rich and exten-
sive work on software metrics for the analysis of variability.
Rather than a comprehensive result, our example of cyclo-
matic complexity applied to variation points is just a single,
yet encouraging, step towards that goal. As such, it leaves
many open questions and venues for further research.

Some open issues are identifying for product lines the
threshold values, their corresponding complexity value
ranges, and any possible dependencies on the implementa-
tion techniques. Also of importance is studying any possi-
ble limitations of cyclomatic complexity (due to its additive
nature) to compare product lines. To satisfactorily address
these issues, multiple and real case studies must be ana-
lyzed.

Variability is present not only at the source code level,
but it is also manifested in multiple artifacts throughout the
product line development life cycle. Thus a comprehensive
metrics suite should also include non source code variabil-
ity.

An aim of this paper is to foster the discussion on prod-
uct line metrics, specially those centered around variation
points. We believe such discussion may ultimately lead to
better and general theories and tools to assess product fam-

ilies and their development technologies.

6. Related Work

Several pieces of work address SPL metrics. Here we
summarize those more closely related to our approach.

Chang et al. propose three metrics to evaluate product
line architectures: architectural requirement conformance,
conflict freedom4 and tailorability [5]. These metrics how-
ever are defined in terms of architectural drivers.

Van der Hoek et. al propose two component-level met-
rics, Provided Service Utilization and Required Service Uti-
lization [21]. Contrary to our work, both metrics are based
on the notion of service that the authors define as any pub-
licly accessible resource present in an Architecture Descrip-
tion Language [17]. They applied these metrics to three case
studies and observed their positive impact in detecting and
analyzing SPL structural problems.

Zubrow and Chastek [24] sketch measures for SPL man-
agement in terms of costs, schedule, asset development, etc.
They also stress the crucial importance of metrics and the
need of further research on this area. Along the same lines,
Kang argues that it is important to develop metrics on key
indicators such as cost of production, project completion
time, quality, productivity, reuse, etc [11].

Closer to our work, Her et al. [10] present metrics for
evaluating reusability of core assets. One of their metrics,
tailorability, is computed by counting variation points and
analyzing their validity (absence of unexpected side effects)
after binding. However, to the best of our knowledge, this
metric does not take into account the complexity of the logic
that binds the variation point as our work does.

The COMAVOF framework explicitly represents vari-
ation points and traces their dependencies throughout the
product line development cycle [20]. We believe such view
could be exploited for the development of metrics address-
ing variability evolution, a central issue of variability man-
agement [4]. A work that addresses product line evolution is
proposed by Ajila and Dumitrescu where they measure evo-
lution in terms of Lines of Code not at the variation point
level [1].

Aldekoa et al. [2] adapts the Maintainability Index to the
feature level and apply it to a simple case study. This met-
ric is computed using an averaged cyclomatic complexity,
however it is based on the generated code not at the varia-
tion point level.

7. Conclusions and Future Work

Only a few studies have used variation points to elaborate
metrics for the analysis of product line properties despite

4Original name is Free of Conflicts.

Proceedings VaMoS'08

99

their recognized importance of variation points as first-class
entities for expressing and managing variability. In this pa-
per we adapted cyclomatic complexity, a basic complexity
metric, to the space of variation points and applied it to a
simple case study. We believe the results obtained provide
a glimpse of the potential that variation point metrics could
provide for understanding product line complexity and evo-
lution, comparing variability techniques and their applica-
bility to actual projects, and developing product line eco-
nomics.

We plan to apply this metric to larger and real case stud-
ies for which tool support must be developed. This could
provide insights into the complexity threshold values for
product lines as well as suggest guidelines for product line
refactoring.

An open question to address is how variation point com-
plexity relates to generated code complexity. Another issue
is how incremental5 and decremental6 variability paradigms
cope with large number of variation points and the implica-
tions for understandability, scalability, etc.

References

[1] S. Ajila and R. T. Dumitrescu. Experimental use of code
delta, code churn, and rate of change to understand software
product line evolution. Journal of Systems and Software,
80(1):74–91, 2007.

[2] G. Aldekoa, S. Trujillo, G. Sagardui, and O. Dı́az. Experi-
ence measuring maintainability in software product lines. In
JISBD, pages 173–182, 2006.

[3] D. Batory. AHEAD Tool Suite.
http://www.cs.utexas.edu/users/schwartz/ATS.html.

[4] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink,
and K. Pohl. Variability issues in software product lines. In
PFE, pages 13–21, 2001.

[5] S. H. Chang, H. J. La, and S. D. Kim. Key issues and metrics
for evaluating product line architectures. In SEKE, pages
212–219, 2006.

[6] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2002.

[7] K. Czarnecki and M. Antkiewicz. Mapping features to mod-
els: A template approach based on superimposed variants. In
GPCE, 2005.

[8] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[9] N. E. Fenton and S. L. . Pleeger. Software Metrics. A Rig-
urous and Practical Approach. Addison Wesley, 2 edition,
2003.

[10] J. S. Her, J. H. Kim, S. H. Oh, S. Y. Rhew, and S. D. Kim. A
framework for evaluating reusability of core asset in prod-
uct line engineering. Information & Software Technology,
49(7):740–760, 2007.

5Also known as compositional. An example is Feature Oriented Pro-
gramming [3].

6An example is Czarnecki’s template based superimposed variants [7].

[11] International Conference on Software Product Lines
(SPLC). Research panel, 2006.

[12] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Ar-
chitecture, Process and Organization for Business Success.
Addison Wesley Professional, 1997.

[13] S. Jarzabek. XVCL Website. http://xvcl.comp.nus.edu.sg/.
[14] S. H. Kan. Metrics and Modelins in Software Quality Engi-

neering. Addison Wesley, 2 edition, 2003.
[15] L. M. Laird and M. C. Carol. Software Measurement and

Estimation: A Practical Approach. IEEE Computer Society,
2006.

[16] T. J. McCabe. A complexity measure. In IEEE Transactions
on Software Engineering, volume 2, pages 308–320, 1976.

[17] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages. IEEE Trans. Software Eng., 26(1):70–93, 2000.

[18] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15(12):1053–1058,
1972.

[19] K. Pohl, G. Bockle, and F. J. van der Linden. Software
product line engineering: Foundations, principles and tech-
niques. In Springer, 2005.

[20] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. Covamof:
A framework for modeling variability in software product
families. In SPLC, pages 197–213, 2004.

[21] A. van der Hoek, E. Dincel, and N. Medvidovic. Using ser-
vice utilization metrics to assess the structure of product line
architectures. In IEEE METRICS, pages 298–308, 2003.

[22] Various. Software Engineering Institute. Maintainability In-
dex Technique. http://www.sei.cmu.edu/.

[23] H. Zhang and S. Jarzabek. An xvcl approach to handling
variants: A kwic product line example. In APSEC, pages
116–125, 2003.

[24] D. Zubrow and G. Chastek. Measures for software product
lines. Technical report, CMU/SEI-2003-TN-031, October
2003.

Proceedings VaMoS'08

100

A Multiple Views Model for Variability Management
in Software Product Lines

R. Bashroush, I. Spence, P. Kilpatrick, TJ. Brown, C. Gillan
School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast
{r.bashroush, i.spence, p.kilpatrick, tj.brown, c.gillan}@qub.ac.uk

Abstract

With current trends towards moving variability
from hardware to software, and given the increasing
desire to postpone design decisions as much as is
economically feasible, managing the variability from
requirements elicitation to implementation is
becoming a primary business requirement in the
product line process. Nowadays, a medium size
software system may encompass hundreds if not
thousands of variability points introducing a new level
of complexity that current techniques struggle to
manage. In this paper, we present a new approach to
variability management by introducing a multiple
views model (4VM) where each view caters for specific
set of concerns that relate to a particular group of
stakeholders.

1. Introduction

Within Software Product Lines, features play an
important role in specifying the fixed and variable parts
of the architectures of product families and
configurable systems. In its simplest form, a feature is
an aspect of a system, such as a behavior or an
attribute, from the end user’s point of view. Feature
Modeling emerged from the work by KC Kang et al [1]
on domain analysis techniques.

Managing variability within the feature model is a
key step for the success of a product family. Variability
management is about managing the commonalities and
variabilities within a product line. Commonalities are
structured lists of assumptions that are true for all
product members. Variabilities are structured lists of
assumptions about how product members differ.

A classic example of variability is found in mobile
phone product lines where variabilities include: the
screen size, number of keys, language, etc.

A Variation Point identifies a variability within the
product line and its possible bindings by describing
several variants. A variant is a possible way to realize
or bind a variation point at a specified stage of the
development process (design time, compilation time,
run-time, etc.) [2].

Bachmann and Bass [3] proposed a classification
for architectural variabilities (Functional, Data,
Control, Technology, etc.) while Svahnberg and Bosch
in [4] talked about different levels of variability
(Product Line, Product, Component, etc.).

As variability is geared more towards software, and
as more products are being included within a single
product line, current complex systems tend to comprise
a large number of variability points which makes
traditional manual feature modeling techniques
cumbersome and difficult to use. As a result, a number
of variability management techniques have emerged.

Among those are FODA [1] and FORM [5] by KC
Kang et al; FeatuRSEB [6] which combined aspects of
the FODA method and the Reuse-Driven Software
Engineering Business (RSEB) [7] method; and Bosch’s
modeling techniques [8]. Other commercial
methodologies and tools include BigLever Software
Gears [9] and Pure::Variants [10].

Although current techniques provided many useful
facilities for managing variability, a number of
limitations are still exhibited. The ability to encompass
and present a large number of variability points along
with their relationships in one view remains a
challange. While some chose to use different
presentation techniques (e.g. three dimensional space,
special purpose output devices and panels, etc.) to try
to alleviate this limitation, we approached the problem
by dividing the feature model into a number of views,

Proceedings VaMoS'08

101

where each view caters for a specific set of concerns
and relates to a particular group of stakeholders.

In the following, we begin in section 2 by discussing
the scope and concerns covered by our model. Section
3 then introduces the Four Views Model (4VM) and
gives details of each of the views. Finally, we draw
conclusions in section 4.

2. The 4VM Scope

In this section, we discuss some variability
management requirements and concerns which we have
identified through experience and collaboration with
other research and industrial partners. These
requirements are in the form of information and
relationships that should be captured about features in a
feature model. The Four Views Model (4VM) is built
around these concerns. More concerns can be added to
the list in the future to accommodate special
application domain or enterprise requirements (e.g.
feature evolution, etc.).

2.1. Feature dependency

Within real-life systems, features in a model affect
each other in a number of ways. Some features cannot
be supported unless other feature(s) are supported in a
product (mutually dependent); other features cannot be
supported in the same product at the same time
(mutually exclusive).

For example, consider an automobile product family
where: engine size (e.g. 1.1L, 2L, etc.), gearbox (e.g.
Auto, Manual – gears:4,5,6 etc.), and chassis type
(sport, saloon, estate, etc.) are among the features of
the product family. The number of gears in a gearbox is
dependent on the engine size; so an engine size 1.1L
and a 5-gear gearbox may be mutually exclusive
(cannot coexist in the same product). Similarly, chassis
type is dependent on the engine size; an estate chassis
may require at least an engine size of 1.8L (mutually
dependent).

Dependencies can be quite difficult to model,
especially those that relate to quality attributes. Hence,
dependencies should not only be represented as first
class citizens in any feature model, but also the
technique used for capturing dependencies should
allow for complex dependency representation.

2.2. Feature interaction

While the presence or absence of features within a
feature model may affect the existence of other features
(feature dependency), feature interaction is concerned

with how different feature combinations affect the
system architecture. Features are realized in an
architecture using different components and
configurations. Different feature combinations might
lead to the inclusion of different architectural
components and configurations.

For example, consider two optional features:
FeatureA and FeatureB. Assume that, if FeatureA is
supported by a product, it is realized in the architecture
using Component1; similarly, if FeatureB is supported,
it is realized in the architecture using Compnent2.
Within a product that supports FeatureA, if supporting
FeatureB means only the inclusion of Component2 in
the product architecture, then these features are
considered independent (do not interact). However, if
supporting FeatureB (at the same time as FeatureA)
means the inclusion of other components than
Component1 and Component2 (and perhaps the
exclusion of Component1 and/or Component2), then
FeatureA and FeatureB are considered to be interacting
features.

Predicting feature interaction in a system is a
challenging task. Minimizing feature interaction is
considered good practice as it reduces the architecture
complexity when relating features to architectural
structures. One way to minimize feature interaction is
by restructuring the feature model and introducing new
features to abstract those interactions (which we refer
to as feature abstraction and is discussed in section 3).

2.3. Variability binding time

As discussed earlier, variation points are places in
the design or implementation where variation occurs.
Variability is due to unmade decisions that are left
open as long as economically feasible. However,
specifying the point in time when a variation point is to
be bound to a specific variant is important.

A number of possible binding times have been
identified and used in industry. Examples are:
- Design time: where the decision about a

variability point is made at the design stage.
Beyond that point (e.g. implementation stage, run
time, etc.), this variation point is not visible. An
example of a design time binding is to allow for
linking features to the inclusion/exclusion of
architectural components as well as the
reconfiguration of the architecture. This is design
time variability and binding.

- Implementation time: the variation point is not
decided upon until implementation. For this
binding time, variation points appear at the code
level. A good example of implementation time

Proceedings VaMoS'08

102

variability with C/C++ is the use of pre-processor
directives. In the compiled version of the system
(the executable), variability points introduced
using pre-processor directives are invisible.

- Link time: this is when the variation point is not
decided upon until linking time. An example of
link time variability is MS Windows Dynamic
Link Libraries (DLLs).

- Load time: the variation point is not decided upon
until the load of the system. Load time variability
can be introduced using a number of mechanisms
such as configuration files.

- Run time: Depending on the application, this
tends to be the most desirable binding time. This
is when variation points are left open until the run
time when the end user can make the decision on
how to bind the variability. However, due to price
(cost, effort, time to implement, etc.) and
complexity (complexity of the system, size of
code, etc.) this is not always a feasible option.
There are numerous examples of run time
variability where variation points are bound
including, for example, using the application’s
“options” or “settings” menu.

2.4. Feature implementation time

In industry, software systems are usually built
incrementally; there is rarely a software product that is
built as a final release from the first edition. Products
are usually enhanced and features added to them
continuously over time. Planning for future releases of
products, the features to be implemented in these
products, and the timing, is a key step for the success
and sustainability of a product line.

So, feature implementation time should also be
captured within the feature model as it contributes to
product versioning.

2.5. Cost/Benefit analysis

The effort needed and cost involved in realizing
features as well as their foreseen benefit should be
documented in the feature model. This provides
valuable input to the overall project costing and the
product versioning process.

Although in general it is not an easy task to specify
the cost/effort and benefit involved in realizing a given
feature, adequate estimates can be obtained using
information gathered and experiences gained from
previous similar projects.

2.6. Open/Closed sets of features

Within industrial projects, it is rarely the case that
the architect is furnished with the system’s
comprehensive and complete set of features. Rather,
features are continuously added (and modified) to the
initial feature model over time - even after the system
design process has commenced.

Designing a system around an open and changing
set of features that can be modified anytime is a very
challenging task. To overcome this problem, some
industries differentiate between two types of features:
closed and open features.

Closed sets of features are sets of features that
cannot be changed or modified by the architect or the
development team and serve as the core of the product
or product line. Modifying such features requires the
approval of a management appointed committee or a
designated authority which would analyze the impact
and feasibility of any requested modification to such
features.

On the other hand, open sets of features are those
that tend to change over time (for example due to
technology advance or the addition of new features)
and are less likely to affect the overall system when
altered. Such features can be modified and changed by
the project manager, architect, or the development team
depending on the nature of the feature.

Such information should be clearly specified in the
system feature model.

2.7. Negative features

Naturally, the development of feature models has
typically focused on the features that are to be
supported by a product or product line. Little attention
has been paid to features that are not to be supported
by a given product (or a range of products). Limiting
the features supported by different products within a
product line supports the development of product
ranges, for example, varying from low-end products
(that support a minimum number of features) to high-
end ones (with most/all of the features enabled).

Negative features are features that are specified not
to be supported by a given product(s). If such negative
features are specified, the product (or product line)
architecture should be designed in a way to prohibit the
enabling of such features by end users of the product.

If such features are not identified and counted for at
a very early stage in the design process, they could lead
to different kinds of problems based on the nature of
the product line.

Proceedings VaMoS'08

103

In more critical application domains, overlooking
negative features could have more adverse effects. For
example, overlooked negative features had more
serious consequences within a US Department of
Defense (DoD) funded project that was aimed at
developing a GPS (Global Positioning System) based
product family. The products within the family varied
from low precision civilian based products to high
precision high-end military versions. However, end
users buying the low end civilian products, with simple
tweaking of the system, were able to get access to the
services and precision available for the high-end
military systems.

2.8. Alternative feature names

Variability management exists at the different stages
of the development life-cycle, from requirements, to
architecture design and implementation. Different
teams (e.g. stakeholders, architects, developers, etc.)
use their own mechanisms to manage variability and to
express features. So, it is possible that the same feature
could be referred to by different names within different
teams. Hence, it is important to keep track of the
features and their alternative names within the feature
model.

2.9. Feature cardinality

It is always desirable to delay design decisions as
much as is economically feasible (creating variation
points). However, variation points come with a price
(increased complexity of the system, performance
degradation, increase in cost and marketing time, etc.).
One potential solution to alleviate the effect of open
variation points is by attaching a limited number of
possible variants that could be bound to a given
variation point. This is usually referred to as feature
cardinality.

2.10. Multiple views

It is generally agreed that different stakeholders
have interest in viewing different aspects (views) of the
product line variability model. So, it is important for a
variability management mechanism to be able to
extract and present relevant information about the
family model in dedicated views for different groups of
stakeholders (users, system analysts, developers, etc.).
This could considerably contribute to alleviating the
graphical overload when showing all the information in
one view (compared to multiple views). This forms the

basis of the 4VM model and is discussed in more detail
in the following section.

3. 4VM

In the previous section a number of issues which
need to be captured within a feature model were
identified and discussed. In this section, the Four
Views Model for Variability Management (4VM) is
introduced. The 4VM proposes a four view
presentation of the feature model. The 4VM addresses
all the issues and concepts identified in the previous
section. The views adopted in the 4VM model are:
- Business View: where the information related to

the project management, cost/benefit analysis, etc.
is presented.

- Hierarchical & Behavioral View: where the way
the different features are organized (usually
presented in a tree structure) along with the
behavior attached to each feature is presented.

- Dependency & Interaction View: where the
dependency and interaction among features is
presented.

- Intermediate View: where some design decisions
are injected into the feature model to take it one
step further towards the architecture domain in an
attempt to bridge the gap between the feature
model and the system architecture.

 In the following section, each of these views is
discussed in detail and example views are taken from
the network emulator case study [11].

3.1. Business view

The Business View is aimed at the project business
and management stakeholders. It acts as a portal for
inputting and presenting information related to:
- Feature implementation time
- Feature Cost/Benefit analysis
- Open/Closed sets of features
- Negative features

These properties are usually specified and used by
the project managers to carry out system-wide business
analyses which support decision making such as when
to introduce features within a product line; what
features are feasible from a business perspective, etc.
An example business view is shown in Figure 1 below.

In this example, a sample business view is displayed
using a prototype tool for the network emulator case
study [11]. A red circle indicates a mandatory feature
while a green circle indicates an optional/alternative
feature. A line across the circle (e.g. Effects, Packet
Classifier, etc.) indicates a closed feature or feature set,

Proceedings VaMoS'08

104

that is one that cannot be deleted or modified by the
architects/developers.

Figure 1. 4VM - Business view example

We could also see in the example above that the

Effects feature (and sub-features) is marked as closed.
This means that only a designated authority can modify
this feature set (add new effects, modify existing
properties, etc.). By right clicking over the feature, it is
possible to change feature properties such as its cost,
implementation time, etc. Also, the tool could allow for
generation of project costing (based on the information
contained within the feature model), feature
introduction timeline (product versioning), etc.

3.2. Hierarchical & Behavioral view

The Hierarchical and Behavioral View is the view
provided by most existing feature modeling techniques.
In this view, information related to the structure of the
feature model and the behavior of the features is
captured. Among other potential users, this view is
mainly targeted at architects and developers.

Within our group, work is in progress for
developing CASE tool support for this view [12] where
the Use Case Maps (UCM) notation [13] is being used
to model feature behavior. Figure 2 below shows an
example (taken from the network emulator case study)
of what is typically presented within the Hierarchical
and Behavioral view.

Figure 2. 4VM - Hierarchical & Behavioural view example

3.3. Dependency and Interaction view

Due to the size and complexity of feature
dependency and interaction within real-life systems, a
separate view is created within the 4VM to model these
relationships. The Dependency and Interaction View is
complementary to the Hierarchical and Behavioral
View.

In this work, feature dependency and feature
interaction are defined as follows:
- Feature Dependency: a feature-to-feature

dependency where the inclusion of one or more
features affects one or more features within the
system.

- Feature Interaction: a feature-to-architecture
dependency where the inclusion of one or more
features affects the architecture structure
(different component sets and/or configurations,
etc.).

In this view, logic design is proposed to capture the
dependency and interaction relationships. Once the
relationships are modeled, standard logic algorithms
can be used to simplify the models.

The feature dependency model takes as input the
user selected feature set and verifies it against the

Proceedings VaMoS'08

105

model pointing out any conflicts within the feature
selection.

Once feature dependency is verified, the selected
feature set is fed to the feature interaction model that
outputs a new mutually exclusive set of features with
new features introduced to abstract feature interaction
which is a novel approach proposed to handle feature
interaction.

Returning to the network emulator case study [11],
consider the “requires” relationship that exists between
Modifying/encoding IP packets and Sending/Receiving
IP packets. For a system to support Modifying and
encoding of IP packets, it should be able to receive
(and send) such packets in the first place. Assume that
a new feature is to be added to the system to introduce
the support for secure communication. Although secure
communication (using IPSec) will not affect the
sending and receiving of packets at the network level, it
would require a change to the coding (encryption is
added to the process) and decoding (decryption is
added to the process) of IP packets. Figure 3 below
shows the dependency and interaction view for IP
support in the network emulator case study.

In this example, the feature dependency model
captures the dependency of Modify/Ecnode IP feature
on Send/Receive IP feature. This is done using an AND
gate. If Send/Receive IP feature is not selected,
Modify/Ecnode IP feature cannot be selected. The
mapping of textual relationship description into logic
circuits can be relatively straightforward where “not”
maps to inverters, “and” to AND gate, and “or” to OR
gate. With more complex expressions and
relationships, existing logic methods and algorithms
can be used at a later stage to simplify the overall
model.

In Figure 3, the first column to the left shows what
options the architect has to choose from. An empty
circle means an optional feature.

Once the architect makes his selection, the selection
is validated against the dependency model and any
conflict is reflected in the second column (the middle
one). The architect could then go back and choose a
different feature set to resolve the conflict.

Once a non-conflicting feature set is selected, it is
then passed to the interaction model where interactions
are resolved by introducing new abstract features. In
the example above, the Modify/Ecnode IPSec feature
was introduce to abstract the interaction between
Modify/Ecnode IP feature and Secure Comm feature.

The advantage of resolving feature interaction at
this stage is that it minimizes architecture complexity
by making the relationship between the feature set and
the architecture structure a one-to-many relationship

rather than a many-to-many relationship. This is
achieved by making the feature set a mutually
independent set with the introduction of abstract
features.

Figure 3. 4VM - Dependency and Interaction view example

The graphical notation used in this example is for

demonstration purposes. Logic gates can be replaced
with other shapes that are friendlier to non-hardware

Proceedings VaMoS'08

106

architects. Also, textual logic expressions can be used
instead of a graphical notation.

3.4. Intermediate view

Finally, the intermediate view has been introduced
in an attempt to bridge the gap between feature
modeling and the architecture design. This gap exists
between the two domains due to the fact that the feature
model is based on end-user and stakeholder concerns
while the architecture structure is designed to
accommodate technical concerns.

To bridge this gap, the intermediate view proposed
attempts at injecting design decisions into the feature
model to take it one step further towards the
architecture domain. As such, it may be regarded as an
intermediate stage between feature model and system
architecture.

The structure of the intermediate view and the
selection of the design decisions to be injected in the
feature model to create the intermediate view depend
heavily on the architecture design approach used. For
example, in the network emulator case study [11],
ADLARS [14] was used as the ADL for the
architecture design and description. ADLARS
partitions the space into three dimensions: Concurrency
(captured within Tasks), Structure and Functionality
(captured within Components) and Behavior (Captured
by Interaction Themes). So, the feature model would be
much easier to map to architecture structures if it shows
what features are to be implemented concurrently and
what features are mere functionality. By injecting such
design decisions in the feature model, we end up with
the intermediate view which is easier to follow at the
architecture design process.

A small part (due to lack of space) of the
intermediate view of the network emulator case study is
shown in Figure 4 below.

Figure 4 shows three types of features:
- Concurrency features: which are features that

require a separate thread of execution each, and
map to different ADLARS tasks within the system
architecture description.

- Functionality features: which are features that
describe system functionality (usually as a part of
a specific thread of execution) and map to
ADLARS components and sub-components
within the system architecture description.

- External features: these are features that are
external to the system or product family (over
which we have no control) and with which the
system would need to interact. These are
classified in three types:

� Platform: related to the platform the system is
running on (RTOS, Unix, Win32, etc.)

� Third party software: e.g. TUNDrive, a piece
of third party software that provides user
applications with a virtual Ethernet
network interface card over Unix based
systems (the one used in the network
emulator case study).

� Networking technologies: e.g. TCP/IP, IPX,
etc. in case our system needs to
communicate over the network (which is
the case for the network emulator).

Also, to better identify with ADLARS (where Tasks
are composed of Components, etc.), the features within
the intermediate view are related in three ways:
- Composition: which is represented by a bottom up

arrow and means that a given feature is composed
of the features below it. For example, the
“Forward Packets” feature (Figure 4) is composed
of two features, “Packet Receiver” and “Packet
Sender”.

- Realization: which is represented by a top down
arrow and means that a given feature is realized or
deployed by the features below it, that is, the
parent feature is a template feature implemented
by one of the children features. For example, the
“Interrupt Communication” feature could either
be: “Read Packets”, “Write Packets” or “Forward
Packets”.

- Environment: which relates the variability of a
feature to an external feature (environment). For
example, the “Packet Sender” feature is related to
what network protocol is used (e.g. TCP/IP, IPX,
etc.) which is an environment feature.

It is worth mentioning here that the intermediate
view model developed and described in this section is
designed to work best within an architecture process
that starts with feature modeling and uses ADLARS for
architecture design and description. For other design
approaches and ADLs (e.g. ALI [15]), appropriate
intermediate views can be developed accordingly.

Proceedings VaMoS'08

107

In
te

rr
up

tC
om

m
un

ic
at

io
n

R
ea

d
pa

ck
et

s
W

rit
e

pa
ck

et
s

Fo
rw

ar
d

pa
ck

et
s

P
ac

ke
tR

ec
ei

ve
r

P
ac

ke
tS

en
de

r
P

ac
ke

tR
ec

ei
ve

r
P

ac
ke

tS
en

de
r

TU
N

D
riv

er
E

th
er

ea
l

E
xt

er
na

lF
ea

tu
re

s

Th
ird

P
ar

ty

IP
X

TC
P

/IP

N
et

w
or

ki
ng

D
es

ig
n

D
es

ig
n

D
es

ig
n

D
es

ig
n

N
et

w
or

k
E

m
ul

at
or

P
ac

ke
tR

ou
te

r

B
uf

fe
r

P
ac

ke
tM

od
ifi

er
P

ac
ke

tC
la

ss
ifi

er

D
ec

od
e

P
ac

ke
t

D
ec

od
e

P
ac

ke
t

E
nc

od
e

P
ac

ke
t

S
iz

e

R
un

tim
e

D
es

ig
n

D
es

ig
n

D
es

ig
n

Figure 4. 4VM - Intermediate view example

Proceedings VaMoS'08

108

4. Conclusion

In this paper, a number of feature modeling needs
are identified and discussed. These needs are
summarized below:
- Capturing complex feature dependency
- Capturing and resolving feature interaction
- Specifying variability binding time
- Specifying feature implementation time (product

versioning)
- Capturing information related to the feature

Cost/Benefit analysis
- Specifying Open and Closed sets of features
- Specifying Negative features
- Capturing alternative feature names
- Specifying feature cardinality
- Allowing for multiple views

Then, a multiple-view model feature modeling
technique is introduced. The Four View Model for
Variability Management (4VM) technique proposes the
distribution of the feature modeling information into
four views where each view is be dedicated to a
particular theme and stakeholders. These views are:
- Business View: where the information related to

the project management, cost/benefit analysis, etc.
is presented. This view is geared towards project
managers as main users where then can specify
feature costing, open and closed features, feature
introduction time (product versioning), etc.

- Hierarchical & Behavioural View: where the way
the different features are organized (usually
presented in a tree structure) along with the
behaviour attached to each feature is presented.
This view is geared towards architects and
captures the end user concerns. This is the view
that is currently adopted by most feature
modelling techniques.

- Dependency & Interaction View: where the
dependency and interaction among features is
presented. This view is geared more towards
architects and provides a formal basis for
capturing feature dependency using logic design.
Also, feature interactions are modelled in the
same way and resolved by the introduction of
abstract features.

- Intermediate View: where some design decisions
are injected into the feature model to take it one
step further towards the architecture domain in
attempt to bridge the gap between the feature
model and the system architecture. This view is
geared towards architects and provides a
transition stage towards the architecture.

The next stage in this research is to take the
prototype tool (shown in the figures) and try to develop
a full featured CASE tool. The shape and structure of
the graphical notation to be used in each of the views is
also an open research question and industrial feedback
will be an important factor in making such decisions.

Finally, the table below shows how the 4VM
measures against the identified requirements discussed
in this chapter compared to existing feature modeling
techniques.

The 4VM supports all the identified needs. The only
two restrictions in the current version are: first, 4VM
provides a fixed number of views (four views) for the
feature model rather than unrestricted configurable
multiple-views; and second, 4VM does not allow for
complicated cost/benefit analyses on the feature model.
These two issues are to be addressed in the future
versions of the 4VM model and its toolset.

FO
D

A

FO
R

M

Fe
at

uR
SE

B

B
os

ch

4V
M

Feature Dependency

Feature Interaction

Binding Time

Implementation Time

Effort/Cost

Open/Closed

Negative Features

Alternative Feature Name

Feature Cardinality

Multiple views

Supported Partially
Supported Unsupported

Table 1. Comparison between the 4VM and existing feature
modeling techniques based on the needs discussed in this
paper.

Proceedings VaMoS'08

109

5. Acknowledgement

We would like to thank Felix Bachmann and the
SPL group at the SEI/CMU for their valuable input to
this work during its initial stages in 2004. Also, we
would like to thank Jaap van der Heijden, Chritiene
Aarts and Bas Engel at the Software Architecture
department, Philips Research Labs, Eindhoven, for
their input and feedback on this work.

6. References

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and

A. S. Patterson, "Feature Oriented Domain Analysis
(FODA) feasibility study," Software Engineering
Institute, Carnegie Mellon University CMU/SEI-90-
TR-21, 1990.

[2] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H.
Obbink, and K. Pohl, "Variability Issues in Software
Product Lines." In proceedings of the 4th International
Workshop on Product Family Engineering, Berlin,
Germany, 2002. pp. 13-21.

[3] F. Bachmann and L. Bass, "Managing Variability in
Software Architecture." In proceedings of the ACM
SIGSOFT Symposium on Software Reusability, May
2001. pp. 126-132.

[4] M. Svahnberg and J. Bosch, "Issues Concerning
Variability in Software Product Lines." In proceedings
of the Third International Workshop on Software
Architectures for Product Families, 2000. pp. 146-157.

[5] K. C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented
Product Line Engineering," IEEE Software, vol. 19,
pp. 58-65, July/August 2002.

[6] M. Griss, J. Favaro, and M. d'Alessandro, "Integrating
Feature Modeling with the RSEB." In proceedings of
the Fifth International Conference on Software Reuse,
Vancouver, BC, Canada, June 1998. pp. 76-85.

[7] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse -
Architecture, Process and Organization for Business
Success. New York: ACM Press, 1997.

[8] J. v. Gurp, J. Bosch, and M. Svahnberg, "On the
Notion of Variability in Software Product Lines." In
proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA 2001), August 2001.
pp. 45-54.

[9] "BigLever Software Gears,"
http://www.biglever.com/solution/product.html.

[10] "Pure-Systems Pure::Variants," http://www.pure-
systems.com/Variant_Management.49.0.html.

[11] R. Bashroush, I. Spence, P. Kilpatrick, and T. J.
Brown, "A Real-time Network Emulator: ADLARS
Case Study." In proceedings of the 3rd Asia Pacific
International Symposium on Information Technology,
Istanbul, Turkey, January 2004. pp. 610-618.

[12] T. Brown, R. Gawley, R. Bashroush, I. Spence, P.
Kilpatrick, and C. Gillan, "Weaving Behavior into
Feature Models for Embedded System Families." In
proceedings of the 10th International Software Product
Line Conference SPLC 2006, Baltimore, Maryland,
USA, August 2006. pp. 52-64.

[13] R. J. A. Buhr and R. S. Casselman, Use Case Maps for
object-oriented systems: Prentice Hall, 1996.

[14] R. Bashroush, T. J. Brown, I. Spence, and P.
Kilpatrick, "ADLARS: An Architecture Description
Language for Software Product Lines." In proceedings
of the 29th Annual IEEE/NASA Software Engineering
Workshop, Greenbelt, Maryland, USA, April 2005. pp.
163 - 173.

[15] R. Bashroush, I. Spence, P. Kilpatrick, and T. Brown,
"Towards More Flexible Architecture Description
Languages for Industrial Applications," Gruhn and F.
Oquendo (Eds.): EWSA 2006, Lecture Notes in
Computer Science, Volume (4344),, pp. 212-219,
September 2006.

Proceedings VaMoS'08

110

Understanding Decision Models – Visualization and Complexity reduction of
Software Variability

Thomas Forster, Dirk Muthig, Daniel Pech
Fraunhofer Institute for Experimental Software Engineering (IESE)

Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany
{forster, muthig, pech}@iese.fraunhofer.de

Abstract

With the increasing size and complexity of software
systems also the amount of software variability grows.
In this paper we present decision models as a means of
dealing with software variability and views on decision
models that are supposed to make the large amount of
variability manageable. Also some mechanisms for
supporting the process of decision modelling and
resolving decision models are introduced. In a final
experiment we evaluate the presented views and
process support mechanisms.

Keywords: product lines, variability management,
views, decision model, Decision Modeller, empirical
study

1. Introduction

Variability has ever been an inherent property of
software, which arises from the need of developing
software artefacts for the deployment in different
contexts. This requirement necessitates the
development of highly adaptable software artefacts.
The locations at which a software artefact can be
extended or configured for a particular context are so-
called variation points. They make up a software
component’s variability. This variability has to be
managed somehow, nowadays more than ever as a
result of the rising amount of variability. There are two
major reasons for the increasing software variability.
The first one is the development of software product
lines. There design decisions are left open intentionally
and are postponed to a binding time as late as possible
in the software development process. The second
reason is the relocation of functionality from
mechanics and hardware to software. This
phenomenon can particularly be observed in domains
using embedded systems, as for instance the
automotive or avionic domain. [1]

The huge amount of variability brings up new
challenges according the management of those. In
order to design the variability management more
efficiently several requirements addressing qualities,
such as usability, testability, scalability, traceability,
must be considered. In this paper we will focus on
scalability and traceability, which interleave with
understandability and reduction of complexity of
decision models:
• Scalability in our context means that it must be

possible to handle rather large and complex product
lines.

• Traceability means in our context that it must be
possible to keep variabilities consistent and
maintainable. Thus, it must be possible to establish
dependencies between variation points that realize
certain variability in software artefacts of different
development phases.

The remainder of this paper is organized as the
following. In the next section we introduce the concept
of decision models. Section 3 then discusses different
views on decision models. In section 4 a tool, that
implements the suggested concepts, is presented. The
tool is then validated in a small case study presented in
section 5. Finally section 6 concludes this paper.

2. Decision Models

Because variability plays an important role in
current-day software, we need a model to explicitly
document and manage this variability.

The two main approaches that are applied for
modelling variability are feature models and decision
models. However, this paper’s focus is on decision
models, thus we give a brief introduction to those.

A decision model is defined as a model that
“captures variability in a product line in terms of open
decisions and possible resolutions. In a decision model
instance, all decisions are resolved. As variabilities in

Proceedings VaMoS'08

111

ID Question Variation Point Resolution Effect
1 Cup warmer yes A warming plate is attached

Can cups be warmed up?

 no No warming plate is attached
2 Input crushing mill A crushing mill is attached

 coffee slot A slot for coffee powder is installed

Resolve decision 4: no

Does the machine have a
crushing mill for coffee, a slot for
putting in coffee powder or both?

 both A crushing mill and a slot for coffee
powder is attached

3 Milk frother milk frother A milk frother is attached

Does the machine have a milk
frother or a cappuccinatore?

 cappuccinatore A cappuccinatore is attached
4 Bean container yes A container for coffee beans

is attached
Resolve decision 2 with: crushing mill
or both

Does the machine have a
container for coffee beans?

 no No container for coffee beans
is attached

Figure 1: Exemplary decision model

generic work products refer to these decisions, a
decision model instance, also called resolution model,
defines a specific instance of each generic work
product and thus specifies a particular product line
member”. [3]

Basically a decision model is a table, whereby each
row in the table represents a decision and each column
a property of a decision. A decision has the following
properties:
• ID: A unique identifier for the decision (usually an

integer value)
• Question: A question which makes the decision

more understandable when deriving a decision
resolution model.

• Variation Point: The point in an asset which is
affected by this decision.

• Resolution set: A set of answers to the decision’s
question.

• Effect: An effect for each possible answer to the
decision’s question (constraints).

• As necessary, further properties can be added.

The KobrA method sub-divides decisions into two
types, simple decisions and complex decisions. A
simple decision directly affects a product line asset and
does not affect any other decisions. [4]

An example for a complex decision is decision 2 in
Figure 1, which shows an exemplary decision model

for a coffee machine. If the decision is resolved with
coffee slot, decision 4 is resolved with no. This is due
to the reason, that it makes no sense to install a
container for coffee-beans, if there is no mill which
can crush the beans.

Answering all questions and thus resolving all
decisions leads to a resolution model. A resolution
model (configuration) consists of all decisions and the
answers to their questions. That is, a resolution model
constitutes a concrete member of a product line.

3. Visualization mechanisms

Since human beings can assimilate complex
coherences easier when those are visualized somehow
we come up with a metamodel and graphical notion for
modelling constraints among decisions. For modelling
constraints we use logical expressions as already
proposed by Schmid and John who use those to
formulate constraints in their approach [5] or xADL
which uses boolean expressions to model constraints in
the form of boolean condition guards. [6]

Furthermore, we introduce several views on
decision models which are used to reduce the
complexity and to focus on particular aspects of a large
model. In order to further structure the huge amount of
decisions within a view, resulting from large and
complex projects, we bring in the concept of layers.

Proceedings VaMoS'08

112

3.1. Constraint Modelling View

Metamodel
The metamodel for logical constraint expressions is

depicted in Figure 2 and Figure 3. A logical constraint
expression is a hierarchy of operators and operands. In
more detail a logical constraint expression can consist
of an implication or any other operator as top level
node. An implication, as in predicate logic, is an
operator always consisting of two operands, a premise
and a conclusion. A conclusion constitutes facts, which
become effective if the premise (assumption) is
fulfilled. Premises and conclusions in turn consist of
other operators.

Figure 2: Metamodel for implications

Figure 3: Metamodel for operators

Following syntactic rules must be adhered to when
instantiating the metamodel:
• An implication always contains exactly one

premise and one conclusion
• Binary operators must contain exactly two

operands.
• Unary terms must contain exactly one operand.
• Assignments can only be contained as leafs.
• Elements already referenced in an implication’s

premise cannot be referenced in the implication’s
conclusion or the other way around.

Notation
As graphical notation for constraint expressions we

choose a notation similar to that used in digital
technology for logic gates. The graphical
representations are shown in Figure 4. However, as
digital technology does not contain something similar
to an implication, a new icon for this has to be
introduced. An implication will be represented by a
circle containing an arrow. The representation of an
assignment in a logical expression (which reflects a
decision in the decision model) is a rounded rectangle

as shown in Figure 5. The rectangle consists of two
compartments, the head compartment which contains
the decision’s name and a second compartment
containing the domain values the decision is to assume.

Figure 4: Logical gates

Figure 5: Decision

To create a constraint, the decisions and gates are
then connected using arrows as in the constraint
illustrated in Figure 6.

Figure 6: Exemplarily constraint

The meaning of the example constraint is that, “if
decision dec1 is resolved with the value show and
decision dec2 is resolved with the value hide, then
decision dec3 must be resolved with the value show”.
On the one hand the direction of arrows prescribes the
direction of how to read the constraint and on the other
hand it defines the relationship between the connected
items, i.e. which element is the operand and which the
operator. An arrow connecting two items referenced in
a premise designates the source element as and
operand and the target element as the operator. Arrows
in a conclusion must be interpreted the other way
around. This way of modelling constraints always
results in a tree like structure. Thus, if an implication is
contained in the expression, that implication builds the
centre of the model to which sides respectively
expands a tree of gates and decisions.

3.2. Dependency View

A further view that helps to keep track of large and
complex decision models is the dependency view

Proceedings VaMoS'08

113

[7][8]. It abstracts which decisions in a decision model
are related to each other, but not how exactly.
Consequently it can be seen of as an abstraction of all
existing constraints.

Metamodel
The dependency view is based on the metamodel

shown in Figure 7. The creation of constraints among
decisions in a decision model results in a set of
relations because a constraint usually references
several decisions. Therefore, the relationship element
captures only the knowledge of how two decisions (a
source decision and a target decision) are related, i.e.
which one has an effect on the other one, but not what
exactly that effect is.

Figure 7: Metamodel for dependency view

Notation
One possibility of representing the dependency

view is as a node- and edge-based view. Decisions are
represented by a rounded rectangle that contains the
name of the according decision.

Relations between decisions are shown as simple
arrows that connect the related decisions and therefore
visualize which decisions influence each other. The
direction of the arrow indicates if a decision is
influenced by another decision or if it influences
another decision. The arrow’s source decision is the
affecting decision, whereas the target decision is the
affected one. However, from what exactly the
influence results and what preconditions must be met
in order to fire can not be seen in this view. An
example for a dependency view can be seen in Figure
8. It shows for example, that decision 1 affects two
decisions, namely decision 2 and decision 3. This
influence is the result of a constraint with the name c1,
which is indicated by the label next to the arrow
representing the according constraint. Another thing to
see is that decision 6 is influenced by decision 3 and
decision 4. The two influences have different reasons,
firstly constraint c3 and secondly constraint c4.

A second way of representing the dependency view
is text based. Therefore, a table consisting of five
columns is used as shown in Table 1. The first column
shows a decision’s name, the second column shows by
which other decisions it is influenced. Column three
adds the number of decisions affecting the given

decision. The fourth column then indicates, which
other decisions are influenced by the given decision.
Again this number is added in the fifth and last column
of the table.

Figure 8: Graphical representation of the
dependency view

Decision Influ-
encing
Dec.

#
Influ-
ncing
Dec.

Influ-
enced
Dec.

#
Influ-
enced
Dec.

Decision 1 0 2
 Decision 2
 Decision 3
Decision 2 1 0
 Decision 1
Decision 3 1 2
 Decision 1 Decision 5
 Decision 6
Decision 4 0 1
 Decision 6
Decision 5 1 0
 Decision 3
Decision 6 2 0
 Decision 3
 Decision 4
Table 1: Tabular representation of the dependency
view

A last option of representing the dependency view
is emphasizing the hierarchy of decisions influencing
each other. This can be compared to a call hierarchy in
a programming language like java for instance.
Accordingly, for a decision model the view focuses on
a single decision and either shows which decisions
affect this decision or which other decisions are
affected by this particular one. Figure 9 shows an
example for such a hierarchy, in which the starting
point is decision 1. It can be seen, that decision 1
affects decision 3 and that in turn influences decision
6. Decision 6 however does not affect any further
decision, as it is the hierarchy’s endpoint.

Proceedings VaMoS'08

114

Figure 9: Hierarchical representation of the
dependency view

3.3. Layered view

Each of the previously presented views can be
enriched by using layers to further structure the
contained elements.

An example for the application of layers could be
the mapping to development phases (e.g. analysis,
design, implementation, testing). Decisions in a layer
then only affect decisions in a lower layer or product
line assets of the according development phase.

Metamodel
The metamodel for layers is depicted in Figure 10.

A layered view on a decision model consists of an
arbitrary number of layers (configurable by the user).
Those layers in turn consist of compartments that
introduce a further way to structure decisions within a
layer. Finally the compartments contain links to
concrete decisions of the decision model.

Figure 10: Metamodel for views and layers

Notation
The notation for a view is a box consisting of two

sections. The head section contains the view’s name.
The second section consists of layers.

The notation for layers and compartments is exactly
the same as the one for dependency views, namely
boxes, containing the according name in a head
compartment. They can be differentiated due to their
containment hierarchy (a view consists of layers and a
layer in turn of compartments).

A link to a decision is represented as a rounded
rectangle containing the decision’s name. The above
described notations are illustrated in Figure 11.

Figure 11: View and layer notation

3.4. Filtering

A useful concept to reduce a decision model’s
complexity is filtering. That is, the masking of certain
representation elements based on some property
[9][10]. Such a property for filtering could be the
information of a decision to which stakeholder that
decision is relevant. For example, decisions
representing features (i.e. top most decisions) are
usually of interest to people responsible for
requirements and the customer, whereas, decisions
representing variability on design or code level (i.e.
lowest decisions) are only of interest to developers. A
property for filtering could also be the information if
decisions are simple decision or a complex decision.
Applying such a filter to a view would then look like
in Figure 12. The view on the left of the figure shows
an unfiltered dependency view, after applying the filter
for simple decisions only decision 5 and decision 6 are
still visible, because they are the only simple decisions
in the view (since they don’t affect any other
decisions).

Figure 12: Filtered view

3.5. Resolution Processes

An issue in the process of product configuration, for
decision models with a large number of decisions, is
the selection of an appropriate starting point for the
configuration and the order in which decisions are
traversed and resolved. That especially applies to
people who did not develop the decision model and
thus have no knowledge about its structure. Therefore,

Proceedings VaMoS'08

115

the domain engineer could create a process, which
guides application engineers in resolving the decision
model. That is, the process consists of a well defined
order of how to resolve decisions. The process creation
could be accomplished automatically by using
particular strategies. Such a strategy could be that
decisions at the top of a dependency hierarchy have to
be resolved first, then the decisions deeper in the
hierarchy. Another possible strategy, based on a
layered view, could be to first resolve decisions in the
top layer, then the ones in the next layer and so on.
There might exist other strategies how to find a
resolution process, but this is not elaborated on here,
because it is out of the scope of this paper.

4. Tool support

As described in section 2 variability and variation
points can be managed using decision models. In
principle it is possible to handle decision models
manually, for instance by using Excel sheets, which
map variation points on artefact elements and decisions
for instantiation of the model (see in Figure 13 for an
example). The resolution of a decision can constrain
other decisions (Decision 8 is resolved to “Yes” if
Decision 1 is resolved to “No”). Constraints,
consistency problems with large artefact models and
their associated decision models as well as the
instantiation process lead to the development of tool
support in form of the Decision Modeller. The tool is
described in more detail in [12] and basically served as
a proof of concept for [13].

Question Resolution Effect
1 Should the

wiper stop after
ignition?

Yes

No

- Remove stereotype
variant from
FinishWiping
- Resolve decision 8
to yes

… … … …
8 A second wiper

present?
Yes
No

- Remove class …

Figure 13: Decision Table

The conceptual architecture of the Decision
Modeller tool is shown in Figure 14. As the Decision
Modeller is realized as a set of Eclipse plug-ins, the
architecture primarily follows a Model-View
Controller style. There are five conceptual
components:
• UI: The UI component provides the graphical user

interface elements necessary to work with the
Decision Modeller tool. This includes a set of tree
viewers for displaying the model as well as

wizards to create Decisions, Constraints and
projects.

• ExternalTool: The ExternalTool component
represents external modelling tools (e.g., Rational
Software Modeler, Visio) that can be extended by
the Decision Modeller to manage variability and
to resolve constraints and instantiate variants in
these external tools. The Decision Modeller
provides standard interfaces for its features and
resolution functionality.

Figure 14: Decision Modeller – Conceptual
Architecture

• Modelmanagement: The Modelmanagement
controls the life cycle of the in-memory data
models at runtime. Moreover, it is a façade to the
components Algorithms and Model, which should
not be accessed directly and not communicate with
each other.

• Model: The Model component encapsulates the
internal data model of the Decision Modeller.

• Algorithms: The Algorithms component realizes
a reasoning engine for constraint evaluation.

For validation purposes we implemented the
concepts listed in section 3 as a contribution in terms
of a visualization component to the Decision Modeller.

5. Validation

In order to validate the concepts from section 3 we
conducted an experiment based on the Goal-Question-
Metric method (GQM) [11].

5.1. Goal

The goal of the experiment was to understand if the
implemented concepts help to reduce complexity and
improve scalability and traceability of decision models.

5.2. Question

To operationalise the goal following questions are
defined:

Proceedings VaMoS'08

116

• Q1: How long does it take the attendees to
accomplish a certain task referred to modeling
or understanding?

• Q2: How many faults do the attendees produce
in the task?

5.3. Hypotheses

According the questions following null hypothesis
can be formulated:

H0 – There is no difference between tool support with
and without visualization component, neither with
respect to usability nor with respect to the reduction of
complexity or improvement of scalability and
traceability of decision models.

Due to the expected observations three further
hypotheses can be formulated:
• H1 – The concepts implemented by the

visualization component reduces the complexity of
decision models.

• H2 – The concepts implemented by the
visualization component improve the scalability of
decision models.

• H3 – The concepts implemented by the
visualization component improve the traceability
of decision models.

5.4. Metrics

To collect the data needed to answer questions Q1
and Q2 the following metrics were used:
• Time needed to accomplish a task.
• Number of faults made in the task. Due to time

constraints it was not possible to work out an
explicit definition for faults. Therefore, the
decision what exactly stated a fault was made by
the person who evaluated the results of the
experiment.

With this data collected, conclusions about the
effort spend on a solution and the efficiency of a
solution can be drawn. The correlation between the
two metrics and a solution’s efficiency is depicted in
Figure 15. In case a task is solved in a short time and
with no or almost no faults, the task’s solution was
developed efficiently. If the task is accomplished with
a few faults and a short time or the other way around,
with almost no faults and in no short time, the solution
has a medium degree of efficiency. If the number of
faults or the needed time exceeds a particular
boundary, the solution is inefficient.

Figure 15: Correlation of faults and time to
determine a solution’s efficiency

5.5. Setup

The participants in the experiment were split into
two groups, each consisting of 3 students of computer
science. The first group had to accomplish a set of
given tasks with a version of the Decision Modeller
that did not have the additional visualization
component. The second group had to process the same
set of tasks, but with a version of the Decision
Modeller that contained the visualization component.
Both groups were given the same experiment
description document and a short introduction to
feature and decision modelling, so they had a common
base of knowledge. Of course, the tool introduction
was slightly different for both groups, as the tool setup
was different. The first part of the document contains
an initial questionnaire to determine the subjects’
experiences in modelling and modelling tools. This
was important, because a higher experience in this
field would reduce the time needed to accomplish
some tasks. The document’s second part contained
three tasks and their description.
• The first task was about modelling constraints for

the decision model of a coffee machine. As input
the subjects got a decision model, already
containing all simple decisions, and the coffee
machine’s feature model, as well as its detailed
description. This task addresses scalability,
because the decisions had to be related to each
other. For this purpose the correct decisions and
according values had to be found in the model.

• The second task was to extract information from a
given decision model. For this task the subjects
did not have to model anything. This task also
addresses scalability, because the necessary
information had to be found in the model)

• The third and last task required the subjects to
write down a possible resolution process for a

Proceedings VaMoS'08

117

given decision model. Here traceability is
addressed, because it was required to retrieve an
understanding of how the decisions are related to
each other

Before and after processing a task the subjects had
to write down the actual time in order to determine the
task’s duration. For counting the number of faults, also
the subjects’ workspaces, containing their outputs
produced in the experiment, were collected.

5.6. Analysis

Since at the point in time this paper was written, the
experiment was ongoing work and thus the number of
current participants was rather small. Consequently,
the data analysed here do not underlie any statistical
evidence, but reveal possible trends. Thus, the
acceptation or rejection of hypothesis in the following
is based on the observed trends.

The experiment’s initial questionnaire showed that
both groups were well suited for a comparison. That is
due to the quite equal standard of knowledge of feature
and decision modelling of all attendees. The
questionnaire’s result is shown in Figure 16. The
numbers next to the different section are the numbers
of attendees for those sections. Even though one half
of all attendees exhibited a little more experience with
decision modelling then the other half the groups still
remain comparable as this divergence is balanced by
the initial introduction. Furthermore, none of the
attendees knew the Decision Modeller neither in its
plain version nor in the extended version.

Figure 16: Modelling Experience

Figure 17 shows the average time needed by both
groups to accomplish the different tasks. The tasks are
shown on the x-axis, whereas, the average time needed
by the attendees is shown on the y-axis. For each task
the average of both groups is contrasted by two
columns.

Figure 17: Comparison of the average time
behaviour

Figure 18 shows how faulty a solution is. A 0 (on
the y-axis) indicates a solution without any faults,
whereas, a 3 indicates an insufficient solution with too
many faults. Again, for each task the average of both
groups is contrasted by two columns.

Figure 18: Comparison of fault behaviour

After each task the attendees were asked for their
subjective sensation about the task’s difficulty. The
results are depicted in Figure 19. The y-axis is shows
values between 1 and 4. 1 indicates a very easy
sensation and a 4 a very hard sensation. Like in the
charts before the results for each group are shown in
separate columns.

Figure 19: Subjective sensation of difficulty

Proceedings VaMoS'08

118

Hypotheses H1 & H2
Since complexity and scalability are properties

which influence each other they could not be dealt
with separately. Consequently, hypotheses H1 and H2
were both addressed by the main task 1 and 2 and its
sub-tasks. The tasks demanded the subjects to model
constraints among decisions and to extract certain
information from a rather small but medium complex
decision model which consisted of 15 decisions and 13
constraints. The information to extract was, for
instance, related to the model’s integrity. As Figure 17
and Figure 18 show, group2 with the visualization
support solved tasks 1 and 2.1 to 2.3 in a shorter time
than group2 without the support. Moreover, in almost
all tasks group2 made fewer errors than group1 and the
task’s post questionnaires yielded that group2 thought
that the tasks were easier than group1 thought.
Consequently also H1 and H2 could be confirmed.

Hypothesis H3
Task 3 was supposed to evaluate hypothesis H3.

Therefore, the experiment’s subjects had to create a
possible process which defined in which order the
decisions in the decision model should be resolved
optimally. Optimally meant that as little decisions as
possible had to be made in order to create a resolution
model. Since the perfect solution for this task did not
exist the subjects’ solution was evaluated with respect
to traceability. Thus, it would be optimal to start with
decisions referring to requirements and then resolving
the according sub-trees which result from constraints
among the decisions. Figure 17, Figure 18 and Figure
19 show that no subject from group1 found
approximately good solution. Moreover, it took them
quite long to accomplish the task and they felt that the
task was extraordinarily complicated. To group2,
however, the task seemed to be easy. That was also
reflected in their solutions. They accomplished the task
in a short time and were able to create, not an optimal,
but good solution. An optimal solution would have
been traversing the process using as few steps as
possible. As a result H3 could be accepted.

6. Conclusions

In this paper we proposed several concepts and
views on decision models which are supposed to
support the management of large-scale decision
models. Those were validated in an experiment which
indicated that those helped to reduce the complexity
and improves scalability and traceability of decision
models. Due to time constraints the experiment could
only be conducted with a small number of subjects.
Consequently, the results can only be seen as

evidences without statistical proof. However, the
experiment is work in progress and will be executed
with further subjects in order to consolidate the
statements made here.

7. References

[1] J. Bosch: “Software variability management”, Science
of Computer Programming, vol. 53, pp. 255–258,
Dezember 2004

[2] K. Kang, S. Cohen, J.Hess, W. Novak, and A. Peterson:
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study”, Tech. Report CMU/SEI-90-TR-21, Software
Engineering Institute (SEI), November 1990

[3] J. Bayer, O. Flege, and C. Gacek: “Creating Product
Line Architectures”, Lecture Notes in Computer
Science, Vol. 1951, Proceedings of the International
Workshop on Software Architectures for Product
Families, March 2000

[4] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O.
Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wüst,
and J. Zettel: “Component-based Product Line
Engineering with UML”, Addison-Wesley, 2002

[5] K. Schmid, and I. John: “A Customizable Approach To
Full-Life Cycle Variability Management”, IESE-Report,
001.04/E, Kaiserslautern, 2004

[6] D. Dhungana, R. Rabiser, and P. Grünbacher:
“Decision-Oriented Modelling of Product Line
Architectures”, The Working IEEE/IFIP Conference on
Software Architecture (WICSA'07), p. 22, 2007

[7] K. Berg, J. Bishop, and D. Muthig: “Tracing Software
Product Line Variability – From Problem to Solution
Space”, Proceedings of the SAICSIT’05, pp. 182-191,
2005

[8] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch:
“Managing Variability in Software Product Families”,
Proceedings of the 2nd Groningen Workshop on
Software Variability Management (SVMG 2004), 2004

[9] M. Becker: „Anpassungsunterstützung in Software-
Produktfamilien“, Dissertation, Technische Universität
Kaiserslautern, 2004

[10] M., Coriat, J. Jourdan, and F. Boisbourdin: “The SPLIT
Method”, Proceedings of the First Software Product
Line Conference, pp. 147-166, Kluwer Academic
Publishers, 2000

[11] V. Basili, G. Caldiera, and H.D. Rombach. “The
Goal/Question/Metric Paradigm”. Encyclopedia of
Software Engineering (Ed.: John Marciniak), vol. 1, pp.
528-532. John Wiley & Sons, 1994

[12] T. Kruse: “Managing Decision Model Constraints in
Product Line Engineering”, Diploma Thesis, Technical
University of Kaiserslautern, 2004

[13] D. Muthig: “A Light-weight Approach Facilitating an
Evolutionary Transition Towards Software Product
Lines” , PhD, Technical University of Kaiserslautern,
2002

Proceedings VaMoS'08

119

Proceedings VaMoS'08

120

Variability Management on Behavioral Models

Patrick Tessier, David Servat, Sébastien Gérard
CEA, LIST, Gif-sur-Yvette, F-91191, France

{Patrick.Tessier, David.Servat, Sebastien.Gerard}@cea.fr

Abstract
This paper deals with managing variability on

behavioral models. Such models are generally more

complex, less tractable by hand than the static,

structural parts of a system description. This calls for

specific support to check the consistency of variability

expression model-wide: defining some elements as

variable may impact several behavioral constructs,

even elements that designers may not be aware of –

e.g. events attached to triggers. Moreover, variable

elements at the structural level usually imply variable

behavioral constructs in ways that are not easily

foreseeable: a seemingly perfectly valid variability

scheme may lead to ill-formed behavioral models after

derivation. This paper takes UML state machine

diagrams as a case study and presents some technical

solutions to maintain consistency between both levels:

a propagation mechanism to deal with the impact of

variability model-wide and a constructive method to

check the well-formedness of state machines obtained

by derivation.

1. Introduction
The system family paradigm was first proposed in

[13, 15]. It has been the research topic of several
research projects such as ESAPS, CAFÉ, Families1.
Their focus was to foster reuse of models for a whole
set of similar applications. An application is seen as a
specific instance of an application family called an
application domain. This is known as the “product
line” approach [4]. A system family model relies on the
design and composition of common and specific
functionalities, called variable elements. Each specific
member of a system family, called the product model,
results from one derivation of one single system family
model.

The purpose of our work is to apply the system
family paradigm to the development of real-time
systems. Our research team proposes extensions and
design method guidelines to help engineers improve
their experience of the UML in this particular domain.

1 http://www.esi.es/Families/

We participated in the recent advent of the MARTE
profile, which is the standardized UML profile for real-
time and embedded systems design and analysis [14].
For such systems, behavioral models are critical and
complex whereas structural models remain fairly easy
to understand and manage. Structural and behavioral
parts of a system description usually present complex
links that are hard to manage when one wants to depict
commonalities and differences between models.
Designing families of real-time systems is not an easy
task and calls for specific support: 1) means of
expressing variability; 2) consistency checks to help
manage variability model-wide, both at structural and
behavioral levels; 3) correct-by-construction derivation
of product models from the system family model.

This paper presents some results of our ongoing
work in this context within the limited scope of models
where behavior is depicted with a set of state machines
attached to structural elements. After a brief overview
of related works, the paper is organized into three
sections: the first one (section 3) presents the chosen
conceptual model and UML profile used to express
variability on models. A case study is introduced at the
end of this section. Then we describe two specific
mechanisms that help designers maintain consistency
on their variability-enabled models: 1) a mechanism of
variability propagation ensures that the impact of the
addition of variability on any modeling elements is
fully reflected throughout the entire model (section 4);
2) a mechanism to check the well-formedness of state
machines obtained by derivation is described in section
5. Both of these mechanisms help monitor the
derivation process of a product model from the system
family model. In the course of this paper we show how
this in turn helps assess the consistence and
completeness of the system family model as a whole.

2. Related works and overall context
Means of expressing variability have been the

subject of many research works. Those grounded in the
UML language have usually pointed out the lacks of
UML2 (see for instance [16]) and extensions have been
proposed in terms of profile definitions. Roughly

Proceedings VaMoS'08

121

speaking the works in this area have consisted in
proposing adaptations of established product-line
approaches in the UML domain. In [6, 7, 10] the
FODA approach [9] was adapted to UML. In [18, 19],
ideas from FODA are reused. Results from the Families
project led to a conceptual model and a UML profile
where several approaches were combined [2].

It is not the goal of this paper to discuss the
expressiveness of the various approaches found in this
area. They all rely on the distinction between common
and variable elements - the latter being usually tagged
by some given stereotype - and the addition of
constrained relationships between such variable
elements. Allowed constraints and choice of constraint
language may vary. A rationale is usually provided for
the choice of one element among a set of possibilities.

Then the overall process usually follows the same
principles from one approach to the other. From a
common system family model one intends to drive the
generation of several product models, using a decision
model to guide the process: the decision model is a
graph or tree-based model that lists the various
possibilities in terms of variability resolution.
Following paths in this graph results in resolving sets
of variable elements and progressing towards a model
with less variability than before. Ultimately a model
with no remaining variable elements is obtained: a
product model. The list of choices made in the process
characterizes the product in terms of functionalities,
qualities, or the like.

Let us make some comments:
1. We may note that for now there is no global

convergence towards a standardized UML profile
to express variability. The MARTE profile does
not fill the gap so far on this aspect.

2. A commonality of these approaches - which is the
driver for the present contribution - is that the
variability is expressed essentially in structural
models. When some approaches describe
variability in the behavior, then usually nothing
ensures that derived product models are valid. For
instance no checks are performed on the derived
state machines or behavioral constructs. We think
that a more rigorous approach is needed for real-
time systems. Variability must be checked so that
all possible derivation from a common family
model shall produce an acceptable, meaningful
product model, e.g. in our case, state machines
obtained by derivation must be verified.

3. As said previously, the derivation process usually
relies on a guide called decision model or feature
model. This model is hand-made during the
construction of the system family. This hand-made

approach is not tractable when one addresses
behavioral models. The presence or absence of
structural elements and rationale thereof can
usually be traced back to some intelligible needs
from a designer point of view. Usually variability
in the functional features or the platform choices is
at stake. Yet understanding the implication of
variability on the topology of transitions and
triggers on state machine diagrams is far less
intuitive. Even to check that a state machine is well
or ill formed is not an easy task to perform
manually.

Given this context and bearing in mind the overall
complexity of the problems mentioned here, the
following sections do not pretend to propose definite
solutions but rather some operational mechanisms to
help designers maintain consistency within a
deliberately limited and constrained set of variability-
enabled models. The main characteristic of our
approach is to find ways to monitor the derivation
process so that the overall consistency and
completeness of the system family model can be
assessed.

3. Modeling variability in UML
This section presents the meta-model that has been

designed to express variability in a UML model. This
work is grounded in the proposed conceptual
variability model of the Families project [2]. It
currently serves as the basis for the proposal of artifact-
variability (i.e. design elements centered) of the
ATESST2 project [5] whose goal is to propose a
refined version of the EAST-ADL language for
automotive systems. The presentation is deliberately
limited here to the core elements that enable to
understand the UML profile constructs used later in the
case study. An extensive description of the conceptual
model and profile can be found in [17].

3.1. Meta-model to express variability
A System Family Model (SFM) factorizes several

product models into one. It is therefore made up of
common elements and variable elements. Model
elements not tagged as variable elements are implicitly
considered common to all products.

Two kinds of variable elements exist (see figure 1):

• Variable element: these are the variable elements
that are explicitly introduced by the user.

• PropagatedVariableElement: these are elements
that acquire the variability feature through their
relationships to other possibly variable elements.

2 http://www.atesst.org/

Proceedings VaMoS'08

122

This is intended to be automatically assigned by a
tool.

In our approach, variable elements are propagated
from source variable elements along model and meta-
model relationships so that impacts of the addition of
variability are fully covered. The distinction between
both types of variable elements helps to achieve
traceability on what the propagation tool produced.

Specifying that a model element is variable is not
sufficient to describe a system family model. In fact
variable elements are generally not isolated, but
constrain one another: presence or absence of one
implies various choices on others, etc. One clearly
needs to express such dependency constraints between
variable elements.

To this end, several approaches propose
mechanisms to add constraints between variations. In
[3] a “requires” dependency is used to link two variable
elements; in [19] OCL constraints are used to define
more elaborated variable element dependencies.

In our approach, OCL constraints are also used. Yet
because constraints in this formalism may be complex
to write, we introduced the concept of a variation
group, which features several predefined types of
constraints among a set of variable elements: the
constraints may be expressed via OCL or with some
textual user-defined language.

A variation group features six predefined kinds of
variability constraints:

• Equivalence: the listed variable elements work as a
group, they will be either all present or absent in
any product model.

• Alternative: only one of the listed variable
elements will appear in any product model.

• OneAmongSeveral: several variable elements
listed – at least one in any case - will be present in
the product model.

• Implication: a variable element implies the
existence of another variable element in the system
model.

• CustomizedCombination: the constraint between
listed variable elements is written directly by the
designer. The constraint is a logical expression
where operators are not, and, or, xor, implies.

A rationale is provided along with all VariationGroups
in the Motivation property that describes the
motivation.

These predefined constraint kinds cover most of the
common needs, such as the «requires» or «excludes»
relationships from the FODA methodology. However
at times more complex constraints need to be
expressed. For this, the ComplexVariationGroup can

be used: it allows specifying constrained combinations
of variation groups in a hierarchical manner.

Fig.1: Meta-model for variability modeling.

3.2. A UML profile for variability modeling
This paper is focused on the impact of variability on

state machine diagrams. Consequently, the presentation
of the profile is limited to what is relevant for state
machine diagrams and class diagrams.

A variable element is marked by the stereotype
«VariableElement» (Table 1). This stereotype can be
applied on a class, a property (an attribute of a Class),
or an operation. To express variability in a state
machine, the stereotype can be applied on a Transition
or a Vertex (a generalized class for PseudoState and
State in the UML). Other more elaborated elements of
state machine diagrams, such as Entry/Exit points,
Regions, ConnectionPointReferences or Ports of
protocol StateMachines are not considered for the
moment in this work.

 Stereotype BaseClass Tags

«VariableElement» Class

 Property

 Operation

 Vertex

 Transition

Table 1: «VariationElement» stereotype

As said previously, variable elements resulting from
propagation of variability along the model and meta
model relationships are covered by the
“PropagatedVariationElement” stereotype, which

Proceedings VaMoS'08

123

owns a property called VariationOrigin that references
the source variationelement from which it originates.

 Stereotype BaseClass Tags
«PropagatedVariableElement» Class VariationOrigin
 Property

 Operation
 Vertex

 Transition

Table 2: «PropagatedVariableElement» stereotype
Constrained clusters of variable elements are

supported by a class stereotyped as “VariationGroup”
(table 4). The type of the embedded constraint is
specified in the variationGroupKind property. A
rationale for the cluster may be specified by the user
with the motivation property. A variation group saves
references to the clustered variation element via its
property variationElements.

 Stereotype BaseClass Tags
«VariationGroup» Class variationGroupKind
 motivation
 variableElements

Table 4: “VariationGroup” stereotype

Tag Type Multiplicity
variationGroupKind VariationGroupKind [1..1]
motivation String [1..1]
variableElements VaraibleElement [1.*]

Table 5: Properties of «VariationGroup»

The modeler first defines the elements that are
variable by tagging them with the “VariationElement”
stereotype. Then in order to introduce constraints
between variable elements, he introduces classes
stereotyped as “VariationGroup”, fills in the references
to the variable elements, provides a rationale and a
constraint, for instance in OCL or textual language.
The name of the VariationGroup classes does not
matter, yet a good practice is to give names relevant to
the type of the embedded constraint. A practical
example is given in the next section.

3.3. Watch case study
We consider the case of a watch that offers various

alarm modes: a sound signal, a visual signal or a
combination of both. There are several ways to model
such a system. We assume here that the watch system is
modeled by a single Watch class (figure 2). It
implements two interfaces. The WatchControl interface
defines start() and stop() operations to trigger the
watch system as a whole. The AlarmControl interface
provides operations to trigger the alarm function –
startAlarm() and stopAlarm() operations. The Watch
class has associations to other elements, namely a
Display used for the watch as a whole, a DisplayAlarm
specific to the alarm function and a Beeper that
provides for the sound mode. To deal with both alarm

modes the Watch class features two internal operations,
startSoundAlarm() and startVisualAlarm() to trigger
the start() operation of either of the associated Beeper
or DisplayAlarm. The execution sequence and
respective delegation of calls are depicted in the state
machine diagram of figure 3.

Fig.2: The complete watch

Fig.3: Behavior of the complete watch

Consider now that one wants to derive a system

family out of this rather complete watch, to factorize
other less advanced models – providing either one of
the alarm modes or perhaps even featuring no alarm
function at all. We assume that the overall system does
not change: less advanced systems can be represented
by downgraded Watch classes featuring fewer
operations and updated execution behavior.

To do so one tags some of the modeling elements
with the “VariableElement” stereotype (figure 4):

Proceedings VaMoS'08

124

• startAlarm() and stopAlarm() should be tagged as
variable, because these operations are specific to
the alarm functionality,

• startSoundAlarm() and startVisualAlarm() should
also be tagged as variable, because they are only
used when the alarm function is enabled.

Fig. 4: Watch system family model

Some watches may feature only one of these operations
(depending on what is the enabled alarm mode) or both
in the case of the complete watch. To define such
alternative configurations, one introduces two
VariationGroups with specific constraints among a list
of VariationElements. This is depicted on figure 5.
A variation group named AlarmVariationGroup is
added to set that startAlarm() and stopAlarm() have a
strong relation. These operations have to be all present
or absent in the model.
A second variation group lists startVisualAlarm() and
startSoundAlarm(). The relation between them is soft,
all combinations are possible. Nevertheless, the
variation group is used to explain why theses
operations are variables.

The constraint specified on the VariationGroup can
be written using OCL. The AlarmVariationGroup
constraint would be defined as follows:
Context WatchModel inv AlarmVariationGroup:
(self.elementExist(WatchModel.Watch.startAlarm) and

 self.elementExist(WatchModel.Watch.stopAlarm)
or

(not self.elementExist(WatchModel.Watch.startAlarm.exist) and
 not self. elementExist(WatchModel.watch.stopAlarm))

where elementExist() is a predefined OCL function that
returns true if the model element is present in the
model and false otherwise.

This ends the presentation of the expression means.
We end up with a model where variability has been set
on the structural part of the model. In the following
section we will see how variability is kept consistent in
both behavioral and structural levels and how the
derivation process can be checked. The same case
study will be considered throughout the paper.

Fig. 5: Variation group definitions

4. Variability propagation
Ensure consistency in a system family model is

crucial. A lack of consistency may result in ill-formed
state machines at derivation time. When a transition is
tagged as a variable element, it may be the case that
one of the derived state machines features non-
reachable states, i.e. with no incoming transition, even
though the state itself was not tagged variable. Such
states should not be generated.

To cope with that, our approach propagates
variation across the system family model, along both
model and meta-model relationships. A set of rules has
been defined to address various situations. The
following are examples of such rules, to cope with
Triggers and CallEvents – elements most of the time
unknown to users, who are only aware of the
Transitions and do not have an in-depth view of the
model repository. Rules are followed by their OCL
expressions:

An operation specified as a variable element implies that all

CallEvents referencing this operation are variable elements and all

Proceedings VaMoS'08

125

Triggers that are associated to this operation via the CallEvents are

also variable elements.

Context Trigger inv:
self.event.isKindOf(CallEvent) and

self.event.operation.isStereotyped(‘VariableElement’)
implies
(self.event.isStereotyped(‘PropagatedVariableElement’) and
self.isStereotyped(‘PropagatedVariableElement’))

If Trigger is a variable element then all associated Transition

elements are variable elements.

Context Transition inv:
 self.trigger.isStereotyped(‘VariableElement’) implies

 self.isStereotyped(‘PropagatedVariableElement’)

If a state is a variable element then all its incoming and outgoing

Transitions are variable elements.

Context State inv:
self.isStereotyped(‘VariableElement’) implies

self.incoming
->forAll(t,t.isStereotyped(‘PropagatedVariableElement’)) and

self.outgoing
->forAll(t,t.isStereotyped(‘PropagatedVariableElement’))

Such a propagation process targets to faithfully

reflect the potential impacts of variability on one model
entity onto the rest of the model, so as to prevent errors
coming from careless addition of variability. Yet on
simple cases, it can even be more productive. In our
case study, this simple propagation mechanism
automatically provides an update of the state-machine
diagram from figure 3 according to the variability
information put on the structural diagram (figures 4 and
5). The resulting state machine is depicted on figure 6.

Fig. 6: State machine after propagation

This illustrates the interest of such a propagation
mechanism, which can even produce behavioral
diagrams out of a variability-enabled structural model.

Let us note here that the propagation mechanism
does not consider the actual constraints embedded
within VariationGroups. Rules are based on
containment or cross-reference relationships, not on the
semantics of the link between variable elements.
Finally it is likely that the modeler shall introduce a
range limit to this propagation mechanism, otherwise
some rules may result in all model elements being
tagged as variables.

At this stage one is assured that the
VariableElement stereotype is applied consistently
system-wide. The constraints embedded in the
VariationGroups can be used to derive what is called a
decision model, in which paths represent possible
sequence of choices on the variable elements. The
construction of the decision model out of the
VariationGroup information can be found in [17].

It is however another problem to know whether all
paths result in correct product models. If constraints
have not been well designed, ill-formed models may be
derived. Imagine that the incoming transitions of a state
are all variable elements and there exists a decision
where all of them are removed from the model, we may
end up with a state with no incoming transition, hence
an ill-formed state machine.

For example in our case study, the state machine
depicted on figure 7 may be derived: it is ill-formed
because both states ReadyWithAlarm and
RunningWithAlarm cannot be reached.

Fig. 7: Ill-formed state machine

This situation may occur even if such a state was

tagged as variable by the propagation mechanism: this
process is blind to the constraints embedded in
VariationGroups. Such an interesting feature is for the
moment beyond the capabilities of our approach. For
the state to be removed automatically when no
incoming transitions is left, one would have to alter the
VariationGroups introduced so that they incorporate
the state as part of their managed variable elements. It
remains to be investigated whether such an enhanced
propagation mechanism would suffice to induce

Proceedings VaMoS'08

126

correct-by-construction derived models. We may have
doubts considering the complexity of variability
schemes usually imposed on structural models. Thus,
one has probably to face the fact that the derivation
process may result in ill-formed models. The following
section presents means to cope with that, in the case of
state machine diagrams.

5. Evaluation of derived state machines
As said previously, the derivation of ill-formed

product models from a common system family model is
very difficult to avoid. Thus the correctness of derived
product model shall be evaluated. In our case, we have
to assess whether all possible choices made during
derivation result in valid state machines.

To do so, our approach constructs a function that
captures the state machine topology. The configuration
of its transitions and states are seen as the variables of
this function. The evaluation of the function returns
null if the state and transition configuration is invalid,
else returns a compact representation of the valid state
machine.

Based on this, we evaluate the various state machine
configurations obtained from each path of the decision
model. This helps us evaluate the overall consistency of
the system family model. If some branches lead to ill-
formed behavioral diagrams then there must be a
design fault somewhere in the variability model.

Our study is conducted on state machine diagrams.
In this part, formal foundation in briefly explained

and then the process is presented. The process is
divided in three parts. First the transformation of a
state-machine into regular expression is presented.
Then the analysis of this expression and finally a
process of derivation are described.

5.1. A Formal foundation for derivation
Our approach makes use of the following works on

regular expressions, automata and Kleene algebra [8,
11], which are very well suited to analyze automata-
based specification and study the impact of variations.

We construct a regular expression that represents a
complete state machine, featuring variable and non-
variable elements. We then evaluate this expression
according to various valuations of its variable elements.
The evaluation is made in the Kleene algebra. If the
variable element – transition or state – is present, the
valuation amounts to the identifier of the element – e.g.
transition “t9”, name of state, etc. If the variable
element is absent, it amounts to null (Ø in Kleene
algebra). As a result, if the overall regular expression
evaluates to null, the state-machine is ill-formed;
otherwise the result represents the topology of the
derived state-machine obtained for a given combination
of variable elements.

The following paragraphs explain the calculus of the
regular expression, its evaluation and analysis.

5.2. A regular expression for state machine
The regular expression should capture the topology

of the state-machine. To do that, the UML state
machine is first transformed into a regular automaton,
defined as follows:

• its alphabet is chosen as the set of UML transition
and state identifiers

• its recognized language is chosen as the sequences
of transitions and states of the state machine.

Figure 8 shows the corresponding automaton of the
complete state machine of our watch case study from
figure 6. The regular expression is then computed out
of this automaton using a classical algorithm from the
literature [12]. The expression is not shown here
because of its length.

A

B

ready

t4

BI

t1

C

t5

D

running

t16

t17

E

F

G

t10

H

readyWithAlarm

runningWithAlarm

t2

t3

t6

t7 BJ

t14

t15

T18 t19,

t20,

t21

T9

Fig. 8: Corresponding automaton

5.3. Evaluation of the regular expression
To identify variability impact, the regular

expression is considered as a function whose variables
are issued from UML variable elements. Each
evaluation of this function represents the topology of
the state machine after choices on variable elements
have been performed.

Variables of the function are easily deduced from
the UML variable elements. In our example the
variable are t2, t3, t6, t7, etc. All combinations of
values are not possible for each variable. Indeed, the
set of possible value combinations have to be
calculated by taking into account the constraints
introduced in the VariationGroups. For example,
transitions t2 and t6 always have the same value. The
existence of t2 and t6 depends on the existence of the
same variable element, the startAlarm trigger. If this
trigger is not present in the product model, both
transitions are removed.

The evaluation of the regular expression uses the
Kleene algebra. More precisely, the following
properties are used:

Proceedings VaMoS'08

127

Let A be an alphabet, and let L ∈ P(A*) (all languages based

on A*). Then the following properties hold:

 Ø| L = L|Ø=L

 Ø.L= L.Ø= Ø

For example, if t2, t3, t6, t7 are valuated to Ø

(imagine a decision which gets rid of these transitions),
the evaluation of the function is:

F(t2,t3,t6,t7�Ø)=(t1.((ready.t5.running.t4))*.ready.(t

16|(t5.running.t17)))

We apply this evaluation for all possible
combinations. When the function equals Ø for a
particular combination, it means that no correct state
machine can be derived, thus this particular decision
branch is not valid. When the evaluation is not Ø, the
function returns a regular expression that represents the
topology of the derived state machine. In such cases,
one can easily transform the regular expression into a
UML state machine – the transformation used is
bijective.

In our case study, five behavioral derivations are
possible (see figure 9).

A

B

C

D

E

Fig. 9: Five valid state machines

Let us note that such an approach enables to

suppress isolated states. As no valid sequence of state
and transitions lead to such states, they cannot appear
in non-null regular expressions.

5.4. Derivation analysis
After calculating all possible derivations of the state

machine, a comparison with the structural derivation is
performed. The number of structural derivations may
be greater than the number of possible behavioral
derivations due to the topology of the state-machine.
This construction provides an evaluation of the
consistency of both structural and behavioral parts of
the model with respect to the derivation process.

First, all derivations of the associated classes are
calculated. To do that, we only need to calculate all
possible combinations of variable elements that respect
the constraints defined by variation groups. Because
the number of structural variations is not great in a
class (operation and property), this step is reasonably
easy to perform. In our example, eight possible classes
can be derived (see figure 10).

D E F

G H

A B C

Fig. 10: Eight possible structural derivations

Recall that there is a one to one relation between the
derived class and its state machine, a mismatch is
clearly shown here: only five valid state machines are
possible whereas eight classes can be obtained. This
mismatch must come from a design failure in the
structural variability.

If we take a closer look at the derived classes, we
note that cases F, G and H feature either one of the
specific alarm mode triggering operations,
startSoundAlarm() or startVisualAlarm(), without the
trigger startAlarm(). This contradicts the behavioral
parts where all state machine feature

Proceedings VaMoS'08

128

startSoundAlarm() and startVisualAlarm() only when
both startAlarm() and stopAlarm() are present.

To solve this, one has to add a constraint in the
system family model, to indicate that both
startSoundAlarm() and startVisualAlarm() exist only if
the alarm functionality is chosen (see the variation
group on figure 11).

Fig. 11: Refined variation group specification

We may further analyze the result of the derivation
process. We are left with five possible cases, A to E.
Case E is the watch with no alarm, case D is the full
watch (both sound and visual alarms), case C is the
watch with visual alarm and case B is the watch with
the sound alarm. There remains case A: it features a
watch that has the generic alarm triggers startAlarm()
and stopAlarm(), yet no specific alarm mode. This
comes from an underspecification of our case study. In
fact we assumed that whenever the alarm function is
enabled, it would take either or both of the form sound
or visual. Yet this was not fully accounted for in the
VariationGroups. One should update the
TriggerVariationGroup of figure 5 and change its kind
to OneAmongSeveral to enforce that at least one
specific alarm mode is chosen.

This shows how a carefully monitored derivation
process can provide valuable information as to the
consistency of the variability scheme introduced at both
structural and behavioral levels. The example that we
used in this paper, though very simple, shows that
errors and underspecifications can easily appear when
one has to deal with a variability-enabled model.

5.5 Overall derivation process
Figure 12 summarizes how the various mechanisms

presented takes place into a monitored derivation
process. The first step consists in calculating all
possible regular expressions that may be engendered
from the variable state machine. This step acts as a
filter to eliminate those that do not respect the
constraints expressed in the variation groups of the
system family model (see 5.2 above). The second step
consists in analyzing the coherence between structural
and behavioral derivations. As shown in the case study,
the analysis detects incoherencies (see 5.3). Based on
this, one can more easily track down design errors or
underspecifications and update the model. When the
analysis sends no error message, we can be sure that
the variability scheme is sound and that all possible
derivations can be made.

 UML state-machine

with variability

expression
Calculus of all

regular

expressions

 All possible

topologies

 All possible derived

state-machines

Calculus of all

possible state-

machines

Set of mismatches

between structural

and behavioural

derivation

Analysis with

possible structural

derivation

No mismatch :

Derivation is possible

Correction
into the

model

Fig. 12: Monitoring of derivation

6. Conclusion
The approach presented in this paper belongs to a

wide range of research works that address the problem
of introducing variability within UML models and
provide means of managing its complexity. We have
found yet that few of these works deal with behavioral
models. This is our main concern here, as we are
developing design methods for real time and embedded
systems for which behavioral modeling is crucial.

Our approach aims at providing as much tool
support as possible to variability modeling. In a
previous paper [17] we have described the overall
process and how decision model could be constructed

Proceedings VaMoS'08

129

from the information structured in our
VariationGroups. In this paper we described two
additional mechanisms: 1) a propagation mechanism
ensures that the impacts of variability is fully reflected
system-wide based on a set of rules that can be tailored
to user needs; 2) an evaluation mechanism enables to
analyze what are the allowed derivation branches.
Several aspects of these mechanisms can be enhanced:
the propagation mechanism could take into account the
semantics of the variability constraints instead of
simply following model and meta model structural
relationships. The evaluation of valid state machines
should be extended to more complex state machines,
which might reveal insufficiencies in the algebra and or
method chosen. Finally the combinatory explosion of
calculating all possible structural derivations shall be
dealt with - one may think of using constraint-solver
here.

Our main goal here was to show that a carefully
monitored derivation process provides valuable
information to assess the consistency and completeness
of a system family model, even for as simple cases as
the one presented in this paper. Our approach is
operational and supported with various plugins for the
Papyrus open-source UML modeler [1]: an assistant
helps the design of system family model and supports
the propagation mechanism. Another tool provides
information about the system family model: number of
possible derivations, generation of the decision model.
The last tool is an assistant to help the designer to
derive a given product model from the system family
model.

7. References
[1] "Papyrus UML modeler." http://www.papyrusuml.org:
CEA LIST.
[2] J. Bayer, S. Gérard, Ø. Haugen, J. Mansell, B. Møller-
Pedersen, J. Oldevik, A. Solberg, P. Tessier, J.-P. Thibault,
and T. Widen, "A Unified Conceptual Model For Product
Family Variability Modelling," in Software Product Lines,
ResearchIssues in Enigneering and Management, T. Käkölä
and J. C. Dueñas, Eds. Berlin: Spinger-Verlag, 2006, pp.
195-241.
[3] M. Clauß, "Modeling variability with UML," presented at
Net.ObjectDays, Erfurt, Germany, 2001.
[4] P. Clements and L. M. Northrop, Software Product Lines:
Practices and Patterns. Boston: Addison Wesley, 2001.
[5] P. Cuenot, D. Chen, S. Gérard, H. Lönn, M.-O. Reiser, D.
Servat, R. T. Kolagari, M. Törngren, and M. Weber,
"Towards Improving Dependability of Automotive Systems
by Using the EAST-ADL Architecture Description
Language," in Architecting Dependable Systems IV,
Springer, Ed. Berlin / Heidelberg, 2007, pp. 39-65.

[6] M. L. Griss, J. Favaro, and M. d'Alessandro, "Integrating
Feature Modeling with the RSEB," presented at 5th
Conference on Software Reuse, Victoria, B.C, 1998.
[7] J. v. Gurp and J. Bosch, "Managing Variability in
Software Product Lines," presented at Landelijk Architectur
Congres, Amsterdam, 2000.
[8] J. E. Hopcroft, R. Motwani, and J. D. Ullmann,
Introduction to automata Theory, Language and
Computation: Addison Wesley, 2001.
[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, "Feature-Oriented Domain Analysis
(FODA)," Carnegie Mellon University CMU/SEI-90-TR-21
ESD-90-TR-222, 1990.
[10] K. C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented
Product Line Engineering," in IEEE Software, vol. 19, 2002,
pp. 58-65.
[11] S. C. Kleene, "Representation of events in nerve nets
and finite automata," in Automata Studies, Annals of
Mathematics Studies, vol. 34: Princeton University Press,
1956.
[12] M. V. Lawson, Finite Automata. Boca Raton, Florida:
CRC Press LLC, 2004.
[13] M. D. McIlroy, "Mass-Produced Software Component,"
presented at NATO SCIENCE COMMITTEE, Garmisch,
Germany, 1968.
[14] OMG, "A UML profile for MARTE," Object
Management Group, http://www.omg.org realtime/07-05-01,
2007.
[15] D. L. Parnas, "Designing software for ease of extension
and contraction," in IEEE Transactions on Software
Engineering, vol. SE-5, 1979, pp. 128-137.
[16] P. Tessier, S. Gérard, F. Terrier, and J. M. Geib,
"Variability Expression within the context of UML: Issues
and Comparisons," in Advances in UML/XML based
Evolution, Emerging and Innovative Technologies, H. Yang,
Ed. De Montfort University, England: Idea Group
Publishing, USA, 2005.
[17] P. Tessier, S. Gérard, F. Terrier, and J.-M. Geib, "Using
variation propagation for Model-Driven Management of
aSystem Family," presented at Sofware Product Line
Conference (SPLC), Rennes, 2005.
[18] T. Ziadi, "Manipulation de Lignes de Produits en
UML," in IFSIC. Rennes: Université de Rennes 1, 2004, pp.
185.
[19] T. Ziadi, L. Hélouët, and J.-M. Jézéquel, "Towards a
UML Profile for Software Product Lines," presented at
International Workshop on Product Family Engineering,
Seana / Italy, 2003.

Proceedings VaMoS'08

130

Statecharts and Variabilities

Nora Szasz, Pedro Vilanova∗

ORT University
Cuareim 1451, 11100 Montevideo, Uruguay

{szasz,vilanova}@ort.edu.uy

Abstract

We present a formalism that allows to specify the behav-
ior of product lines using UML statecharts. We use feature
diagrams to describe the common and variant components
of a product line, and define mappings that associate fea-
tures with statecharts, describing the effect of the features
on the products in which they are present. We define how to
combine different statecharts that specify possible variants
of a line. This definition provides a very simple way to ob-
tain the specification of the behavior of any product of the
line.

1 Introduction

The complexity of software systems has generated the
need of founding developments on abstract models. Model-
ing allows, among other things, to verify the systems before
their construction and to guide their development by means
of techniques such as automatic code generation. Visual
and graphical notations become more important everyday
for communication between people, as well as for human-
computer interaction. In particular, for model based soft-
ware development, the Unified Modelling Language (UML)
[10] provides graphical notations for modelling different as-
pects of systems and it has become the standard for both the
academy and the industry. UML follows the object oriented
paradigm and allows the description of static and dynamic
aspects of software systems. It is a set of languages -mainly
graphical notations-, supported by an important number of
tools. UML provides several tools for behavior specifica-
tion: actions, activities, statecharts, interactions and use
cases. In particular, statecharts and interactions are spe-
cially meant for software design. Statecharts, originally in-
troduced by Harel [9], are used to specify the behavior of

∗This work was partially supported by the Uruguayan Technological
Development Program: PDT Project 54-106 “Extensions of UML models
for behavioral design of real-time systems and product lines”.

class instances (intra-component behaviour). They are com-
pact, expressive and allow describing from simple systems
to complex reactive ones.

Software reusability has become a major challenge for
the software industry. Reusable artifacts increase produc-
tivity by reducing development time. The development of
products that vary in more or less peripheral aspects has
given rise to the concept of software product lines. A soft-
ware product line consists of a family of systems that share
functionalities and satisfy, in general, the needs of a particu-
lar market segment [8, 4]. We use features diagrams [5, 7] to
model variability in a family of products. Feature diagrams
describe the common, optional and alternative functionali-
ties of a product line, with a hierarchical structure. To obtain
a specific product of a line, a configuration is determined by
the set of chosen optional and alternative features.

In this work we aim at specifying the behavior of prod-
uct lines using UML statecharts. In order to specify the
behavior of all the products of the line, we determine how
each functionality contributes to the behavior of the whole
line by defining a function that assigns a statechart to each
functionality of the family. The mapping complies with the
hierarchical structure and the feature restrictions, i.e., the
more features a product has, the richer is the statechart that
models it. For this, we define an extension relation between
statecharts, to represent when a statechart has a more com-
plex structure than another one. We also define how to com-
bine different extensions of the same statechart into a new
coherent statechart. Finally, to describe the behavior of a
particular product of the line (which corresponds to a par-
ticular configuration of the feature diagram), it is enough
to combine the statecharts that implement all the features
present in the product. This work constitutes the first step
in the construction of a tool that allows designers to specify
the behavior of product lines using UML statecharts.

The rest of the article is structured as follows: In sec-
tion 2 we define feature diagrams and configurations, based
on [5, 7]. In section 3 we present UML statecharts syntax,
based on the work of [12]. Section 4 introduces the exten-
sion relation between statecharts and the combining func-

1

Proceedings VaMoS'08

131

tion mentioned above, along with some properties. Finally,
in section 5 we define statecharts with variabilities as map-
pings from feature diagrams to statecharts. We conclude
with a brief outline of possible further work.

2 Feature Diagrams

Feature diagrams are used to document features. A fea-
ture is a property of a system that directly affects end users,
which can be either human or other systems. In the case
of software product lines, the main goal of a feature dia-
gram is to specify commonalities and differences amongst
the products of the line. In this context, a feature is a dis-
tinctive characteristic of a product.

Czarnecki [5, 7] proposes three types of features, namely
mandatory, optional and alternative. Additionally there is a
consists of relation among features, meaning that a feature
comprises one or more other features. We call the com-
posed feature parent feature and its components children
or subfeatures of the parent feature. Additionally, a set of
constraints over features can be defined. A constraint is a
proposition over the set of features.

In order to define a particular product of a line a fea-
ture diagram can be configured, by choosing which features
are present in the product, complying with the following
interdependency rules: mandatory features must always be
present in a product if their parent feature is present, op-
tional features may or may not be present in a product if
their parent feature is present, and exactly one of the alter-
native subfeatures must be present in a product when their
parent feature is present.

A feature diagram can naturally be represented as a tree,
where the nodes represent the features and the arcs represent
the consists of relation between them.

2.1 Definition of Feature Diagrams

Given F a set of feature names, we define a feature dia-
gram as a 6-tuple Υ = 〈L,N,NC,RM,RO,RA〉, where: L ∈ F ,
is the product line name (the root of the tree1); N ⊆ F is
the set of features, (L �∈ N); NC ⊆ C is the set of constraints
over features, where C are the propositional calculus for-
mulas with variables fi ∈ F and connectives ∧, ∨ and ¬;
RM, RO ⊆ {L}∪N × N, are the mandatory and optional con-
sists of relations respectively; and RA ⊆ {L}∪N × P(N) is
the alternative consists of relation. In addition, the union
of the relations RM, RO and RA must constitute a tree with
nodes in F and root L. We call FDF the set of feature dia-
grams with features in F .

1Following [5], the root of the tree is not a feature but a concept, thus
satisfying the condition that every feature has a parent. For the sake of
homogeneity, in this work we will consider it to be a feature.

Basic functions on Feature Diagrams

First we define the projection functions for feature di-
agrams: M, O and A: FDF → F are the set of manda-
tory, optional and alternative features, defined respec-
tively as M(〈L,N,NC,RM,RO,RA〉) := {f∈F | ∃〈f ′,f〉∈RM},
O(〈L,N,NC,RM,RO,RA〉) := {f∈F | ∃〈f ′,f〉∈RO}, and
A(〈L,N,NC,RM,RO,RA〉):={f∈F | ∃〈f ′,A〉∈RA. f∈A}.

We write the feature diagram argument as a subscript in
the functions: For Υ ∈ FDF , we will write MΥ, OΥ and
AΥ. We will also use the projection functions LΥ, NΥ, NCΥ,
RMΥ, ROΥ and RAΥ respectively to denote the components of
a feature diagram Υ = 〈L,N,NC,RM,RO,RA〉.

The following functions and relations will be used later:
chld ⊆ FDF×F×F is the child relation: chldΥ(f ′,f) iff
〈f,f ′〉∈RMΥ∪ROΥ∨∃A⊆NΥ. (〈f,A〉∈RAΥ∧f ′∈A). The set
of features of a given feature diagram is given by the func-
tion fts: FDF → P(F), defined as ftsΥ := MΥ∪OΥ∪AΥ.
subft ⊆ FDF×F×F is the transitive closure of the sub-
feature relation in a feature diagram: subftΥ(f ′,f) iff
chldΥ(f ′,f) ∨ ∃f ′′∈NΥ. (chldΥ(f ′,f ′′) ∧ subftΥ(f ′′,f)).
The set of subfeatures of a given feature in a feature di-
agram is given by the function subfts: FDF×F → P(F),
defined as subftsΥ(f) := {f ′∈ftsΥ | subftΥ(f ′,f)}. Fi-
nally, Subfts: FDF×P(F) → P(F), is the set of all the
subfeatures of the members of a given set of features in
a feature diagram, including the set itself: SubftsΥ(F) :=
F ∪ ⋃

f∈F subftsΥ(f)

2.2 Configurations

Feature diagrams describe the common and variant func-
tionalities of products in a product line. In order to obtain
specific products of a line defined by a feature diagram Υ,
we define the possible configurations of Υ as the instances
of the tree that are consistent with the relations amongst its
features and the constraints of Υ. Configurations are repre-
sented as trees of features, where all the features are manda-
tory. Formally, given a set of feature names F , a configura-
tion is a 3-tuple Φ = 〈P,F,R〉, where: P ∈ F , is the product
name (the root of the tree); F ⊆ F , is the set of features of
the product (P �∈ F); and R ⊆ {P}∪F×F is the consists of
relation. Additionally, configurations must be trees under
the relation R, with root P. We call CSF the set of configu-
rations in F .

A configuration of a feature diagram is determined
by the set of optional and alternative features that
are selected for the product. We define the function
conf: FDF × P(F) ↪→ CSF , that builds a configuration
from a feature diagram Υ and a set F of features. In fact,
for a feature diagram Υ = 〈L,N,NC,RM,RO,RA〉 and C ⊆ F ,
the function confΥ(C) is determined by the elements of C
that are optional and alternative features of F .

2

Proceedings VaMoS'08

132

So, in the definition of conf we do not take into account
the features in C that are not in OΥ∪AΥ. For the alternative
features, exactly one child can be chosen from each parent.
So confΥ(C) is defined iff for every chosen feature exactly
one of its alternative children is chosen in the result. Addi-
tionally, all formulas in NC must be satisfied by the configu-
ration2.

Basically, the function conf “erases” all optional and
alternative features that are not in C as well as the
subtrees that have those features as roots: So, let
F ′ = SubftsΥ(OΥ∪AΥ\C), F = MΥ∪OΥ∪AΥ\F ′,
R′ = (RMΥ∪ROΥ∪{〈f,f ′〉| ∃A⊆N. 〈f ′,A〉∈RAΥ∧f∈A}),
and R = R′∩(F∪{P}×F). Besides, all the formu-
lae in NC must be satisfied for the features present in
the configuration. So, if for all α ∈ NC, F∪F¬ |=
α, then confΥ(C):=〈L,F,R〉, otherwise confΥ(C) is unde-
fined (where F¬={¬fi | fi∈F ′}). The set of all pos-
sible configurations of a feature diagram is given by the
function Confs: FDF → P(CSF), defined as ConfsΥ :=⋃

C⊆ftsΥ
{confΥ(C)∈CSF | confΥ(C) not undefined}.

2.3 Example

Let F = {P, f1, f2, f3, f4, f5, f6}
Υ1 = 〈P, {f1, f2, f3, f4, f5, f6}, ∅, {〈P,f1〉, 〈f2,f3〉},

{〈P ,f2〉, 〈f2,f4〉}, {〈f3,{f5, f6}〉}〉 ∈ FDF

In figure 1 we show an example of the notation. Graph-
ically, optional features are marked with a black dot, and
alternatives features with a line across alternative group.
The possible configurations of Υ1 are the following:
confΥ1(∅) = 〈P ,{f1},{〈P ,f1〉}〉
confΥ1({f2, f5}) = 〈P, {f1, f2, f3, f5},

{〈P ,f1〉, 〈P ,f2〉, 〈f2,f3〉, 〈f3,f5〉}〉
confΥ1({f2, f4, f6}) = 〈P, {f1, f2, f3, f4, f6},

{〈P,f1〉, 〈P ,f2〉, 〈f2,f3〉, 〈f2,f4〉, 〈f3,f6〉}〉

P

f1 f2

•

f3 f4

•

f5 f6

Figure 1. Feature Diagram Example

2We could have assigned a dependent type to the function conf to take
into account the restrictions, but we keep it simpler by defining partial
functions

3 Statecharts

UML statecharts constitute a notation to describe behav-
ioral aspects of a system. They were first introduced by
Harel [9] and incorporated to the different versions of UML
with some variations. Statecharts are a generalization of
state automata. Basically, they consist of states and tran-
sitions between them. The main feature of statecharts is
that states can be refined, defining a state hierarchy. The
decomposition of a state can be either sequential or par-
allel. In the first case, a state is decomposed into a new
state automaton (OR state), while in the second case a state
is decomposed in two or more automata that can execute
concurrently (AND state). Transitions are directed arrows
between states. A transition connects a source state to a tar-
get state, and inter-level transitions are allowed. Transitions
are labeled by a trigger event, a sequence of actions and the
type of history of the target state. There is a history mech-
anism that allows transitions to reenter a sequential state in
the last active substate.

In this section we present the main concepts and defini-
tions for statecharts, based on [12].

3.1 Domains

S is the set of state names, T is the set of transition
names (S∩T = ∅), A is the set of action names, E ⊆ A
is the set of events, HT = {none, shallow, deep} are the
history types, T = T ×S ×P(S)×E×A∗×P(S)×S×HT is
the type of the transitions.

3.2 States

The set SC of UML statecharts is inductively defined
by the following rules, simultaneously with the func-
tions name: SC → S , that is, the name of the statechart,
snames: SC → P(S), the set of names of the state com-
ponents (substates) of the statechart, tnames: SC → P(T),
the set of names of the internal transitions between the sub-
states of the statechart, and stype: SC → {basic, and, or},
the type of the statechart. We will also use in the definition
the relation disjnames(si,sj), that holds if si and sj do not
have common state names in their components. It is defined
at the end of this section.

Basic Statecharts

s = [ŝ,(en,ex)] is a basic statechart with name ŝ and entry
and exit actions en, ex respectively.

ŝ ∈ S en, ex ∈ A∗

[ŝ,(en,ex)] ∈ SC
Basic

3

Proceedings VaMoS'08

133

name([ŝ,(en,ex)]) := ŝ,
snames([ŝ,(en,ex)]) := {ŝ},
tnames([ŝ,(en,ex)]) := ∅,
stype([ŝ,(en,ex)]) := basic.

We will use the following notational convention: state-
charts names will be of the form ŝ, ŝ1, ŝ2, .., r̂, r̂1, r̂2, . . .
and the variables s, s1, s2, .., r, r1, r2, . . . will denote state-
charts.

And-Statecharts

s = [ŝ,(s1,..,sn),(en,ex)] is an and-statechart with name
ŝ and entry and exit actions en, ex respectively. The stat-
echarts s1, .., sn are called the parallel components (sub-
states) of s3.

s1, .., sn ∈ SC
∀i�=j. disjnames(si,sj)
ŝ ∈ S
{ŝ} ∩ ⋃

1≤i≤n snames(si) = ∅
en, ex ∈ A∗

[ŝ,(s1,..,sn),(en,ex)] ∈ SC
And

name([ŝ,(s1,..,sn),(en,ex)]) := ŝ,
snames([ŝ,(s1,..,sn),(en,ex)]) :=

{ŝ}∪⋃
1≤i≤n snames(si),

tnames([ŝ,(s1,..,sn),(en,ex)]) :=
⋃

1≤i≤n tnames(si),
stype([ŝ,(s1,..,sn),(en,ex)]) := and.

Or-Statecharts

s = [ŝ,(s1,..,sn),T ,(en,ex)] is an or-statechart with name
ŝ and entry and exit actions en, ex respectively. The state-
charts s1, .., sn are the components of s and T is the set of
transitions between the components of s4.

s1, .., sn ∈ SC
∀i�=j. disjnames(si,sj)
ŝ ∈ S
{ŝ} ∩ ⋃

1≤i≤n snames(si) = ∅
T ⊆ T (∗)
en, ex ∈ A∗

[ŝ,(s1,..,sn),T ,(en,ex)] ∈ SC
Or

(∗) For each 〈t̂,ss,S,e,α,Td,st,ht〉∈T it is required that:
name(ss)∈

⋃
1≤i≤n name(si), S∈conf-all(ss)5 t̂ is unique

3For our purposes, it is the same to define the substates of s as a set
{s1, .., sn}. We follow [12] and define it as a sequence.

4In [12] or-statecharts have also an active state. This component is
placed for semantical purposes, and it is not essential in the context of this
work, so we do not consider it here. Adding it to the definitions that follow
is straightforward.

5The function conf-all is defined to handle inter-level transitions just

in T , Td∈conf-all(st), and {t̂}∩⋃
1≤i≤n tnames(si) = ∅

name([ŝ,(s1,..,sn),T ,(en,ex)]) := ŝ,
snames([ŝ,(s1,..,sn),T ,(en,ex)]) :=

{ŝ}∪⋃
1≤i≤n snames(si),

tnames([ŝ,(s1,..,sn),T ,(en,ex)]) :=⋃
t∈T name(t)∪⋃

1≤i≤n tnames(si),
stype([ŝ,(s1,..,sn),T ,(en,ex)]) := or

We further define:
SC-BASIC={s∈SC | stype(s) = basic},
SC-AND={s∈SC | stype(s) = and},
SC-OR={s∈SC | stype(s) = or},
disjnames(s,s′) :=
(snames(s)∩snames(s′))∪(tnames(s)∩tnames(s′)) = ∅,
disjnames(s,T) := ∀t∈T. name(t) /∈ tnames(s)

3.3 Transitions

We will generally use the variables t, t1, t2, .. to denote
transitions, and t̂, t̂1, t̂2, .. to denote their names. As state
and transition names are mutually disjoint and unique in a
statechart, we can refer to a state or a transition univocally
by its name.

Given t = 〈t̂,ss,S,e,α,T ,st,ht〉 ∈ T, the following are
defined: name(t) := t̂, is the name of the transition t,
sou(t) := ss, tar(t) := st, are the source and target states
of t respectively, souRes(t) := S, S ∈ conf-all(ss), is the
source restriction set, ev(t) := e, is the triggering event of
t, act(t) := α, is the action associated to t, tarDet(t) := T ,
is the target determinator set, historyType(t) := ht, is the
history type of t (see [12] for more details). We say a tran-
sition t uses the history mechanism, if historyType(t) ∈
{deep, shallow}.

4 Extensions

4.1 Extension relation

We define a relation � between statecharts, such that
s1 � s2 (read “s2 extends s1”) if s2 enriches states or transi-
tions of s1 with more complex structures. Basically, we can
extend a statechart by either adding a parallel or sequential
statechart to it, adding a new transition between two exist-
ing states, or adding actions in transitions or entry and exit
actions. For this last extension we define the relation �
between sequences of actions as the ordinary subsequence
relation between elements of A∗.

like normal transitions on the level of the uppermost states that the inter-
level transition exits and enters. S is a complete configuration of the source
state, i.e., a set containing a “path” from the uppermost level state to the
source of t. The same applies to the target determinator set Td (see [12]
for more details).

4

Proceedings VaMoS'08

134

The extensions can be performed zero or more times to
a statechart or to any of its components, thus yielding the
definition of the partial order � given in figure 2. In the
definition, we assume that the well-formedness conditions
of the definitions given in section 3.2 hold whenever we
build a statechart.

4.2 Intersection

Given a statechart, it can be refined in several ways.
The question is whether there is a way to combine differ-
ent extensions into an integral new statechart. Formally,
given r1, r2 ∈ SC such that ∃s∈SC. s � r1 ∧ s � r2 we
want to define a new statechart r1∩r2 such that r1 � r1∩r2

and r2 � r1∩r2. Moreover, we want to do this with
the minimum amount of refining steps as possible, i.e.,
∀r3∈SC. (r1 � r3 ∧ r2 � r3) ⇒ r1∩r2 � r3

We will not always be able to define the intersection of
two statecharts, even if they are both extensions of the same
statechart (consider, for instance, s to be a basic statechart
which is extended parallelly on the one hand and sequen-
tially on the other). We therefore need to handle inconsis-
tent statecharts. For the sake of completeness, we will add
a new statechart to the syntax defined in section 3.2: ⊥ will
stand for the bottom element of the set SC, as well as for
any statechart having it as a component. Regarding the �
relation, ⊥ is a extension of any statechart. Formally, we
have that ∀s∈SC. s �⊥

The definition of ∩ is simple but quite extensive, since
we must consider all the pairs r1, r2 such that r1 and r2

can be extensions of the same statechart s, according to the
definition given in figure 2. It basically consists of carrying
out both extensions on the original statechart, whenever
this is possible. The reader can just look at the first cases,
and will be able to deduce the rest of them.

Definition. Let r1, r2 ∈ SC such that ∃s∈SC. s � r1 ∧
s � r2. We define r1∩r2 by induction on s � r1:
ext-and1
If s = [ŝ,(en,ex)], r1 = [ŝ, (s′), (en, ex)], then we have
the following cases:
• r2 = [ŝ, (s′′), (en, ex)]

⇒ r1∩r2 :=
{

[ŝ, (s′, s′′), (en, ex)] if disjnames(s′,s′′)
⊥ otherwise

• r2 = [ŝ, (s′′), ∅, (en, ex)]
⇒ r1∩r2 :=⊥
• r2 = [ŝ, (en′, ex)], with en � en′

⇒ r1∩r2 := [ŝ, (s′), (en′, ex)]
• r2 = [ŝ, (en, ex′)], with ex � ex′

⇒ r1∩r2 := [ŝ, (s′), (en, ex′)]

ext-and2
If s=[ŝ,(s1,..,sn),(en,ex)],

r1=[ŝ, (s1,..,sn, s′), (en, ex)], then we have the following
cases:
• r2 = [ŝ, (s1,..,sn, s′′), (en, ex)] ⇒ r1∩r2 :={

[ŝ, (s1,..,sn, s′, s′′), (en, ex)] if disjnames(s′,s′′)
⊥ otherwise

• r2 = [ŝ, (s1, .., s
′
i, .., sn), (en, ex)],

with si � s′i ⇒ r1∩r2 :={
[ŝ, (s1, .., s

′
i, .., sn, s′), (en, ex)] if disjnames(s′i,s

′)
⊥ otherwise

• r2 = [ŝ, (en′, ex)], with en � en′

⇒ r1∩r2 := [ŝ, (s1,..,sn, s′), (en′, ex)]
• r2 = [ŝ, (s1,..,sn), (en, ex′)], with ex � ex′

⇒ r1∩r2 := [ŝ, (s1,..,sn, s′), (en, ex′)]

inside-and
If s = [ŝ,(s1,..,sn),(en,ex)],
r1 = [ŝ, (s1, .., s

′
i, .., sn), (en, ex)] with si � s′i, then we

have the following cases:
• r2 = [ŝ, (s1,..,sn, s′), (en, ex)] ⇒ r1∩r2 :={

[ŝ, (s1, .., s
′
i, .., sn, s′), (en, ex)] if disjnames(s′i,s

′)
⊥ otherwise

• r2 = [ŝ, (s1, .., s
′
j , .., sn), (en, ex)] ⇒ r1∩r2 :=⎧⎨

⎩
[ŝ, (s1, .., s

′
i∩s′j , .., sn), (en, ex)] if i = j

[ŝ, (s1, .., s
′
i, .., s

′
j , .., sn), (en, ex)] if disjnames(s′i,s

′
j)

⊥ otherwise
• r2 = [ŝ, (s1,..,sn), (en′, ex)], with en � en′

⇒ r1∩r2 := [ŝ, (s1, .., s
′
i, .., sn), (en′, ex)]

• r2 = [ŝ, (s1,..,sn), (en, ex′)], with ex � ex′

⇒ r1∩r2 := [ŝ, (s1, .., s
′
i, .., sn), (en, ex′)]

ext-or1
If s=[ŝ,(en,ex)], r1=[ŝ, (s′), ∅, (en, ex)], then we have the
following cases:
• r2 = [ŝ, (s′′), (en, ex)] ⇒ r1∩r2 :=⊥
• r2 = [ŝ, (s′′), ∅, (en, ex)] ⇒ r1∩r2 :={

[ŝ, (s′, s′′), ∅, (en, ex)] if disjnames(s′,s′′)
⊥ otherwise

• r2 = [ŝ, (s′), ∅, (en′, ex)], with en � en′

⇒ r1∩r2 := [ŝ, (s′), ∅, (en′, ex)]
• r2 = [ŝ, (s′), ∅, (en, ex′)], with ex � ex′

⇒ r1∩r2 := [ŝ, (s′), ∅, (en, ex′)]

ext-or2
If s=[ŝ,(s1,..,sn),T ,(en,ex)],
r1=[ŝ, (s1,..,sn, s′), T, (en, ex)], then we have the follow-
ing cases:
• r2 = [ŝ, (s1,..,sn, s′′), T, (en, ex)] ⇒ r1∩r2 :={

[ŝ, (s1,..,sn, s′, s′′), T, (en, ex)] if disjnames(s′,s′′)
⊥ otherwise

• r2 = [ŝ, (s1, .., s
′
i, .., sn), T, (en, ex)],

with si � s′i ⇒ r1∩r2 :={
[ŝ, (s1, .., s

′
i, .., sn, s′), T, (en, ex)] if disjnames(s′i,s

′)
⊥ otherwise

5

Proceedings VaMoS'08

135

Adding a new parallel component

[ŝ,(en,ex)] ∈ SC-BASIC s′ ∈ SC

[ŝ,(en,ex)] � [ŝ, (s′), (en, ex)]
ext-and1

[ŝ,(s1,..,sn),(en,ex)] ∈ SC-AND s′ ∈ SC

[ŝ,(s1,..,sn),(en,ex)] � [ŝ, (s1,..,sn, s′), (en, ex)]
ext-and2

[ŝ, (s1, .., si, .., sn), (en, ex)] ∈ SC-AND si � s′i
[ŝ, (s1, .., si, .., sn), (en, ex)] � [ŝ, (s1, .., s

′
i, .., sn), (en, ex)]

inside-and

Adding a new sequential component

[ŝ,(en,ex)] ∈ SC-BASIC s′ ∈ SC

[ŝ,(en,ex)] � [ŝ, (s′), ∅, (en, ex)]
ext-or1

[ŝ,(s1,..,sn),T ,(en,ex)] ∈ SC-OR s′ ∈ SC

[ŝ,(s1,..,sn),T ,(en,ex)] � [ŝ, (s1,..,sn, s′), T, (en, ex)]
ext-or2

[ŝ, (s1, .., si, .., sn), T, (en, ex)] ∈ SC-OR si � s′i
[ŝ, (s1, .., si, .., sn), T, (en, ex)] � [ŝ, (s1, .., s

′
i, .., sn), T, (en, ex)]

inside-or

Adding a new transition

[ŝ,(s1,..,sn),T ,(en,ex)] ∈ SC-OR t ∈ T

[ŝ,(s1,..,sn),T ,(en,ex)] � [ŝ,(s1,..,sn),T ∪ {t},(en,ex)]
add-trans

Adding actions

[ŝ, (s1,..,sn), T, (en, ex)] ∈ SC-OR α � α′ t = 〈t̂,ss,S,e,α,T ,st,ht〉 ∈ T t′ ∈ T

[ŝ, (s1,..,sn), T, (en, ex)] � [ŝ, (s1,..,sn), (T\{t})∪{t′}, (en, ex)]
ext-act-trans

where t′ = 〈t̂,ss,S,e,α′,T ,st,ht〉

[ŝ, (en, ex)] ∈ SC-BASIC en � en′

[ŝ, (en, ex)] � [ŝ, (en′, ex)]
ext-act-en1

[ŝ, (s1,..,sn), (en, ex)] ∈ SC-AND en � en′

[ŝ, (s1,..,sn), (en, ex)] � [ŝ, (s1,..,sn), (en′, ex)]
ext-act-en2

[ŝ, (s1,..,sn), T, (en, ex)] ∈ SC-OR en � en′

[ŝ, (s1,..,sn), T, (en, ex)] � [ŝ, (s1,..,sn), T, (en′, ex)]
ext-act-en3

[ŝ, (en, ex)] ∈ SC-BASIC ex � ex′

[ŝ, (en, ex)] � [ŝ, (en, ex′)]
ext-act-ex1

[ŝ, (s1,..,sn), (en, ex)] ∈ SC-AND ex � ex′

[ŝ, (s1,..,sn), (en, ex)] � [ŝ, (s1,..,sn), (en, ex′)]
ext-act-ex2

[ŝ, (s1,..,sn), T, (en, ex)] ∈ SC-OR ex � ex′

[ŝ, (s1,..,sn), T, (en, ex)] � [ŝ, (s1,..,sn), T, (en, ex′)]
ext-act-ex3

Reflexivity and transitivity

s ∈ SC
s � s

reflexivity
s � s′ s′ � s′′

s � s′′
transitivity

Figure 2. Extension Relation �

6

Proceedings VaMoS'08

136

• r2 = [ŝ, (s1,..,sn), T ′, (en, ex)],
with T ′ = T ∪ {t} ⇒ r1∩r2 :={

[ŝ, (s1,..,sn, s′), T ′, (en, ex)] if disjnames(s′,{t})
⊥ otherwise

• r2 = [ŝ, (s1,..,sn), T ′, (en, ex)], with
t=〈t̂,ss,S,e,α,T ,st,ht〉∈T , t′=〈t̂,ss,S,e,α′,T ,st,ht〉, α �
α′, T ′ = (T\{t})∪{t′}
⇒ r1∩r2 := [ŝ, (s1,..,sn, s′), T ′, (en, ex)]
• r2 = [ŝ, (s1,..,sn), T, (en′, ex)], with en � en′

⇒ r1∩r2 := [ŝ, (s1,..,sn, s′), T, (en′, ex)]
• r2 = [ŝ, (s1,..,sn), T, (en, ex′)], with ex � ex′

⇒ r1∩r2 := [ŝ, (s1,..,sn, s′), T, (en, ex′)]

inside-or
If s = [ŝ,(s1,..,sn),T ,(en,ex)],
r1 = [ŝ, (s1, .., s

′
i, .., sn), T, (en, ex)] with si � s′i, then

we have the following cases:
• r2 = [ŝ, (s1,..,sn, s′), T, (en, ex)] ⇒ r1∩r2 :={

[ŝ, (s1, .., s
′
i, .., sn, s′), T, (en, ex)] if disjnames(s′i,s

′)
⊥ otherwise

• r2 = [ŝ, (s1, .., s
′
j , .., sn), T, (en, ex)], with

sj � s′j ⇒ r1∩r2 :=⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[ŝ, (s1, .., s
′
i∩s′j , .., sn), T, (en, ex)]

if i = j
[ŝ, (s1, .., s

′
i, .., s

′
j , .., sn), T, (en, ex)]

if disjnames(s′i,s
′
j)

⊥
otherwise

• r2 = [ŝ, (s1,..,sn), T ′, (en, ex)], with T ′ = T ∪ {t}
⇒ r1∩r2 := [ŝ, (s1, .., s

′
i, .., sn), T ′, (en, ex)]

• r2 = [ŝ, (s1,..,sn), T ′, (en, ex)], with
t=〈t̂,ss,S,e,α,T ,st,ht〉∈T , t′=〈t̂,ss,S,e,α′,T ,st,ht〉,
α�α′, T ′=(T\{t})∪{t′}
⇒ r1∩r2 := [ŝ, (s1, .., s

′
i, .., sn), T ′, (en, ex)]

• r2 = [ŝ, (s1,..,sn), T, (en′, ex)], with en � en′

⇒ r1∩r2 := [ŝ, (s1, .., s
′
i, .., sn), T, (en′, ex)]

• r2 = [ŝ, (s1,..,sn), (en, ex′)], with ex � ex′

⇒ r1∩r2 := [ŝ, (s1, .., s
′
i, .., sn), T, (en, ex′)]

ext-trans
If s = [ŝ,(s1,..,sn),T ,(en,ex)],
r1 = [ŝ, (s1,..,sn), T ′, (en, ex)] with T ′ = T ∪ {t}, then
we have the following cases:
• r2 = [ŝ, (s1,..,sn, s′), T, (en, ex)]

⇒ r1∩r2 :=

⎧⎪⎪⎨
⎪⎪⎩

[ŝ, (s1,..,sn, s′), T ′, (en, ex)]
if disjnames(s′,{t})

⊥
otherwise

• r2 = [ŝ, (s1, .., s
′
i, .., sn), T, (en, ex)],

with si � s′i ⇒ r1∩r2 :={
[ŝ, (s1, .., s

′
i, .., sn), T ′, (en, ex)] if disjnames(s′i,{t})

⊥ otherwise
• r2 = [ŝ, (s1,..,sn), T ′′, (en, ex)],

with T ′′ = T ∪ {t′} ⇒ r1∩r2 :={
[ŝ, (s1,..,sn), T ′∪{t′}, (en, ex)] if name(t) �= name(t′)
⊥ otherwise

• r2 = [ŝ, (s1,..,sn), T ′′, (en, ex)], with
t′=〈t̂′,ss,S,e,α,T ,st,ht〉∈T , t′′=〈t̂′,ss,S,e,α′,T ,st,ht〉,
α�α′, T ′′=(T\{t′})∪{t′′}
⇒ r1∩r2 := [ŝ, (s1,..,sn), T ′′∪{t}, (en, ex)]
• r2 = [ŝ, (s1,..,sn), T, (en′, ex)], with en � en′

⇒ r1∩r2 := [ŝ, (s1,..,sn), T ′, (en′, ex)]
• r2 = [ŝ, (s1,..,sn), T, (en, ex′)], with ex � ex′

⇒ r1∩r2 := [ŝ, (s1,..,sn), T ′, (en, ex′)]

ext-act-trans
If s=[ŝ, (s1,..,sn), T, (en, ex)],
r1=[ŝ, (s1,..,sn), T ′, (en, ex)] with
T ′=(T\{t})∪{t′}, t=〈t̂,ss,S,e,α,T ,st,ht〉∈T,
t′=〈t̂,ss,S,e,α′,T ,st,ht〉, α�α′, then we have the follow-
ing cases:
• r2 = [ŝ, (s1,..,sn, s′), T, (en, ex)]
⇒ r1∩r2 := [ŝ, (s1,..,sn, s′), T ′, (en, ex)]
• r2 = [ŝ, (s1, .., s

′
i, .., sn), T, (en, ex)], with si � s′i

⇒ r1∩r2 := [ŝ, (s1, .., s
′
i, .., sn), T ′, (en, ex)]

• r2 = [ŝ, (s1,..,sn), T ′′, (en, ex)], with T ′′ = T ∪ {t′′}
⇒ r1∩r2 := [ŝ, (s1,..,sn, s′), T ′∪{t′′}, (en, ex)]
• r2 = [ŝ, (s1,..,sn), T ′′, (en, ex)], with
t′′=〈t̂,ss,S,e,α,T ,st,ht〉∈T , t′′′=〈t̂,ss,S,e,α′,T ,st,ht〉,
α�α′, T ′′ = (T\{t′′})∪{t′′′} ⇒ r1∩r2 :=⎧⎪⎪⎨
⎪⎪⎩

[ŝ, (s1,..,sn, s′), (T ′\{t′′})∪{t′′′}, (en, ex)]
if name(t) �= name(t′′)

⊥
otherwise

• r2 = [ŝ, (s1,..,sn), T, (en′, ex)], with en � en′

⇒ r1∩r2 := [ŝ, (s1,..,sn), T ′, (en′, ex)]
• r2 = [ŝ, (s1,..,sn), T, (en, ex′)], with ex � ex′

⇒ r1∩r2 := [ŝ, (s1,..,sn), T ′, (en, ex′)]

The remaining action cases (ext-act-en1, ext-act-en2,
ext-act-en3, ext-act-ex1, ext-act-ex2, ext-act-ex3) are analo-
gous to the last ones, so we omit them for space reasons.

reflexivity
If s = r1, then ∀r2∈SC. s � r2, we define r1∩r2 := r2.

transitivity
If s � r′ � r1, then ∀r2∈SC. s � r2, we define
r1∩r2 := (r′∩r2)∩r1

4.3 Properties of Intersection

Proposition 1
For all s, r1, r2 ∈ SC such that s � r1 and s � r2,

r1 � r1∩r2 and r2 � r1∩r2

7

Proceedings VaMoS'08

137

Proof: The properties hold directly in all cases of the def-
inition of ∩ by construction, since we always define r1∩r2

as an extension of both s1 and s2. The only non trivial case
is the transitivity one: if s � r′ � r1 and s � r2 then r1∩r2

is defined as (r′∩r2)∩r1. This is well defined, since from
s � r′ and s � r2, r′∩r2 is defined by induction hypothe-
sis, and r′ � r′∩r2, r2 � r′∩r2. Then, again by induction
hypothesis, from r′ � r1, we have that (r′∩r2)∩r1 is de-
fined and r1 � (r′∩r2)∩r1, r2 � (r′∩r2)∩r1. �

Proposition 2
For all s, r1, r2, r3 ∈ SC such that s � r1 and s � r2,

if (r1 � r3 ∧ r2 � r3), then r1∩r2 � r3

Proof: The property holds directly in all cases of the def-
inition of ∩, since we always perform the least possible
extension to both statecharts. The only non trivial case
is the transitivity one: if s � r′ � r1 and s � r2, then
r1∩r2 := (r′∩r2)∩r1. Let r1 � r3 and r2 � r3. Then,
by r′ � r1, we have that r′ � r3, and hence r′∩r2 � r3 by
r2 � r3 and induction hypothesis . Finally, from r1 � r3

and induction hypothesis, we have that (r′∩r2)∩r1 � r3.
�

Proposition 3 (Commutativity of ∩)
For all s, r1, r2 ∈ SC such that s � r1 and s � r2,

r1∩r2 = r2∩r1, up to the order of the substates.

Proof: We analyze cases where ∩ is defined, is different
form ⊥ and is not commutative by definition: In ext-and1,
ext-or1 and ext-or2 r1∩r2 and r2∩r1 differ only in the or-
der of substates. In inside-and and inside-or commutativ-
ity holds by induction hypothesis. Finally, in ext-trans and
ext-act-trans commutativity trivially holds. �

Proposition 4 (Associativity of ∩)
For all s, r1, r2, r3 ∈ SC such that s � r1, s � r2 and

s � r3, (r1∩r2)∩r3 = r1∩(r2∩r3)

The proof is tedious but straightforward, we skip it here for
reasons of space.

Computation of the Intersection

Given r1, r2 ∈ SC, both extensions of some s ∈ SC, the
method for computing r1∩r2 is to perform single steps of
extensions. The transitivity case for the definition of ∩
and the properties stated above ensure confluence, i.e., no
matter the order in which the extensions are done, we will
obtain a unique ”diamond” with s at the top and r1∩r2 at
the bottom. In figure 3 we show the process for two stat-
echarts that are extensions of [ŝ1, ([ˆs11]]), ∅, (ε, ε)]: r1 =
[ŝ1, ([ˆs11], [ˆs12]), {〈t̂1,s11,∅,e,ε,∅,s12,none〉}, (ε, ε)] and
r2 = [ŝ1, ([ˆs11], [ˆs13]), {〈t̂2,s11,∅,e,ε,∅,s13,none〉}, (ε, ε)].

s1

s11

ext-or ext-or
s1

s11

s12

add-trans ext-or

s1

s11

s12

ext-or add-trans
s1

s11

s12

t1

ext-or

s1

s11

s13

s12

add-trans add-trans

s1

s11

s13

t2

ext-or
s1

s11

s13

s12
t1

add-trans

s1

s11

s13

s12

t2

add-transs1

s11

s13

s12

t2

t1

1

Figure 3. Computation of the Intersection

5 Statecharts with Variabilities

In section 2 we introduced feature diagrams as the means
to represent the common and variant functionalities of the
products of a software product line. Basically, they consist
of sets of features organized under certain hierarchy repre-
sented as relations. Given a feature diagram Υ, each set
of chosen features determines a particular configuration C,
which represents the features present in a particular product
of the line. Statecharts are used to describe the behavior of
a system. In order to define the behavior of a whole product
line, we must describe the effect that each feature has on the
products in which it is present. For this, we introduce the
set SC* of statecharts with variabilities:

Given a feature diagram Υ=〈L,N,NC,RM,RO,RA〉∈FD,
a SC* for Υ is a function Ψ: N∪{L} → SC that asso-
ciates each feature of Υ with a statechart. In order to
guarantee that the hierarchy of features represented by
the relations RM, RO and RA is reflected by the state-
charts that implement the features, we further require that:
∀〈f,f ′〉∈chldΥ. Ψ(f) � Ψ(f ′)

With this restriction, observe that the image of the set
of features ftsΥ under Ψ (i.e., Ψ(ftsΥ) ⊆ P(SC)) has the
same tree structure as the feature diagram Υ, where the
parent-child relation between statecharts is the extension
relation �. Then, given a configuration C = 〈P,F,R〉 of
Υ, in order to obtain the statechart that implements all the
features present in F, we must just take the intersection of
all the statecharts in the image of F under Ψ (i.e., Ψ(F)).

8

Proceedings VaMoS'08

138

By the definition of configuration and observation above,
if 〈f,f ′〉 ∈ chldΥ, then Ψ(f) � Ψ(f ′) and then (by the
definitions given in 4.2), Ψ(f)∩Ψ(f ′) = Ψ(f ′). So,
instead of calculating the intersection of all the statecharts
in Ψ(F), it is enough to consider the intersection of the
leaves of the tree (i.e., of those features in F such that there
is no 〈f,f ′〉 in R).

Taking the example of section 2.3, and assuming there
exist statecharts s, s1, ..s6, a possible SC* Ψ for Υ1 could
be defined as Ψ(P)=s, Ψ(fi)=si (i=1, ..6), and the follow-
ing relations must hold between the statecharts: s � s1, s2,
s2 � s3, s4, and s3 � s5, s6 (see figure 4).

s

��

≺

s2

�

s3

≺

s4

�

s5

≺

s6

�

Figure 4. SC* Example

Then, for the configuration C1=confΥ1({f2, f5}), we
have that Ψ(C1) is the set {s, s1, s2, s3, s5}, with the struc-
ture shown in figure 5:

s

��

≺

s2

�

s3

≺

s5

≺

Figure 5. Configuration Example

Then, the statechart that specifies the product corre-
sponding to the configuration C1 is just s1∩s5

Finally, we introduce a last notion. Recall that the in-
tersection of two statecharts may be undefined. We do not
think this is a problem, since some configurations may pro-
duce inconsistent behavior of the system, and it is the de-
signer’s responsibility to deal with that fact. To consider
this possibility, we define the following concept: Given
Υ = 〈L,N,NC,RM,RO,RA〉 ∈ FD, Ψ an SC* for Υ and

a configuration C ∈ ConfsΥ , we say that Ψ covers C
iff

⋂
f∈ftsC

Ψ(f) �=⊥. We further define: Given Υ =
〈L,N,NC,RM,RO,RA〉 ∈ FD and Ψ an SC* for Υ, we say that
Ψ covers Υ if Ψ covers each possible configuration C of Υ:
∀C ∈ ConfsΥ.

⋂
f∈ftsC

Ψ(f) �=⊥

6 Conclusions and further work

We presented the basic ingredients for specifying the
behavior of product lines using UML statecharts. We
used feature diagrams to represent the common and
variant functionalities of a family of products. For this,
we presented a formal syntax of feature diagrams and
configurations, based on Czarnecki’s work [5, 7]. Based on
von der Beeck’s [12] UML statecharts abstract syntax, we
defined an order relation for statecharts to represent when
a statechart has a more complex structure than another
one. We also defined how to combine different extensions
of the same statechart into an integral new statechart.
With these notions, given the description of a product
line as a feature diagram, we defined a SC* for the line
as a function that associates each feature of the feature
diagram with a statechart. In this way, we can describe the
effect that each feature has on the products in which it is
present. The mapping must comply with the hierarchical
structure and the feature restrictions, i.e., the more features
a product has, the richer the statechart that models it must
be. This definition provides a very simple way to obtain
the specification of the behavior of any configuration of
the product line as the combination of the statecharts that
implement all the features present in the product.

This work constitutes the first step in the construction
of a tool that allows designers to specify the behavior of
product lines using UML statecharts. Such a tool follows a
stepwise refinement approach to software design, allowing
the user to start form a simple specification of the kernel
features of the product line, and to progressively add new
features to the line, specifying how each functionality con-
tributes to the behavior of the whole line. The formalism
has been tested with some non trivial examples, and it has
shown easy to use, since it favours the incremental approach
to the specification of the product line. We are working on
a statechart editor to be incorporated to existing implemen-
tations, such as [1]. This tool will implement the concepts
introduced in this paper.

Although there exist several extensions of UML mod-
els for specification of variability (among other works,
[3, 8, 13]), we have not found any formal specification of
variabilities for statecharts. In [2], Batory et al propose
a class inheritance approach which progressively refines a
base class. They use a composition based approach along
with different dimensions to cope with system complexity.

9

Proceedings VaMoS'08

139

Antkiewicz and Czarnecki present a template-based method
to map feature models into UML models [6]. They start
with a model which includes all the features and then they
restrict that model. We have explored a similar approach
in [11], but we found the incremental design more natural.
It would be interesting to check whether Antkiewicz and
Czarneckis approach can be matched to statecharts.

Finally, concerning formal semantics, von der Beeck in
[12] defines a semantics for statecharts in terms of a labeled
transition system and Kripke structures, which are very suit-
able for representing that the output of one transition can be
used as the input of another one. We believe that our ex-
tension relation � represents also semantic refinement with
respect to this semantics. The complete statement of this
fact and the corresponding proofs is work in progress.

Acknowledgements

We wish to thank Marı́a Victoria Cengarle for the initial
ideas on which this work is based, and for her thoughtful
comments on early versions of this article.

References

[1] M. Antkiewicz and K. Czarnecki. Featureplugin: feature
modeling plug-in for eclipse. In eclipse ’04: Proceedings
of the 2004 OOPSLA workshop on eclipse technology eX-
change, pages 67–72, New York, NY, USA, 2004. ACM.

[2] D. Batory, J. Liu, and J. N. Sarvela. Refinements and multi-
dimensional separation of concerns. In ESEC/FSE-11: Pro-
ceedings of the 9th European software engineering confer-
ence held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering, pages
48–57, New York, NY, USA, 2003. ACM Press.

[3] M. V. Cengarle, P. Graubmann, and S. Wagner. Seman-
tics of uml 2.0 interactions with variabilities. In Interna-
tional Workshop on Formal Aspects of Component Software
(FACS05), 2005.

[4] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison Wesley, 2002.

[5] K. Czarnecki. Generative Programming: Principles and
Techniques of Software Engineering Based on Automated
Configuration and Fragment-Based Component Models.
PhD thesis, Technical University of Ilmenau, 1998.

[6] K. Czarnecki and M. Antkiewicz. Mapping features to mod-
els: A template approach based on superimposed variants. In
GPCE, pages 422–437, 2005.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
cardinality-based feature models and their staged configura-
tion. University of Waterloo, 2004.

[8] H. Gomaa. Designing Software Product Lines with UML.
Addison Wesley, 2005.

[9] D. Harel. Statecharts: A visual formalism for complex sys-
tems. North-Holland, 1987.

[10] OMG. Unified modeling language specification version 2.0.
Technical report, Object Management Group, 2004.

[11] N. Szasz, C. Luna, and A. González. Hacia una forma-
lización de lı́neas de productos mediante máquinas de esta-
dos con variabilidades. In XXXIII Conferencia Latinoame-
ricana de Informática, CLEI 2007.

[12] M. von der Beeck. A structured operational semantics for
uml-statecharts. Springer, 2002.

[13] T. Ziadi, L. Helouet, and J.-M. Jezequel. Behaviors gener-
ation from product lines requirements. In UML2004 Work-
shop on Software Architecture Description and UML, 2004.

10

Proceedings VaMoS'08

140

Reflective Component-based Technologies to Support Dynamic Variability∗

Nelly Bencomo, Gordon Blair, Carlos Flores, Pete Sawyer

Computing department, InfoLab21, Lancaster University, LA1 4WA, United Kingdom

email: {nelly, gordon, floresco, sawyer} @comp.lancs.ac.uk

Abstract

In this paper we propose an approach to support dy-
namic or runtime variability in systems that must adapt
dynamically to changing runtime context. The approach
is founded on reflective component-based technologies to
support the dynamic variability at the architectural level.
Adaptive behaviour is encoded in reconfiguration policies
that are consulted at run-time when changes in the underly-
ing environment are detected. Specifically, the reconfigura-
tion policies dictate the component-based architecture to be
used in actively changing contexts. However, the increasing
number of variants and their interdependency relationships
add to the complexity of variability management. Therefore,
the paper also proposes a notation and associated models
to address the management of dynamic variability. We de-
scribe our experience with applying this approach through
a case study; the support and management of dynamic vari-
ability for service discovery protocols. Keywords: dynamic
variability, architectural reconfiguration, orthogonal vari-
ability models.

1 Introduction

It is becoming common that systems should be able to
adapt dynamically to changing contexts at runtime. Such
systems exhibit degrees of variability that depend on run-
time fluctuations in their contexts. We call this kind of vari-
ability dynamic variability or runtime variability. Although
dynamic variability has been addressed by long-established
concepts in the field of system families [16, 17, 34], we
advocate that this work is insufficient to meet the needs of
contemporary, dynamically adaptive distributed systems. In
the case of systems that adapt dynamically, approaches to
support variability cannot be just component specializations
or conditions on variables [34]. Decisions should involve

∗This work has been supported in part by the EPSRC project
EP/C010345/1 The Divergent Grid

more powerful mechanisms that allow dynamic reorganiza-
tion of the architecture. In other words, these mechanisms
should be able to manage whole sets of components, their
connections and associated semantics. In this paper we in-
troduce an approach based on component frameworks [35]
and reflection [23] as a mechanism to support the realization
of dynamic variability of adaptive systems. Using this ap-
proach, unanticipated variability and interdependency rela-
tionships between variable software artefacts (such as com-
ponents, connections, and components configurations) and
context and environment conditions can grow to such a level
that rigorous support for variability management is needed.
Therefore, this paper also discusses notation and models to
manage dynamic variability. The application of the pro-
posed approach consider using a case study.

In the reminder of the paper we discuss dynamic vari-
ability in adaptive systems and the need for its management
(Section 2). We then introduce the fundamental concepts of
our approach (Section 3) and present a case study (Section
4). A discussion about the contributions of our research and
related work are presented (Section 5), and finally, some re-
marks and future work are given (Section 6).

2 Dynamic Variability

2.1 Overview

One of the reasons for software variability is to delay a
design decision [34]. Instead of deciding on what system to
develop in advance, a set of components and a common sys-
tem family (reference architecture) are specified and imple-
mented during a process called Domain Engineering [12].
Later on, during Application Engineering, specific systems
are developed to satisfy the requirements and reusing the
components and architecture. Variability is expressed in the
form of variation points. A variation point denotes a par-
ticular location in a software-based system where decisions
are made to express the selected variant [34]. Eventually,
one of the variants should be chosen to be achieved or im-
plemented. The time when it is done is called binding time.

1

Proceedings VaMoS'08

141

Traditionally, decisions have been deferred to architecture
design, implementation, compilation, linking, and deploy-
ment [1, 7, 12, 22, 26, 34]. Currently the aim is to post-
pone these decisions to even later points in time to allow
dynamic variability at runtime. This raises several research
challenges, such as the management of variabilities in dy-
namically adaptive systems, which are discussed in the next
section.

2.2 Dynamic Variability in Adaptive Sys-
tems

A dynamically adaptive system operates in environments
that impose changing contexts and requirements. The chal-
lenge that it causes comes from the need to support unan-
ticipated adaptation or customization of the systems [32]
according the needs of the fluctuating environment. The
unanticipated conditions are related to:

(i) Environment or context variability: commonly the
evolution of the environment cannot be predicted at design
time; therefore the total range of contexts and requirements
may be unknown at design time.

(ii) Structural variability: it covers the variety of the
components and the variety of their configuration. This is
consequence of the variability explained above. In order to
satisfy the set of requirements for the new context, the sys-
tem may add new components or arrange the current struc-
tural configuration (reconfiguration). Hence, the solutions
cannot be restricted to a set of known-in-advance configu-
rations and components.

The system should be prepared to deal with these two di-
mensions of variability described above. Adaptive systems
must be prepared to identify a new context unknown at de-
sign time. Under the conditions of the new contexts, the
system must be prepared to discover and include new com-
ponents to meet new requirements or simply to improve the
current state of the system when new components become
available [32] and according some quality of service (QoS)
properties. Moreover, solutions to manage the latter struc-
tural variability cannot be just the traditional component
replacements and/or specializations, but decisions should
involve more powerful mechanisms able to manage whole
sets of components, their connections and semantics (con-
figurations). A balance between the support for unantici-
pated adaptive capabilities and the guarantee of the correct
structural composition and state of the system is another im-
portant challenge that must be taken into account.

The classification proposed in [36] distinguishes two dif-
ferent types of dynamic adaptation: dynamic behaviour
adaptation and dynamic reconfiguration.

In dynamic behaviour adaptation, systems recognize
new environmental conditions not envisioned during de-
velopment. In this systems, control and order is emergent

rather than predetermined [13, 37]. This kind of adaptation
is proposed by researchers using mechanisms based on ge-
netic algorithms or neural networks. Research on this kind
of adaptation is still at an early stage to propose sound so-
lutions for complex adaptive systems.

Dynamic reconfiguration requires that all feasible vari-
ants of behaviour can be somehow predefined before ex-
ecution. During execution, the current state of the sys-
tem and its environment and context is evaluated and the
most appropriate behaviour variant is selected; i.e. the sys-
tem is dynamically reconfigured using the most appropri-
ate variant (configuration). Dynamic reconfiguration can be
realized using two approaches: software-based configura-
tion and hardware-based configuration. The latter is omit-
ted in this research as the authors are concerned only with
software-based reconfiguration.

Software-based reconfiguration can be achieved us-
ing two approaches: pre-determined reconfiguration and
online-determined reconfiguration. Pre-determined recon-
figuration is based on a set of configurations with known
impact defined before the deployment of the application.
In this case, the system only supports the configurations
that are hard coded and fixed in advance by the develop-
ers. Therefore the system is only reconfigured (i.e. the
system adapts) when in a predefined and hardcoded con-
figuration. The implementation of a new configuration re-
quires the system to be reinitiated. This case is very re-
strictive. The last case, online-determined reconfiguration,
is a solution in-between pre-determined reconfiguration and
dynamic behaviour adaptation. With online-determined re-
configuration, the system has a mechanism to identify the
possible configurations at runtime. Online-determined re-
configuration supports dynamic extension of the application
by adding, changing and removing artefacts (e.g. compo-
nents and connections) at runtime. This approach “requires
a complex reconfiguration framework” [36].

3 Achieving Dynamic Variability: our ap-
proach

To address the challenges posed by dynamic variability
explained above, we propose the use of component frame-
works and reflection as a flexible mechanism for support-
ing runtime variability. At Lancaster University, we have
gained experience developing adaptive systems and middle-
ware platforms using component frameworks and reflective
technologies [8–10]. Component frameworks are collec-
tions of components that address a specific area of concern
and accept “plug-in” components that add or extend be-
haviour [3, 9]. Reflective capabilities support introspection
to observe and reason about the state of the system to make
decisions on architectural reconfigurations. Adaptive be-
havior is defined by sets of reconfiguration policies. These

2

Proceedings VaMoS'08

142

Figure 1. Dynamic Variability Dimensions

policies are of the form on-event-do-actions and actions are
architectural changes using the component frameworks. A
context engine receives relevant environmental events that
are employed to identify the reconfiguration policy to be
used. Crucially, component frameworks offer the medium
to provide structural variability. Reflective capabilities of-
fer the potential to reason about the possible variation points
and their variants during execution. The proposed solution
use the online-determined reconfiguration category of dy-
namic adaptation explained above.

Dynamic Variability: Dimensions

The approach deal with the two dimensions of dynamic
variability identified, see Figure 1. The architecture defined
by the component framework (reference architecture) basi-
cally describes the structural commonalities. Different con-
figurations or structural variants will exist that follow the
well-defined constraints imposed by the component frame-
works. Policies describing the contexts and requirements
will drive the evolution and execution (using reconfigura-
tions). Essentially, the policy mechanism will set the ba-
sis for dealing with the environment and context variability
identified above. The approach separates the application-
specific functionality from the adaptation concerns, thereby
reducing complexity [27].

Dynamic Variability: Models

The increasing number of variants and their relationships
can make the management of variability a challenge. We
propose a model-driven approach to manage the two di-
mensions of dynamic variability. A model of the structural
variability specifies the architecture of the system that will
evolve over time during the execution. A model of the envi-
ronment and context variability specifies the conditions and
events that will trigger changes in the architecture. Cru-
cially, these models can be constructed using the domain-
specific language-based tool called Genie [2, 4]. From
the models designed using Genie, generation of different
software artefacts including component source code, com-
ponent framework configurations, and the reconfiguration
policies [31] can be performed. The next section illustrates
the case study introducing the fundamental concepts of the
proposed approach.

4 Case Study: Dynamic Service Discovery

This section introduces an example of how our approach
supports runtime variability for adaptive systems. Firstly,
we present the motivation for dynamic service discovery
and discuss the domain problem. We follow with the de-
scription of how commonalities and variants are identified
and finally the variability model and its notation and ap-
plication are described. The case study is in the context of
mobile computing environments applications which need to

3

Proceedings VaMoS'08

143

dynamically discover services from a wide range of options.
A service discovery application proposes a good example of
kind of systems that need support for runtime variability.

4.1 The Need to Dynamically Discover
Services

Nowadays mobile computing is pervasively taking over
traditional computing [14, 19, 25]. Mobile devices are char-
acterized by sudden and unexpected changes in execution
context. Applications running on these devices need to
dynamically adapt according to the changing contexts. If
devices (PDA, mobile, or laptop) are capable of detecting
changes in the current environment, then they can also no-
tify the user about new available services according to pre-
defined preferences (e.g. comparison prices and categorized
sales in a supermarket or printing services in an internet
cafe). Service discovery protocols (SDP) were conceived to
simplify the discovery and use of network resources such as
printers, video cameras, directories, and mail servers, with
minimum user intervention. Many different approaches to
tackle different challenges related to heterogeneity of tech-
nology have led to a variety of proposed designs for SDPs
[24]. Consequently it is not possible to completely fore-
see at design time which protocols will be used to advertise
services in a given context or environment. The next sec-
tion presents a solution to overcome the challenges posed
by heterogenous service discovery protocols.

4.2 Family of Service Discovery Protocols
for Adaptive Systems

Flores et all [15] present a configurable and reconfig-
urable middleware solution for the dynamic discovery of
services advertised using heterogenous protocols in diverse
environments. The solution takes into consideration a set
of common core architectural elements that individual dis-
covery protocols follow. Using the final architecture, in-
dividual discovery platforms can be implemented and dy-
namically plugged-in to the discovery middleware. Hence,
different SDP personalities can be used to discover services
advertised by heterogeneous platforms. This middleware
solution has been evaluated with the development of four
existing ad-hoc service discovery protocols: ALLIA, GSD,
SSD, and SLP (i.e. 4 personalities). The offered solution en-
hances configurability and re-configurability and minimizes
resource usage through reusable assets such as components
and patternsof interaction [15].

Service Discovery Agents

A service discovery interaction platform uses three kinds
of agents to advertise and discover services:

-User Agent (UA) to discover services on behalf of
clients,

-Service Agent (SA) to advertise services, and,
-Directory Agent (DA) to support a service directory

where SAs register their services and UAs send their ser-
vice requests. A DA stores temporal service advertise-
ments, matches requested services against advertisements,
and replies to requesting clients when a positive match is
found.

The agents identified above can be seen as roles that in-
dividual protocols assume. Depending on the required func-
tionality, participating nodes using a given protocol person-
ality might be required to support 1,2, or the 3 roles at any
time.

Service Discovery Family Architecture

The architecture is shown in Figure 2. The six compo-
nents of the architecture are detailed below:

Figure 2. The Service Discovery Family Ar-
chitecture

-Advertiser Component: this component is utilized by
SAs to advertise its services and by DAs to process incom-
ing service advertisements storing them in cache. This com-
ponent also deals with protocol messages related with the
maintenance of a directory overlay network.

-Request Component: this component is utilized by
UA’s to generate service requestes. It is also employed
by DAs to process incoming service requests, match them
against local services previously stored in a cache. It can
also forward request messages in both roles.

-Reply Component: this component is used by both UAs
and DAs to generate service replies when a positive match
request-service occurs or to notify applications from a re-
ceived replied request respectively.

-Cache Component: common tasks performed by this
component are the management of temporary data, storage

4

Proceedings VaMoS'08

144

of received service advertisements, description of local ser-
vices and location of neighbouring directories.

-Policy Component: this component stores and deals
with user preferences, application needs and/or inclusive
context requirements.

-Network Component: this component allows compo-
nents connected to it to transmit and receive messages uti-
lizing different routing schemes.

4.3 Commonalities and Variabilities

The common architecture explained above dictates the
rules to be followed by the possible variants (i.e. configura-
tions). In our specific case, any SDP personality in any en-
vironment and under any context needs the network compo-
nent to interface with networks services or clients, and poli-
cies and cache components are always required since they
interact with either discovery role. Therefore, the Network,
Cache and Policies components will always be present in
any valid configuration. The other three components and
their bindings will be part of the configuration or not, de-
pending on the roles the protocol might perform (i.e. SA,
UA, or DA). Hence, roles (agents) directly define the struc-
tural variants.

Figures 3(a) and 3(b) show how the architecture can be
configured to support either a UA or SA role by restricting
the number of components to only those required to provide
the determined functionality. By using a complete frame-
work configuration, a DA can also be supported and the
configuration to be used is shown in Figure 3(c). Hence,
by configuring individual protocols according to the role
(i.e. UA, SA or DA), the number of resources required by a
multi-personality middleware service discovery can be sig-
nificantly reduced to improve the footprint and potentially
the performance of the system [15]. Notably, with the mul-
tiprotocol middleware platform, heterogeneous discovery
platforms can be implemented with a common component
architecture. This simplifies the configuration process since
the component types and connection bindings remain the
same for any protocol implementation. Thus, because of
the common configuration pattern, the execution of a sim-
ple single component replacement algorithm is enough to
re-configure the architecture. Similar common algorithms
are required to perform a coarse-grained re-configuration
when loading a new discovery personality or when chang-
ing the role in a given personality is required. Fine-grained
and coarse-grained changes can be made in the framework
to support context changes in the environment. Individual
protocols can be changed in a fine-grained manner to, for
instance, replace the network component with a new one to
support a different routing scheme.

Figure 3. Configurations for the Different
Variants

4.4 Variability Model

The approach presented above notably enhances recon-
figurability. However, the increasing number of variants
and their relationships make it crucial the structured man-
agement of variability. This section shows the notation and
models we propose to address variability management.

4.4.1 Modelling Structural Variants

The model is based on the orthogonal variability modeling
approach proposed in [28]. An orthogonal variability model
defines the variability of a system family, i.e the variability
information is in a separate model in the form of variation
points (VPs) and variants. It associates the VPs and variants
defined with other software development models such as
design models or component models. An orthogonal vari-
ability modelling approach offers many advantages like (i)
it promotes a good separation of concerns as the orthogo-
nal models provide a cross-sectional view of the variability
across other development artefacts (using the relationship
’artefact dependency’), (ii) in our specific approach, it pro-
poses the basis for the management of traceability between
the runtime variability models, the implementation models
and the requirement models [31].

Figure 4 shows the model for the role variants explained

5

Proceedings VaMoS'08

145

Figure 4. Variability Model

above. Essentially, different configurations associated with
roles correspond to variants. The variability diagram de-
scribes the variation point ”SDP” (Service Discovery Proto-
col) with three (structural) variants SA, UA, and DA. These
variation points and variants associated correspond to the
management of the Structural Variability described in 2.2

Figure 5 shows the use of the relationship ’artefact de-
pendency’, each structural variant is associated with the
corresponding configuration. The configurations are rep-
resented using either XML or binary files to describe or
perform their topologies. The specified variation points are
specialized by a runtime selection between alternative com-
ponent configurations. These configurations are designed
using the domain-specific language (DSL) tool Genie to au-
tomatically generate the corresponding XML file or hard
code as explained in [2].

Figure 5. Variants SA, UA, and DA and their
configurations

Other VPs and variants are also specified; for example
the VP ”Personality” defines the personality variants, i.e.
ALLIA, GSD, SSD, SLP or any other specified in the future
(see Figure 6).

4.4.2 Modelling Reconfigurations

An interesting aspect of adaptive systems like SDPs is the
need to dynamically reconfigure the system from one vari-
ant to another when the context has changed. Examples
of opportunities for reconfigurations (i) changes of the un-

Figure 6. Variants Personalities

derlying network protocols if the operation changes to an
ad-hoc domain, (ii) the use of a different role strategy if the
system size increases (for scalability reasons), (iii) the use
of a different role strategy to save energy (this example is
explained below). This is quite distinct from traditional sys-
tem families where, once a member (product) of the family
is created, it does not change significantly during the life-
time of the software product. Using our approach a mem-
ber of the family may be “transformed” into another one to
adapt the system to meet the new requirements and suit a
new context. To do this, the system should monitor spe-
cific aspects of the runtime environment and react to given
changes while keeping a valid state. The system should be
able to decide what kind of reconfiguration has to be per-
formed if any. To model this behaviour it is necessary to
define what adaptation means in terms of configurations.

An adaptation is defined as the process of having the sys-
tem going from a given configuration Ci to another config-
uration Cj given the conditions of the context Tk. The pos-
sible adaptations will be captured by the variability model.

The variability model of the case study is extended to
show how an adaptation from one role (agent) to another
is performed, i.e. it shows the context and requirements
and the reconfiguration involved. Essentially, this is mod-
eled using transition diagrams. A screenshot of the Genie
model that specifies the transition diagram designed for ser-
vice discovery protocols is at the bottom of Figure 7. An
adaptation policy is associated with the relationship (arc)
between the configuration for the variant UA (Ci) and the
configuration for DA (Cj) for a given context Tk specified by
the policy. The number of transitions (arcs) and adaptation
policies to be inserted in the transition diagram will depend
on how adaptable the system should be or is conceived. The
transition diagrams and the policies associated correspond

6

Proceedings VaMoS'08

146

to the management of the Environment and Context Vari-
ability described in Section 2.2.

Figure 8 shows an overview of the two dimensions of
dynamic variability for the case of Service Discovery Pro-
tocols.

The following examples illustrate reconfiguration oppor-
tunities identified for the case of the protocol personality
SSD.

Example 1: Nodes operating SSD protocols might run
periodically consensus algorithms to reelect the DA nodes
in charge of giving directory services to other nodes. There-
fore, if a node UA has been chosen as a DA, this node should
be reconfigured to match its new role. A pseudo code of the
reconfiguration policy that guides the adaptation of the ex-
ample is as follows:

if (Elected-DA) then
reconfigure(UA,DA)

end

The reconfiguration policy (expressed in XML) associ-
ated with this reconfiguration is shown in Figure 7. Actu-
ally, the XML files of policies can be generated using the
tool Genie.

Example 2: If a node DA has low battery and it was
originally a node with the role SA, the node should be re-
configured to its original SA configuration. The same could
happen if after the consensus algorithms to reelect the DA
nodes another node is elected. The policy is as follows:

if(!Elected-DA ||(Low-Battery && RSA))then
reconfigure(DA,UA)

end

The case study we used has necessarily been a simple
one for reasons of space. In this sense, the transition dia-
gram of the case study explained above just covers aspects
associated with service discovery concerns using the multi-
protocol component framework. However, aspects associ-
ated with networking issues can also be considered. In this
case, two component frameworks would be associated with
each structural variant in the transition diagram: the Ser-
vice Discovery and the Network component frameworks,
and the triggers specified in the arcs of the transition dia-
grams should also include properties and conditions asso-
ciated with networking issues. Examples of situations that
would be taken into account are (i) in a mobile application
it is possible that a new network would come within range
using a different technology, and, therefore, it may be nec-
essary to reconfigure the Network component framework to
satisfy the new network, or (ii) the battery life is in threat
and, therefore, a BlueTooth-based networking might be pre-
ferred instead of a relatively power-hungry WiFi-based con-
nection.

Other component frameworks that can be used in the
specification of the structural variants of the transition di-
agrams are the Spanning Tree component framework (for
the description of the topology of nodes in a network), the
Interaction component framework (to choose between the
different interaction types, e.g. publish-subscribe, group
communication, peer-to-peer, data sharing and others), the
Security and Resource Management frameworks. The in-
clusion of these component frameworks in the definition of
the structural variants depends on the nature and concerns
of the application to be developed.

Our approach has also been applied in the case of a real-
world scenario: a wireless sensor flood forecasting appli-
cation deployed on the River Ribble in the north west of
England [21]. This case study includes adaptation concerns
associated with the reconfiguration of the topology of the
sensor networks and networking concerns using the Span-
ning Tree and Network component frameworks respectively.
Some preliminary results are shown in [5, 18, 31].

5 Discussion: Contributions and Related
Work

This section discusses the novel contributions of our re-
search and contrasts the proposed approach with related
work. Current approaches of system families (or product
lines) base their support for variability on the configuration
knowledge which is expressed explicitly when synthesizing
a product (variant). This is enough in situations when the
configuration is done statically. Traditionally, variability is
meant to be solved at a predelivery moment [20]. In our
case, the problem domain is in the field of customization
of systems at runtime that noticeably takes place postdeliv-
ery. In this new field and as explained above not all the
structural elements (such as components, configurations) or
requirements are known at design time. It is not flexible
enough to offer a fix set of variation points (hot spots) where
different versions of components are replaced. With our ap-
proach sets of configurations are replaced in answer to con-
text changes following the reconfiguration policies. Further
more, new reconfiguration policies can be added at runtime
changing dynamically the behaviour of the system. These
policies are explicitly modelled in our approach what po-
tentially improves the traceability during the software de-
velopment process.

The proposed approach focuses on the structured man-
agements of variation points that are bound at runtime. The
dependencies between structural variability (architectural
elements) and environment and context variability are made
explicit. In a nutshell, the approach focuses on some of the
(runtime) variability issues stated in [11, 16], such as no
first-class representation of the concept of variability points,
implicit dependencies, inflexible binding mechanisms, high

7

Proceedings VaMoS'08

147

Figure 7. Reconfiguration Graph for the Variants SA, UA, and DA

Figure 8. Dynamic Variability in the Service Discovery Protocols

resource costs, predictability, and addition of variants.

Many mechanisms for runtime variability management
have been proposed. They are mainly focused on exchange
of runtime entities, parametrization, inheritance for spe-

cialization, and preprocessor directives [16, 17, 29, 34].
Our approach proposes the management of whole sets of
components, their connections and semantics (i.e. a more
coarse grained approach). However, our approach is still

8

Proceedings VaMoS'08

148

complementary to the finer grain styles cited above or in
[38]. For example in each configuration traditional fine
grain management of variability can be used to describe
specific component replacements or specializations. Re-
search work on MADAM [14] shares some of the principles
of our approach as component frameworks to support vari-
ability. They also take into account the benefits of coarse-
grained variability mechanisms. However our approach is
more general as their focus is only on mobile computing
applications. A similar research is found in [32]. They in-
troduce the concept of composable components which is
similar to our component frameworks. They apply recur-
sive composition according to external requirements using
ADLs what can be to some extent equivalent to our recon-
figuration policies. However, they do not offer reflection ca-
pabilities, i.e their systems cannot reason about the current
state or configuration of the system. Reflection offers sup-
port to determine where the points for variation are, what
are the possible set of variations, or the state of the system
at any point in time. However, using reflection has some
drawbacks as the effect on performance and integrity is-
sues. When developing reflective systems a trade-off be-
tween flexibility and performance has to be studied and a
rigorous system development has to be performed.

In [18, 30, 31] we explain how the policy mechanisms
contribute to providing a clear trace from user requirements
to adaptation requirements [6] and their implementations.
In this sense, the research related to requirements-driven
composition in [32] is similar to our research.

6 Conclusions and Future Work

In this paper, we address how to manage effectively and
in a structured way variation points that have to be bound
at runtime. We focus on the development of systems that
adapt to fluctuating environments following the established
principles of systems families. The central elements of our
approach are the concepts of component frameworks and re-
flection. The architecture offered by the component frame-
works defines the invariant crucial for the reuse of common
assets. The modeling approach proposed focusing on the
explicit identification and documentation of the dynamic
variability of the family.

A strong point of our approach is that it proposes a so-
lution for the problem of unanticipated configurations and
decisions that depend on the runtime context. It allows the
specification of new reconfiguration policies, to discover
and use new components and to vary the structural config-
uration (reconfiguration) of the system. Component frame-
works and its specification, as presented in this paper, pro-
poses the necessary flexibility, while offering formality to
get the expected behaviour.

Substantial research remains to be done. For example, a

concern is the combinatorial explosion related to the num-
ber of reconfiguration paths in the transition diagrams (i.e.
the number of policy-based reconfigurations). However in
the case study the number of reconfiguration paths is man-
ageable, it might not be the case for other domains. We
think that the combination of the specificity of on-event-do-
action policies and higher-level policies that focus on gen-
eral properties of the system can mitigate the problem.

Another concern is tool support for modeling variability
and its integration into our Genie toolkit [33]. We have al-
ready some partial results shown in [5]. Tool support will
help the scalability of the approach.

Acknowledgments We thank Paul Grace for his discus-
sions on the above material.

References

[1] D. Batory and S. O’Malley. The design and implementation
of hierarchical software systems with reusable components.
ACM Transactions on Software Engineering and Methodol-
ogy, 1(4):355 – 398, 1992.

[2] N. Bencomo and G. Blair. Genie: a domain-specific mod-
eling tool for the generation of adaptive and reflective mid-
dleware families. In 6th OOPSLA Workshop on Domain-
Specific Modeling, Portland, 2006.

[3] N. Bencomo, G. Blair, G. Coulson, and T. Batista. Towards a
metamodelling approach to configurable middleware, 2005.

[4] N. Bencomo, P. Grace, and G. Blair. Models, runtime re-
flective mechanisms and family-based systems to support
adaptation. In Workshop on MOdel Driven Development for
Middleware (MODDM), 2006.

[5] N. Bencomo, P. Grace, C. Flores, D. Hughes, and G. Blair.
Genie: Supporting the model driven development of reflec-
tive, component-based adaptive systems. Submitted to ICSE
2008 - Research Demonstrations Track, 2008.

[6] D. Berry, B. Cheng, and P. J. Zhang. The four levels of
requirements engineering for and in dynamic adaptive sys-
tems. In 11th International Workshop on Requirements En-
gineering: Foundation for Software Quality (REFSQ’05),
Porto, Portugal, 2005.

[7] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
Variability management with feature models. Science of
Computer Programming. Special issue: Software variabil-
ity management, 53(3):333–352, 2004.

[8] G. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke,
F. Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston,
R. Moreira, N. Parlavantzas, and K. Saikoski. The design
and implementation of open orb 2. IEEE Distributed Sys-
tems Online, 2(6), 2001.

[9] G. Blair, G. Coulson, and P. Grace. Research directions
in reflective middleware: the lancaster experience. In 3rd
Workshop on Reflective and Adaptive Middleware, pages
262–267, 2004.

[10] G. Blair, G. Coulson, J. Ueyama, K. Lee, and A. Joolia.
Opencom v2: A component model for building systems soft-

9

Proceedings VaMoS'08

149

ware. In IASTED Software Engineering and Applications,
USA, 2004.

[11] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obink,
and K. Pohl. Variability issues in software product lines. In
4th International Workshop Software Product Family Engi-
neering, Bilbao, Spain, 2001.

[12] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools and Applications. Addison-Wesley, 2000.

[13] K. Dooley. Complex adaptive systems : A nominal defini-
tion. 1997.

[14] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and
E. Gjorven. Using architecture models for runtime adapt-
ability. Software IEEE, 23(2):62–70, 2006.

[15] C. A. Flores-Cortés, G. S. Blair, and P. Grace. An adaptive
middleware to overcome service discovery heterogeneity in
mobile ad-hoc environments. IEEE Distributed Systems On-
line, 2007.

[16] M. Goedicke, C. Köllmann, and U. Zdun. Designing run-
time variation points in product line architectures: three
cases. Science of Computer Programming Special Issue:
Software variability management, 53(3):353 – 380, 2004.

[17] M. Goedicke, K. Pohl, and U. Zdun. Domain-specific run-
time variability in product line architectures. In 8th Interna-
tional Conference on Object-Oriented. Information Systems,
pages 384 – 396, 2002.

[18] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes, and
B. H. Cheng. Goal-based modeling of dynamically adaptive
system requirements. In 15th Annual IEEE International
Conference on the Engineering of Computer Based Systems
(ECBS), 2008.

[19] P. Grace, G. Blair, and S. Samuel. A reflective framework
for discovery and interaction in heterogeneous mobile envi-
ronments. ACM SIGMOBILE Mobile Computing and Com-
munications Review, 9(1):2–14, 2005.

[20] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of
variability in software product lines. In Working IEEE/IFIP
Conference on Software Architecture (WISCA’01), page 45,
2001.

[21] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pap-
penberger, P. Smith, and K. Beven. Gridstix:: Supporting
flood prediction using embedded hardware and next genera-
tion grid middleware. In 4th International Workshop on Mo-
bile Distributed Computing (MDC’06), Niagara Falls, USA,
2006.

[22] J. Lee and D. Muthig. Feature-oriented variability manage-
ment in product line engineering. Communications of the
ACM, 49(12), 2006.

[23] P. Maes. Computional reflection. PhD thesis, Vrije Univer-
siteit, 1987.

[24] R. Marin-Perianu, P. Hartel, and H. Scholten. A classifica-
tion of service discovery protocols. Technical Report TR-
CTIT-05-25, University of Twente, 2005.

[25] C. Mascolo, L. Capra, and E. Wolfgang. Mobile computing
middleware. LNCS 2597, pages 20–58, 2002.

[26] R. v. Ommering. Building Product Populations with Soft-
ware Components. PhD Thesis. PhD thesis, Rijksuniver-
siteits Groningen, 2004.

[27] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,

G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum,
and A. L. Wolf. An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems and Their Ap-
plications, 14(3):54–62, 1999.

[28] K. Pohl, G. Böckle, and F. v. d. Linden. Software Product
Line Engineering- Foundations, Principles, and Techniques.
Springer, 2005.

[29] E. Posnak and G. Lavender. An adaptive framework for de-
veloping multimedia. Communications ACM, 40(10):43–47,
1997.

[30] P. Sawyer, N. Bencomo, P. Grace, and G. Blair. Handling
multiple levels of requirements for middleware-supported
adaptive systems. Technical Report COMP 001-2007, Lan-
caster University, 2007.

[31] P. Sawyer, N. Bencomo, P. Hughes, Danny andl Grace, H. J.
Goldsby, and B. H. C. Cheng. Visualizing the analysis of
dynamically adaptive systems using i* and dsls. In REV’07:
Second International Workshop on Requirements Engineer-
ing Visualization, Delhi, India, 2007.

[32] I. Sora, V. Cretu, P. Verbaeten, and Y. Berbers. Manag-
ing variability of self-customizable systems through com-
posable components. Software Process: Improvement and
Practice, 10(1):77–95, 2005.

[33] SSE. Varmod-prime tool-environment, uni-
versity of duisburg-esse. http://www.sse.uni-
essen.de/wms/en/index.php?go=256, 2006.

[34] M. Svahnberg, J. v. Gurp, and J. Bosch. A taxonomy of
variability realization techniques. Software: Practice and
Experience, 35(8):705 – 754, 2005.

[35] C. Szyperski. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley / ACM Press,
2002.

[36] M. Trapp. Modeling the Adaptation Behavior of Adaptive
Embedded Systems. PhD Thesis. PhD thesis, University of
Kaiserslautern, 2005.

[37] M. Waldrop. Complexity: The Emerging Science at the Edge
of Chaos. New York: Simon and Schuster, 1992.

[38] J. Zhang and B. H. Cheng. Model-based development of
dynamically adaptive software. In International Conference
on Software Engineering (ICSE’06), China, 2006.

10

Proceedings VaMoS'08

150

Towards Visualisation and Analysis of Runtime Variability in Execution Time of
Business Information Systems based on Product Lines∗

Ildefonso Montero, Joaquín Peña, Antonio Ruiz-Cortés
Departamento de Lenguajes y Sistemas Informáticos

Av. Reina Mercedes s/n, 41012 Seville (Spain)
University of Seville

{monteroperez, joaquinp, aruiz}@us.es

Abstract

There is a set of techniques that build Business Infor-
mation Systems (BIS) deploying business processes of the
company directly on a process engine. Business processes
of companies are continuously changing in order to adapt
to changes in the environment. This kind of variability ap-
pears at runtime, when a business subprocess is enabled or
disabled. To the best of our knowledge, there exists only
one approach able to represent properly runtime variability
of BIS using Software Product Lines (SPL), namely, Product
Evolution Model (PEM). This approach manages the vari-
ability by means of a SPL where each product represents
a possible evolution of the system. However, although this
approach is quite valuable, it does not provide process en-
gineers with the proper support for improving the processes
by visualising and analysing execution-time (non-design)
properties taking advantage of the benefits provided by the
use of SPL.

In this paper, we present our first steps towards solv-
ing this problem. The contribution of this paper is twofold:
on the one hand, we provide a visualisation dashboard for
execution-traces based on the use of UML 2.0 timing di-
agrams, that uses the PEM approach; on the other hand,
we provide a conceptual framework that shows a roadmap
of the future research needed for analysing execution-time
properties of this kind of systems. Thus, due the use of SPL,
our approach opens the possibility for evaluating specific
conditions and properties of a business process that current
approaches do not cover.

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and under a scholarship from the Education and Univer-
sities Spanish Government Secretariat given to the author Ildefonso Mon-
tero.

1 Introduction

The development of Business Information Systems (BIS)
is focused on providing techniques and mechanisms for de-
signing software systems based on the business processes
of the companies. One of the implementation approaches is
based on deploying business processes, defined graphically,
on process engines that execute the specification.

Variability in average-size business processes is high
enough for motivating the use of tailored mechanisms to
be managed. For that purpose, there exists only one ap-
proach devoted to manage business processes variability us-
ing Software Product Lines (SPL)[11]. In this approach,
A. Schnieders et al. explore the idea of applying Software
Product Lines (SPL) for managing runtime variability of an
unique BIS in an approach called Process Family Engineer-
ing (PFE) [11]. In PFE, each product represents an evolu-
tion of the system (at runtime). In this context, term prod-
uct is defined as a set of features that are enabled/running
at a certain moment, and the term evolution is defined as a
transition from one product to another. See Section 2 for a
detailed definition of these concepts.

However, although PFE may be the solution to manage
the evolution of the business process of a company, the pro-
posed models, namely feature models (equivalence between
feature and business process is defined in Section 2), are
not expressive enough for documenting this evolution. The
main problem is that this kind of models are devoted to
model static variability, and not runtime variability [9]. See
Section 3.2 for details on this problem.

The Product Evolution Model (PEM) [8], which is
shown in Section 6, complements PFE for representing run-
time variability in BIS properly. For that purpose, it in-
tegrates PFE with several proposals for modeling runtime
variability in SPL, namely [5][6][7] (see Section 6 for a dis-
cussion of these approaches). This approach is oriented to
provide a set of artifacts able to represent properly runtime

Proceedings VaMoS'08

151

variability at design time and trigger events that drives these
changes. PEMs are defined in two layers: (i) an abstract for-
mal description of business evolutions, presented in Section
3.1 and (ii) a proposal for representing it based on a state-
based notation where each state represents a product and
each evolution between two or more states is represented by
means of an inclusion or exclusion of features, presented in
Section 3.2. PEM uses the Business Process Model Nota-
tion (BPMN) [3] for representing this, but the proposal is
open to other notations. The main benefits of this approach
are that it provides sufficient expressiveness for represent-
ing runtime variability in BIS, and events or conditions that
fire business evolutions can be represented.

Although this approach presents a valuable solution for
representing runtime variability in BIS at design time, pro-
cess engineers need to visualise and analyse properties of
the business at execution-time, for example: how long each
product is active or which is the percentage of benefits ob-
tained in each product at a certain moment. This kind of
evaluation is studied in the Business Process Mining field
[4][13][10]. However there not exists any approach in this
field that manages variability using SPLs.

The main motivation of this paper is that, to the best of
our knowledge, there does not exist any approach, that takes
advantage of the extra information than a SPL approach
provides. This extra information allows process engineers
to visualise the execution of the process showing how the
business evolves between several configurations. See Sec-
tion 6 for a discussion on the approaches that inspires us and
their deficiencies for the BIS field. This kind of visualisa-
tion is valuable since it allows process engineers to focus on
higher level properties of the business, such as which prod-
uct is more profitable, than those proposed in the Business
Process Mining field.

The contribution of this paper is twofold: on the one
hand, we provide a visualisation dashboard of execution
traces based on the use of UML 2.0 timing diagrams and
its integration with current approaches, which is detailed on
Section 4. On the other hand, we have studied the prob-
lems related with the analysis of properties of execution
traces providing a conceptual framework that shows a fu-
ture research, which is shown in Section 5. Thus, our ideas
open the possibility to reason about products, evolutions,
triggers, etc., which, to the best of our knowledge, is not
present in current approaches based on SPL, neither in the
process mining field.

2 Adaptation of the SPL terminology to the
context of the paper

In this paper, we use concepts of the SPL field with a
slightly different meaning. These changes in the meaning
occur because we applied these concepts to assets that are

processes and not executable software pieces. In the follow-
ing paragraph, we clarify the meaning of these concepts in
our context:

Features and Business Processes: the Product Evolution
Model (PEM) approach [8] establishes an equivalence
between business processes and features as follows:
(i) a feature represents a subprocess (part of a com-
plete process that starts and ends), and (ii) child fea-
tures nodes of a feature model, also considered vari-
ants in [9], corresponds with concrete processes (pro-
cesses that do not present abstract or complex activi-
ties). In this paper, we also use a direct correlation be-
tween a feature and a business subprocess. Hereafter,
we use the term feature to refer to both terms.

Predictable Evolutions and Products: Businesses evolve
to adapt to environmental changes. This is done by
including or excluding features or modifying existing
ones. As shown previously, we use a SPL to manage
these changes. Thus, we define a product as the set
of features (subprocesses) that are enabled/running at
a certain moment. In addition, we define the term evo-
lution to denote the changes or transitions from one
product to another. Note that we only take into ac-
count the evolutions that can be predicted at design
time, called predictable evolutions (hereafter, evolu-
tions for shortening).

Design-time, runtime and execution-time: It is called
design-time as an interval of time in which we build
the business process model and represent its variabil-
ity, including runtime variability. Runtime is defined
as an interval of time which starts when the business
processes modeled are deployed on process engines.
Thus, this term can be also named as deployment time
or configuration time. Finally, execution-time is de-
fined as the interval of time which starts when the busi-
ness processes deployed are executed in the process
engine. Thus, runtime variability is modeled at design-
time, by means of PEM, and visualised and analysed at
runtime. This analysis is based on the observation of
runtime properties at execution-time. This observation
is performed analysing the traces produced by the sys-
tem.

Predictable and Unpredictable Triggers: Triggers act as
stimulus of an evolution from a product to another. An
Unpredictable Trigger is defined as something hap-
pening in the environment that fires an evolution that
cannot be predicted at design time. A Predictable Trig-
ger is defined as a condition that can be defined at de-
sign time that fires an evolution. See Section 4 for an
example of predictable and unpredictable triggers.

Proceedings VaMoS'08

152

Features

Instant t

Instant t + 1

SVF t+1

Features

SVF t

B

Business

B

Business

Formal Definition Product Evolution Model

Business B

...

t + 1

t + k;
k > 0...

Feature Model

Business B

Features

...

CF

VF

Legend

: Core Features CF

: Variable Features VF

Figure 1.a. Rigorous
Description

Figure 1.b.
Graphical Notation

CF +
SVF t

CF +
SVF t + 1

 : Selected Features SVF

F (t, SVFt) = SVFt+1 ���� VF
F (t, SVFt)• SVFt ≠ SVFt+1

Figure 1. Product Evolution Model approach
defining an evolution of a business by the FΔ

function in t and t + 1.

Services

Fast-Food Restaurant

Serve

Establishment

Cafeteria

Cook

Birthday´s party

Serve FastServe
Normal

Delivery

: Core Features CF

: Variable Features VF

Auto

Figure 2. Case Study: Fast Food Restaurant

3 Representing Runtime Variability of BIS
using the Product Evolution Model Ap-
proach

Product Evolution Model (PEM) is focused on providing
a sufficiently expressive design-time model for representing
runtime business properties. PEM provides in [8] an ab-
stract rigorous description and a proposal for representing
it by means of an extension of BPMN using stereotypes,
including a case study. We show that description in the fol-
lowing sections.

3.1 PEM Rigorous Description

Let B be a business. Each business can be defined as a
set of processes (denoted with P). Thus, B can be defined
as follows:

B = {P1, P2, ..., Pk}; k > 0

Let CF be the set of common features, and let VF be the
set of variable features, thus B is defined formally as a tuple
containing all the CF and a subset of V F denoted as SV F :

B = (CF, SV F ∈ V F)

As shown before, in PFE, each set of features enabled at
a certain moment represents a product. Thus, we can say
that the CF of a B are always enabled at runtime, but the
set of features in V F is not fixed at runtime.

Thus, we can set up a product line that takes into account
this runtime variability. For formalizing these concepts we
should redefine each business B as:

B = (CF, SV F ∈ V F, FΔ :

: t, {Feature × ... × Feature} �→
�→ {Feature × ... × Feature})

where FΔ is a function that given an instant t transforms
the set of SV Ft into the new set of variable features of the
following time instant t+1, that is to say SV Ft+1, formally:

FΔ(t, SV Ft) = SV Ft+1 ∈ V F

•SV F t �= SV F t+1

Figure 1.a sketches a graphical representation of FΔ,
where it is represented the transformation of SV Ft into
SV Ft+1. In an instant t there exists a specific set of SV Ft

for business B that evolves in instant t + 1 to a different set
SV Ft+1.

3.2 PEM Graphical Notation

As shown previously, a business that evolves can be rep-
resented by B = (CF, SV F ∈ V F, FΔ), where the evolu-
tion is defined by the FΔ function in t.

In PFE, feature models are used to represent which fea-
tures are variable and which are not. From this, the set of
common (CF) and variable (V F) features can be obtained
[1]. Thus, CF and V F can be represented by means of a
feature model.

However, the feature model cannot establish the order of
activation of features at runtime. This order is represented
using FΔ, but as feature models are not devoted for rep-
resenting runtime variability [5], they cannot be used for
representing the variable t needed in the FΔ function. For
solving this problem, the Product Evolution Model (PEM)
approach proposes a graphical notation that covers t and
FΔ. This model is defined by means of a BPMN state ma-
chine where each state represents a product and each evolu-
tion between two or more states, is represented by means of
a transition that is an application of the FΔ function. In Fig-
ure 1.b, we show an evolution of a business from time t to

Proceedings VaMoS'08

153

. . .
Serve in

Cafeteria and
Establishment

10:00 am
(t +1)

Fa
st

-fo
od

 re
st

au
ra

nt

Serve in
Establishment

F (t, ServeInCafeteria)
SVF t+1 : SVF t+2 : ServeInAuto

F (t + 1,)

Serve in
Auto and

Establishment

Cafeteria Service closes at 10:00 am

11:45 am
(t + 4)

A client has arrived
to Auto-Service

Serve in
Auto and

Establishment
and Cook

F (t + 2, ServeInAuto)
SVF t+3 : Cook

F (t + 3, ServeInAuto + Cook)

Client wants
a burger

11:30 am
(t + 3)

11:26 am
(t + 3)

Client pay his burger and goes out

SVF t+4 :

Serve in
Establishment . . .

Serve in
Auto

Serve in
Establishment

Core

Cook

Serve in Auto and Establishment and Cook

Serve in
Cafeteria

Serve in
Establishment

Core

Serve in Cafeteria and Establishment

Serve in
Auto

Serve in
Establishment

Core

Serve in Auto and Establishment

Figure 3. Fast-food restaurant Product Evolution Model BPMN Compositions

time t+1 by means of applying the FΔ using a PEM model.
As shown in the figure, there exists two different products.
The first product is composed by the set of features CF and
SV Ft. FΔ in t fires an evolution at t + 1 which implies the
creation of the second product. This product is also com-
posed by CF , since it never changes, and SV Ft+1 which is
different than previous SV Ft.

In order to illustrate PEM and the rest of the paper, we
use a case study of a fast-food restaurant. Figure 2 de-
picts a simplified set of features pertaining to a fast-food
restaurant: Serve Normal: which is defined as the normal
activities for serving products in the restaurant, Serve Fast:
which is defined as the activities needed for serving prod-
ucts in the restaurant when there exists a higher demand,
and Serve in Establishment: which is defined as the activi-
ties for serving products performed only into the establish-
ment. These features are CF and the rest are V F . In Figure
3 we present the PEM of this case study. Each state contains
a BPMN state chart that represents how all the features are
performed. It defines the evolution of the business at run-
time showing that in every runtime instant t there exists a
different SV F selected. For example, on a time instant t the
restaurant opens its cafeteria service. In this moment, there
exists two different processes running in parallel: Serve in
Cafeteria and CF (Serve in Establishment Normal/Fast).

When the restaurant closes its cafeteria service on time in-
stant t + 1,e.g. 10:00 am, the FΔ function is applied and
an evolution is performed to another state, that represent a
different product, composed only by CF . After that, the
restaurant opens its Auto-Service, because a client has ar-
rived with his car at t + 2. When this client orders a burger,
the Cook subprocess is enabled, what happens in time in-
stant t + 3. When the burger is served, the system evolves
to time instant t + 4.

4 Visualisation of Runtime Variability in BIS

Process engineers need support for improving the pro-
cesses by means of visualising and analysing the execution-
time traces of business evolutions. For that purpose we pro-
vide a single view that illustrates all the transition from one
product to another in certain moment. We use UML Timing
Diagrams to represent this information. Timing diagrams
are one of the new artifacts added to UML 2.0 which are
used when the goal of the diagram is to reason about time.
We call this view the Business Dashboard.

UML provides two different representations of timing di-
agrams: (i) State or (ii) General value. Both representations
contain events and constraints that represent stimuli for an
evolution. In Figure 6, we have included an example of each

Proceedings VaMoS'08

154

��������	
�����
����	

��	���	

���	���	������	

�������		

�������	
����	

�	 ����������	�	
�������	

�������	�	 �����������	�������	���	

�������������	�������	�	

Figure 4. Rigorous Description of PEM and
Timing Diagram Correspondence

. . . A

t + K

B
F (t, SVF t)

X

. . .

B

A

Ti
m

eL
in

e

t t + k

X or { X }

td Business State Timeline

B
us

in
es

s

. . .

. . . Ti
m

eL
in

e

t t + k

X or { X }

td Business Value Timeline

. . .

A B.

P
ro

du
ct

 E
vo

lu
tio

n
M

od
el

U
M

L
2.

0
Ti

m
in

g
D

ia
gr

am
s

Figure 5. Obtaining Timing diagrams from
Product Evolution Model

view. As shown in figure, the representation called State fo-
cuses on showing every evolution, while the representation
called General value, focuses on each product instead of
an implicit representation of an evolution. Given the char-
acteristics of each view, the second representation, General
value, is more adequate for software product lines where the
number of products is high, while the first, State, is more
adequate for software product lines where the number of
products is low since evolutions are shown graphically.

Using the rigorous description defined previously in Sec-
tion 3.1, we provide the correspondence between the infor-
mation managed in PEM and timing diagrams. Figures 5
and 4 show the equivalence between a PEM and a timing
diagram. As shown, each product modeled, using PEM,
obtained from the application of the FΔ function is equiva-
lent to a state in a timing diagram. Notice that each FΔ is
performed in a time instant t + k; k ≥ 0 when a trigger X
holds. Notice that in timing diagrams, X denotes an unpre-
dictable trigger, and {X} a predictable trigger. See Figures
4 and 5 for an example of both kind of triggers. In PEM
there is no difference between unpredictable and predictable
triggers, since unpredictable only appears at execution-time
and PEM is a design-time model.

State 3

State 2

State 1

Ti
m

eL
in

e

8:00 am 9:00 am 10:00 am 11:00 am 12:00 am 13:00 am

{ Cafeteria Service closes
at 10:00 am}

A client has arrived
to Auto-Service

td Fast-Food Restaurant State Timeline

State 1: Serve in Auto and Establishment
State 2: Serve in Cafeteria and Establishment
State 3: Serve in Establishment
State 4: Serve in Cafeteria and Establishment and Cook

Ti
m

eL
in

e

8:00 am 9:00 am 10:00 am 11:00 am 12:00 am

{ Cafeteria Service closes
at 10:00 am}

A client has arrived
to Auto-Service

td Fast-Food Restaurant Value Timeline

State 2 State 3

State 4

Client wants
a burger

Client pays his
burger and goes
out

State 1: Serve in Auto and Establishment
State 2: Serve in Cafeteria and Establishment
State 3: Serve in Establishment
State 4: Serve in Cafeteria and Establishment and Cook

State 3

Client wants
a burger

Client pays his
burger and goes out

State 1
State 4

Figure 6. Visualising fast-food restaurant
evolutions by means of UML 2.0 Timing di-
agrams

Figure 6 shows the timing diagrams of an execution trace
of our case study. Each product is denoted by a state num-
ber. As shown in Figures 3 and 6, there exist four evolu-
tions: (i) from product denoted by State 2 to another de-
noted by State 3 (FΔ in t), which represents the predictable
trigger: Cafeteria Service closes at 10:00 am. This implies
an exclusion of Serve in Cafeteria feature from our prod-
uct; (ii) from State 3 to State 1 products (FΔ in t + 1) that
is performed when a client arrives to Auto-Service. This
unpredictable trigger fires the second evolution that implies
that feature Serve in Auto must be added or enabled in the
new product; (iii) from State 1 to State 4 products (FΔ in
t+2) when a client wants a burger, that implies that feature
Cook must be added in the new product; and finally (iv)
from State 4 to State 3 (FΔ in t + 3) when client pays his
burger and goes out.

In order to validate our approach, we have developed
an automated transformation from a PEM execution trace
to a timing diagram, concretely to State representation, us-
ing gnuplot1, a command-driven interactive function and
data plotting software. In Appendix we present an screen-
shot of the timing diagram of our case-study obtained using
this transformation.

1http://www.gnuplot.info/

Proceedings VaMoS'08

155

5 Roadmap for Research on Analysis

As shown previously, once runtime variability is visu-
alised by means of timing diagrams, process engineers need
to evaluate execution-time properties of the business. There
are many basic analysis questions that can be performed, for
example:

• Find constraints and events that fire a subprocess and
calculate its relative frequency, i.e: How many times a
client arrives in Auto-Service?

• Calculate relative frequency of the activation of a sub-
process, i.e: How many times Serve in Cafeteria sub-
process is executed?

• Analyse processes bottlenecks, i.e: Which is the activ-
ity with the lowest level of performance?

These kinds of questions are usually supported by current
software tools for business process management and by the
Process Mining approach [4][13][10]. They are focused
only on analysing single/isolated subprocesses. However,
given that PEM and PFE are based on SPL, there exist other
analysis questions that may be supported providing higher
level views for analysing the features, as for example:

• Analyse for each product: cost, risk and benefits.i.e:
Which is the percentage of benefits of product "State
1"?

• Compare the performance of a certain feature when
running in different products (dependencies with other
features, events and/or constraints may affect the per-
formance). i.e: earning rate of product defined by state
1 is less than earning rate of product defined by state
2 on Fridays when it is executed in parallel with the
Serve in Auto-Service feature.

For arranging this research problem we propose two ar-
tifacts: (i) a metamodel for arranging and determining the
needed information for supporting the analysis questions
presented previously, which includes business process man-
agement support for current analysis questions, and (ii) a
conceptual framework for future research on analysis which
specifies how future research lines are related and may be
conducted.

5.1 Analysis Metamodel

In this section we show the metamodel for arranging
and determining needed information for supporting analysis
questions presented previously. Figure 7 shows the meta-
model that contains the following elements:

• Business Process Management package: it provides
business process definition and represents the support
for basic analysis questions provided by current tools
for business process management.

• Analysis Metamodel package:

– Business Configurations: states in timing dia-
gram are considered business configurations rep-
resented by the Business Configuration meta-
class. Each configuration contains a set of busi-
ness processes which are modeled by means of
the Business Process metaclass. It can be spe-
cialized to the Core Business Process or Vari-
able Business Process metaclasses, previously
denoted as CF and V F in the PEM definition.

– Predictable and Unpredictable Triggers: these
elements drive the evolutions of business config-
uration. They are modeled by the Predictable,
and Unpredictable metaclasses.

– Financial Information: Each business configu-
ration has an associated cost, represented by the
Financial Information metaclass, where we may
add additional information about it; i.e: "Serve
in Establishment process has an associated hu-
man resources cost of two employees" state-
ment can be modeled by an association between
the Business Process and Financial Information
metaclasses instances, which attributes of second
metaclass type, value and unit are initialised to
"human resource", "2", and "employees" values
respectively.

• Dependency Metamodel package: Business pro-
cesses has associated a set of dependencies between
them which are modeled by means of the Dependency
metaclass. As shown in figure 7, the metaclasses in
the Dependency package are based on Botterweck et
al.’s metamodel for supporting feature configurations
by interactive visualisation [2].

5.2 Conceptual Framework for Research
on Analysis

For materializing these analysis operations we propose a
conceptual framework for research on analysis based on fil-
tering and analysing evolutions to perform queries using the
information on the metamodel presented previously. Figure
8 shows it using a stereotyped association, «uses», between
the framework and our analysis metamodel. The framework
also takes into account a representation for a Product Evo-
lution Model and timing diagrams.

We have divided the elements included in the framework
into those that can be implemented using our current results,

Proceedings VaMoS'08

156

Dependency

MutualExclusion MutualProblematic

*

1
+ dependencies

DirectedDependency

Requires InfluencesRecommends

BusinessProcess

+target 0..1

+ source 0..1

*
*

UndirectedDependency

+ relatedBusinessProceses
*

*

Triggers

Predictable Unpredictable

FinancialInformation
- type: Type
- value: Real
- unit: Unit
- percentage: Boolean

+ cost

*

*

<< enumeration >>
Type

<< enumeration >>
Unit

CoreBusinessProcess

VariableBusinessProcess
Dependency Metamodel from [2]

<< includes >>

Business Process
Management

Analysis Metamodel

Analysis Questions supported:
Analysis Questions supported:
- Analyze for each business configuration: cost, risk, benefits

- Analyze business process benefits associated

 to another artifact

- Relative frequency of the apparition of each configuration

- Find constraints and events which implies business evolutions

...

Business Configuration guided by

Artifacts

Product

Feature

CF

VF

Figure 7. Proposed metamodel for analysing runtime variability in BIS (partially based on [2] meta-
model)

labeled as ’implementation’, and those that require for some
research effort, labeled as ’research’:

• For visualising variability:

– Artifact Factory (Implementation): Process en-
gineers need to visualise evolutions. Evolutions
are represented by means of Timing Diagram
components. The component called Artifact Fac-
tory allows process engineers to generate timing
diagrams from a business process modeled by
means of Product Evolution Model using the in-
formation shown in the metamodel presented in
Figure 7. PEM is represented by BPMN Product
Evolution Model component. Notice that for ob-
taining PEM we need the core features which are
obtained using FAMA [1]

• For analysing variability:

– Filter (Research): Process engineers can be in-
terested in performing analysis questions about
only one part of the timing diagram. For that pur-
pose, the Filter component must provide query
operations on BPMN Product Evolution Model
and Timing Diagrams. The definition of these
operations could be based on formalisms, such
as Constraint Satisfaction Problem (CSP), Tem-
poral Logic, Petri nets, etc. This is one of the
possible future research lines, as shown in Figure
8

– Analyser (Research): As shown previously, pro-
cess engineers need to perform analysis ques-
tions in order to improve their company. For
that purpose the Analyser component should per-
form all possible analysis questions or operations
from artifacts represented by Timing Diagram
and BPMN Product Evolution Model compo-
nents (the information shown in the metamodel).
These operations can be grouped as basic oper-
ations, i.e:obtain business process dependencies
and complex operations obtained by means of ba-
sic operations combinations, i.e: obtain financial
information about all possible business processes
dependencies. This represents another future re-
search line.

6 Related Work

The Business Process Mining field, or Process Mining
for short, is focused on extracting information about pro-
cesses using execution traces [4][13][10]. For that purpose,
these approaches provides some visualisation artifacts and
frameworks for the automated analysis. Although this field
is the most realted with the topic of this paper, there not ex-
ist any approach that support BISs based on product lines.
Thus, these approaches cannot address the analysis ques-
tions provided by our approach and cannot represent the in-
formation on evolutions provided by our approach.

As shown in Section 3.2, feature models (FM) are one

Proceedings VaMoS'08

157

Analysis

Analyzer

TimingDiagram

ITimingDiagram

ArtifactFactory

BPMNProductEvolutionModel

IProductEvolutionModel

IArtifactFactoryIVisualization

IAnalyzer

Filter
IFilter Financial Analyzer

Feature Model
Analyzer

Framework FAMA

Future research items Existing itemsCurrent research items

Visualization

Visualization and Analysis Framework

Analysis
Metamodel

<< uses >>

Figure 8. Runtime Variability Visualisation and Analysis Framework

of the most used artifacts for modeling variability. Unfor-
tunately, as shown in Section 3.2, FM are devoted to de-
sign variability, and not for runtime variability [5]. There
exists three approaches, to the best of our knowledge, that
describes how to represent runtime variability in SPL.

First, J. Bosch et al. [7] introduce an extension of FM for
representing runtime variability. Bosch’s notation is slightly
different from FODA’s or FORM’s notation. They introduce
a new kind of feature for representing features that vary at
runtime, called external feature, represented by means of a
dashed rectangle. Figure 9 depicts an example of a feature
model using this notation that represents the plugin support
provided by the Firefox web browser. It represents that there
exists one feature called Website Debugger, that can be en-
abled/disabled at runtime. As can be observed, the trigger
events or conditions that fire this variability can not be rep-
resented with this approach, i.e: plugin Website Debugger
is enabled at runtime only in websites with domain US.ES.

Sinnema et al. [12] propose a framework for modeling
variability in SPL, called COVAMOF 2, which proposes
a language for describing variation points named COVA-
MOF Variability View Language (CVVL) that takes into
account enabling/disabling time. It is similar to the pre-
vious approach for representing runtime variability using in
CVVL the tag bindingtime. The CVVL code for Firefox
web browser example is the following:

<variationpoint id=Plugin>
...
<variants>

...

2www.covamof.com

<variant id=Website Debugger>
...
<bindingtime>runtime</bindingtime>

</variant>
</variants>
...

</variationpoint>

H. Gomaa et al. [6][5] propose a set of models for rep-
resenting runtime variability based on evolutionary recon-
figurable software architectures. The different versions of
an evolutionary system are considered a software product
line, where each version of the system is a product and the
reconfiguration is defined by a state machine that, for each
component, represents the steps that have to be performed
to evolve from a normal operation state to an inactive state.
Once inactive, the component can be removed and replaced
with a different version. Figure 10 depicts trigger events
in the state machine. It represents how an optional feature
named Beeper from a Microwave System feature model is
enabled or disabled at runtime.

For runtime variability management in BIS, that is the
focus of this paper, we have discussed in Sections 1 and
the following proposals: Process Family Engineering (PFE)
[11] and Product Evolution Model (PEM) [8] as a comple-
ment of PFE for representing a design model of runtime
variability in BIS properly. However, none of these ap-
proaches provide any visualisation or analysis artifact for
execution-time traces.

Given this state of art, to the best of our knowledge, there
does not exist any approach for visualising and analysing
runtime variability in execution-time of BIS using SPL
techniques. This situation motivates us to propose a future

Proceedings VaMoS'08

158

Beeper

MicrowaveControl

<< optional >>

BeeperComponent
<< output component >>

IBeeper
<< interface >>

{feature = Beeper}

+ initialize()
+ beep()

......

Microwave
System

ControlSystem

...

...

<< kernel >>
<< control component >>

Feature model viewComponent model viewState machine view

Active

Passivating

Passive

Inactive

Waiting for
Acknowledgement

Passivate
[Processing
Transaction]

Reactivate

Passivate
[Waiting for
Neighbor

Response]

Transaction
Started

Transaction
Aborted

Passive Acknowledgement
from all Neighbors

Transaction
Ended *

Transaction
Ended **

* At least one neighbor active
** All neighbors passive

Activate

Figure 10. Gomaa approach (Figure taken from [6])

Firefox

Plugin

Flash Java Website
Debugger

runtime

Feature

External Feature

or specialization

Figure 9. J. Bosch approach

research roadmap agenda and an approach for visualisation.

7 Conclusions and Future Research
Roadmap

The main motivation of this paper is to provide to process
engineers a first step toward an automatised visualisation
and analysis of runtime variability in BIS based on SPL.
For that purpose, we have explored the feasibility of using
PEM for visualising and analysing runtime variability. As
a result of our work we have proposed: (i) integration be-
tween PEM and a visualisation model based on UML 2.0
timing diagrams; (ii) a metamodel for arranging the infor-
mation needed for analysing runtime variability in BIS; and
(iii) a roadmap for research on analysing that can be used as

Figure 11. UML 2.0 Timing diagram obtained
by gnuplot

a research agenda for this topic.
We think that this field is quite interesting and future re-

search should be conducted. Thus the main research lines
that could be derived from our framework are the following:

• Visualisation: to perform alternative techniques of pro-
posed in this paper such as 3D representation, circle
graphs, etc.

• Analysis: to explore possible basic and complex op-
erations, obtained by means of basic operations com-
binations, for runtime business evolution execution-
traces in order to perform queries, filters and analy-
sis. As proposed in Section 5.2, the definition of these
operations may be done using several formalism, such

Proceedings VaMoS'08

159

as a Constraint Satisfaction Problem (CSP), Temporal
Logic, Petri nets, etc.

In addition, due to our work is highly related to the Process
Mining field, a survey of the techniques used in this field
may help to clarify the first steps to be performed in the
context of the future research lines identified

8 Acknowledgments

The authors would like to thank the reviewers of the
Second International Workshop on Variability Modelling of
Software-intensive Systems for their useful comments. We
would like also to thank Patrick Heymans and David Bena-
vides, whose comments and suggestions improved the pre-
sentation substantially.

References

[1] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés.
FAMA: Tooling a framework for the automated analysis of
feature models. In Proceeding of the First International
Workshop on Variability Modelling of Software-intensive
Systems (VAMOS), 2007.

[2] G. Botterweck, D. Nestor, C. Cawley, and S. Thiel. Towards
supporting feature configuration by interactive visualization.
In VISPLE’07: Proceedings of the 1st International Work-
shop on Visualization in Software Product Line Engineering
- collated with SPLC 2007.

[3] BPMI. Business process modeling notation BPMN version
1.0 - may 3, 2004. OMG.

[4] A. K. A. de Medeiros, C. Pedrinaci, W. M. P. van der
Aalst, J. Domingue, M. Song, A. Rozinat, B. Norton, and
L. Cabral. An outlook on semantic business process mining
and monitoring. In R. Meersman, Z. Tari, and P. Herrero,
editors, OTM Workshops (2), volume 4806 of Lecture Notes
in Computer Science, pages 1244–1255. Springer, 2007.

[5] H. Gomaa. Feature dependent coordination and adapta-
tion of component-based software architectures. In WCAT
’07: Proceedings of the 4th Workshop on Coordination and
Adaptation Techniques for Software Entities, 2007.

[6] H. Gomaa and M. Hussein. Model-based software design
and adaptation. In ICSEW ’07: Proceedings of the 29th
International Conference on Software Engineering Work-
shops, 2007.

[7] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion of
variability in software product lines. In WICSA ’01: Pro-
ceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA’01), 2001.

[8] I. Montero, J. Peña, and A. Ruiz-Cortés. Representing Run-
time Variability in Business-Driven Development systems.
In Proceedings of the Seventh International Conference on
Composition-Based Software Systems (ICCBSS08), 2008.

[9] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, September 2005.

[10] A. Rozinat, A. A. de Medeiros, C. Günther, A. Weijters, and
W. van der Aalst. The need for a process mining evaluation
framework in research and practice. In Proceedings of the
Third International Workshop on Business Process Intelli-
gence. (pp. 73-78). Brisbane, Australia: Queensland Uni-
versity of Technology.(2007).

[11] A. Schnieders and F. Puhlmann. Variability mechanisms
in e-business process families. In Proceedings of BIS ’06:
Business Information Systems, 2006.

[12] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. CO-
VAMOF: A Framework for Modeling Variability in Soft-
ware Product Families. In Proceedings of the Third Software
Product Line Conference (SPLC04), San Diego, CA, 2004.

[13] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Wei-
jters, B. F. van Dongen, A. K. A. de Medeiros, M. Song, and
H. M. W. Verbeek. Business process mining: An industrial
application. Inf. Syst., 32(5):713–732, 2007.

9 Appendix: gnuplot Experiment

In order to provide an experiment of automated transi-
tion from PEM to timing diagrams for visualising runtime
business evolution execution-trace, we have deployed our
case study PEM modeled by BPMN to a business process
execution engine and it has been translated to WS-BPEL.
We have developed two basic web services for represent-
ing choreography interaction between business process ac-
tors and we have executed it obtaining a runtime execution
trace that has been stored in a file denoted as "fast-food-
restaurant.dat". The following gnuplot script takes this file
as input for plotting the timing diagram shown in Figure 11.

1 #**
2 # fast-food-restaurant.dem
3 # Author:
4 # Ildefonso Montero Pérez - monteroperez@us.es
5 # Dpto. Lenguajes y Sistemas Informáticos
6 # Av. Reina Mercedes s/n, 41012 Seville (Spain)
7 # University of Seville
8 # Description:
9 # A gnuplot script to represent an UML 2.0
10 # timing diagram of Fast-food restaurant
11 # Product Evolution Model
12 #**
13 set title "Fast-food Restaurant Business
14 Evolution\n(18/06/07)"
15 set style data steps
16 set xlabel "Date"
17 set timefmt "%d/%m/%y\t%H%M"
18 set xdata time
19 set xrange ["18/06/07\t0800":"18/06/07\t1259"]
20 set ylabel "States"
21 set format x "%d/%m\n%H%M"
22 set grid
23 set key left
24 plot ’fast-food-restaurant.dat’ using 1:3 t ’ ’, \
25 ’fast-food-restaurant.dat’ using 1:3 t
26 ’ Time-Evolution’ with points
27 pause -1 "Hit return to continue"
28 reset

Proceedings VaMoS'08

160

Previously published ICB - Research Reports

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im
Geschäftsprozessmanagement-Kreislauf"

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Software"

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the
‚Relevance Debate’

No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik:
Schritte der Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An
Analysis of Model Curricula”

No 16 (May 2007)
Müller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and
Mainframe Capacity Planning”

No 15 (April 2007)
Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT-Professionals –
Analyse und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden
für Softwarearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext
serviceorientierter Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an
Application to Markovian Process Algebras”

No 11 (February 2007)
Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben des
IT-Managements – Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender
Lehrbücher der Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Qualifizierung
des wissenschaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

Previously published ICB - Research Reports
No 8 (February 2007)

Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag für ein
Forschungsprogramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information
Systems Research”

No 6 (April 2006)
Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten – Ein
Diskussionsbeitrag”

No 5 (April 2006)
Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik
discipline: An interpretive evaluation of interviews with renowned researchers, Part III –
Results Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik
discipline: An interpretive evaluation of interviews with renowned researchers, Part II –
Results Information Systems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik
discipline: An interpretive evaluation of interviews with renowned researchers, Part I –
Research Objectives and Method”

No 1 (August 2005)
Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und -
methoden in Wirtschaftsinformatik und Information Systems“

�������	
	�	���
���
���	�����
������������
��������
���	

�����	������������
��	����	�	�����������������
�����
��	���	
���������

����	����
���
������
����
���	�����
���������
���	

�����	������������������
���	

�� ��������	!��������������������
���

�
"������
���������
���#���	
��$

%
���
���
��
���	

��"
�
	����
��	���&�'$������������	
���
	������� ���(�)*+,-.//,

0��������1�
��

���������������������������
���
���	

�����	�����
��2�
���	

������3����	

��
 ��������	

������������������
	
 ������� ��������	���
�����4�3����	

���0�������

�����������������������
2�
�������	��5
�
�	
����������
���	

�� ��������	

���������� ��!
����
6������'
�
	��
���
���	
������	���

����������"��!	
#��
���
���	

�����	���������
�	��������
����
��

����������$�����
#
���
���	

�����	����������	����
���
����
��

����������%��&���	
#�
����
�
��	

��
���
�	��������	���

����������'��(�
�
���
���	

�����	����������	����
����
����
��	

�����	���

����������)�� �����

�-���
����������-��	�����������
�

����������*��%+��������������

���	����
����
��

���������� ������
�
�	��������	�������
����
��

����������,
���!��'������
�
���	���(�	�
�7
��������
�
��

�������������"
��	��
2��"��
"���
���	
��

����������'��$
��
�
6�	�� ��������	����	��������8�
�������0�������	�	

�

����������"��-�����#	
���	
	�	��
��2�
���	

�����������	�
������
���	

�� �������	

�
���0���������
�
��

�-5����
����8�
������� ��������	���7
��- ��������	�
�
����	

�����	
�
�
�����	���
�����

���
���	

�����	��������3����	

���0������������
����
��	���
�������6�	��&����
��
��

�-���
�������-2�
�������	���-1
"������	

6������'
�
	��
���
���	
������	���

2�
�����
�������
�	����-����
	��	����

��	����
���
����
������	����
�������
��	

����	����	

��
��� ��������	��8�
������� ��������	

6
�	�
'�	������	������
�	������
��
���	������&

2�
������6�	��������	����	

�� ��������	�����	
���
0���	

���
�� ��������	

�-���
������������
���	

�� ��������	��-��	�����������
�4
�-9��	�����9
�	���� ��7�	�����������
'
����
��������3��
��-
 ��7�	
��

2���
��������"����	

��
���
���	��������
����
��	

�
���	�����
����
��������
����	

�

0�:�
�����	�����
����
�����
�	�����;���
	������������
�
�	����-����
	��	�������"����	

��
���3��43�����
����-
�
��
���	�

�
���	���(�	�
�7
��������
�
��

2��"��
"���
���	
����<�
:�
	
����
���	
������	
�
	
"��<���
��	���������(
"�����	����	

�������
�
�
�����
�	�#	-�����
�
���	
��

6�	�� ��������	����	
�
�
�����	���
��������
�	��������
����
���
��	����	������������
��

�����	�
������
�����2�
�����������
"�	

�� ��������	�
���
���	

�� ��������	����
�
�
����������

