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Abstract. In order to study relative PCF-definability of boolean func-
tions, we associate a hypergraph Hf to any boolean function f (following
[3, 5]).
We introduce the notion of timed hypergraph morphism and show that
it is:

– Sound: if there exists a timed morphism from Hf to Hg then f is
PCF-definable relatively to g.

– Complete for subsequential functions: if f is PCF-definable relatively
to g, and g is subsequential, then there exists a timed morphism from
Hf to Hg.

We show that the problem of deciding the existence of a timed morphism
between two given hypergraphs is NP-complete.

1 Introduction

PCF is a simple, paradigmatic functional programming language, defined by D.
Scott in his seminal paper [11], a milestone in the area of denotational semantics.

Following Scott, Plotkin studied in [8] the relationship between operational
and denotational semantics of PCF. The main results of [8] may be summarized
as follows:

– The Scott model of PCF is adequate with respect to contextual equivalence.
– The model is not complete, due to the presence of non-definable, “parallel”

functions.
– All the (algebraic) elements of the model become definable if a parallel con-

ditional statement is added to the language.

Since then, a lot of work has been devoted to the search of a satisfactory semantic
characterization of the notion of PCF-definable function (see [2] for a survey).
We have now a number of different notions of sequentiality, and all of them
characterize exactly PCF definability for first order functions.

In this paper, we study the relative definability problem for Finitary PCF
(FPCF) with respect to its Scott model. FPCF is the finitary fragment of PCF:
it has a single ground type B, the corresponding constants ⊥, tt, ff, and just
one more constant, the if− then− else.



The Scott model of FPCF is the finite type hierarchy where JboolK is the flat
domain of boolean values, and Jσ → τK is the set of monotonic functions from
JσK to JτK, ordered pointwise. FPCF-terms are interpreted in the standard way
in this model, and in particular, for every closed term M : σ, JMK ∈ JσK.

An instance of the relative definability problem is a pair f ∈ JσK, g ∈ JτK,
and a solution is either a term M : τ → σ such that JMKg = f , or a proof that
such a term does not exist (when M does exist, we say that f is less parallel
than g, and we write f ≤par g).

Conceptually, the relative definability problem for the finitary fragment of
PCF is settled: we know that it is undecidable in general [7] and decidable for
functions of order 1 or 2 [12].

Nevertheless, decidability results may be not completely satisfactory: from a
theoretical point of view, we still lack a characterization of the poset of degrees of
parallelism (i.e. equivalence classes of inter-definable functions, noted [f ]) which,
even in the decidable case, is rich and complex [3, 9].

In this paper, we give a complete, geometric characterization of relative de-
finability for “subsequential”, first-order functions; the exact correspondence we
establish between geometric objects (a particular kind of hypergraph morphisms)
and computational ones (the terms solving relative definability problems), is, we
believe, interesting in itself.

Moreover, our analysis of relative definability problems provide a simple way
of choosing, among the terms solving a given instance, an “optimal” one (for
instance, a term defining f with as few calls of g as possible).

1.1 Related Work

The study of degrees of parallelism was pioneered by Sazonov and Trakhtenbrot
[10, 14] who singled out some finite subposets of degrees. Some results on degrees
are corollaries of well known facts: for instance Plotkin’s full abstraction result
for PCF+por implies that this poset has a top. The bottom of degrees is the set
of PCF-definable functions which is fully characterized, for first order functions,
by the notion of sequentiality (in any of its formulations). Moreover Sieber’s
sequentiality relations [12] provide a characterization of first-order degrees of
parallelism and this characterization is effective: given f and g one can decide
if f ≤par g. A. Stoughton [13] has implemented an algorithm which solves this
decision problem. R. Loader has shown that the problem of deciding if a given
continuous function(al) is PCF-definable, is undecidable [7]. As a consequence,
the relation ≤par is undecidable in general (at higher-order), since, if g is PCF-
definable and f continuous, then f is PCF-definable if and only if f ≤par g.

In [3], the first author investigates the poset of degrees of parallelism using
categories of hypergraphs for representing boolean function. The starting point
of the investigation was the observation that the trace of a function f (i.e. the
subset of the graph of f whose first projection is the set of minimal points
on which f is defined) can be turned into a hypergraph Hf , in such a way that
hypergraph morphisms from Hf to Hg are “witnesses” of the inequality f ≤par g.
In particular, a rich subposet of degrees for which the hypergraph representation



is sound and complete is singled out in [3]. If [f ], [g] belong to that subposet
f ≤par g holds if and only if there exists a morphism from Hf to Hg. In [5] P.
Malacaria and the first author showed a general result about hypergraphs and
degrees: if there exists a morphism from Hf to Hg, then f ≤par g. However, for
the notion of hypergraph morphism they used (the standard one, based on the
preservation of hyperarcs), no general completeness result seems to hold.

1.2 Plan of the Paper

In this paper we introduce a weaker notion of hypergraph morphism (the timed
morphisms) and we show that it is sound in general, and complete for subsequen-
tial functions (i.e. for functions which have a sequential upper bound). The proof
of soundness presented in [5] goes through for the framework of timed morphisms
with some very minor changes. The proof of completeness is an application of
Sieber’s sequentiality relations.

In Section 2 we introduce the notions of hypergraphs representing boolean
functions and of h-morphisms between them (h-morphisms were called “weak”
in [5]; since timed morphisms are weaker, we change the terminology here). In
Section 3 the “timed” hypergraph morphisms are defined, and we show by some
examples how they behave as boolean function transformers. In Section 4, we
recall some useful properties of subsequential functions. Sections 5, 6 and 7 are
devoted to the proof of soundness and completeness of timed morphisms w.r.t.
the relation ≤par. Finally, section 8 sketches a few complexity considerations.

2 Hypergraphs and h-Morphisms

We denote by B the flat domain of boolean values {⊥, tt, ff}. Tuples of boolean
values are ordered in the product order. Given a monotone function f : Bn → B,
the trace of f is defined by

tr(f) = {(v, b) | f(v) = b 6= ⊥ and v minimal}

We note the first and second projection π1 and π2. In particular, π1(tr(f)) is
the set of minimal points where f is defined.

A subset A = {v1, . . . , vk} of Bn is linearly coherent (or simply coherent)
if for all 1 ≤ i ≤ n either ∃1 ≤ j ≤ k, vi

j = ⊥, or ∀1 ≤ j, j′ ≤ k, vi
j = vi

j′ .
The set of coherent subsets of Bn is denoted C(Bn). The coherence is related to
sequentiality: if f is a n-ary boolean function, and π1(tr(f)) is coherent, then f

has no sequentiality index and it is not PCF-definable. Actually f is definable if
and only if no subset of π1(tr(f)) is coherent.

The following easy property of the coherence will be useful:

Fact 1 If A ∈ C(Bn) and B is an Egli-Milner lower bound of A (that is if
∀x ∈ A∃y ∈ B y ≤ x and ∀y ∈ B∃x ∈ A y ≤ x) then B ∈ C(Bn).

Definition 1. A colored hypergraph H = (VH , AH , CH ) is given by:



– a finite set VH of vertices,
– a set AH ⊆ {A ⊆ VH |#A ≥ 2} of (hyper)arcs,
– a coloring function CH : VH → {ff, tt}.

Definition 2. Let f : Bn → B be the n-ary function defined by tr(f) =
{(v1, b1), . . . , (vk, bk)}. The hypergraph Hf is defined by

– VHf
= π1(tr(f)),

– AHf
contains the coherent subsets of π1(tr(f)) with at least two elements,

– CHf
(vi) = bi

One can check that the hypergraphs associated to monotone functions by the
definition above (functional hypergraph) verify the following conditions:

H1 : If {x, y} ∈ AH then CH (x) = CH (y).
H2 : If X1, X2 are hyperarcs and X1 ∩ X2 6= ∅ then X1 ∪ X2 is a hyperarc.

Definition 3. A h-morphism from a hypergraph H to a hypergraph K is a func-
tion m : VH → VK such that:

– For all A ⊆ VH , if A ∈ AH then m(A) ∈ AK .
– for all X ∈ AH , if x, x′ ∈ X and CH(x) 6= CH (x′) then CK(m(x)) 6=

CK(m(x′)).

Colored hypergraphs and h-morphisms form a category, H. In [5], it has been
proved that, if there exists a h-morphism from Hf to Hg , then f ≤par g. The
problem of finding a weaker notion of hypergraph morphism, for which some
sort of completeness result would hold, was left open.

We give here the motivating example for the definition of timed morphisms.
Let por2 : B2 → B and por3 : B3 → B be defined by

por2(x, y) =

{

tt if one of x, y is tt
⊥ otherwise

por3(x, y, z) =

{

tt if one of x, y, z is tt
⊥ otherwise

The associated hypergraphs are:

⊥tt

tt⊥

⊥⊥tt

⊥tt⊥

tt⊥⊥

It is easy to see that there exists no h-morphism m : H3 → H2. Nevertheless
por3 ≤par por2, since for instance por3 = JMKpor2 where

M = λf λx1x2x3 if f(f(x1, x2), x3) then tt else ⊥

The tree of nested calls to f in M (the nesting tree of M), where the nodes are
the occurrences of f , and the links are the arguments of f , is:



Actually, the nesting of calls to f in the term which defines por3 with respect
to por2 is necessary. By looking at the way M “maps” the minimal points of
por3 onto the ones of por2, we realize that at the outermost level (tt,⊥,⊥) and
(⊥, tt,⊥) are both mapped on (tt,⊥), while (⊥,⊥, tt) is mapped on (⊥, tt).
The internal call of f maps (tt,⊥,⊥) on (tt,⊥) and (⊥, tt,⊥) on (⊥, tt).

3 Timed Morphisms

The idea is the following: morphisms should be able to “collapse” a hyperarc on
a singleton, provided that we have another morphism mapping this hyperarc on
a hyperarc. More precisely, we want a finite sequence of morphisms m1 . . . ml

with domains Di ∈ AH , such that if mi collapses an hyperarc B, there exists
mi+k with domain B. In the proof of soundness, each step in the sequence will
appear as a nesting in the term.

For our example, the sequence corresponding to M is :

⊥⊥tt

⊥tt

tt⊥

⊥tt⊥

tt⊥⊥

⊥⊥tt

⊥tt

tt⊥

⊥tt⊥

tt⊥⊥

In general, by looking at the morphism from Hf to Hg , one can easily see the
nesting of calls to the defining function g (and then build a term quite easily).
First, we spot the vertices of Hg corresponding to each argument of g1: tt,⊥
for the first argument, ⊥, tt for the second. Then, we know how to organize the
nested calls to g: if we collapse an hyperarc X on the vertex corresponding to
the argument i, we put a call to g at argument i, which will be defined by the
morphism with domain X .

It should be noticed here that, in the general case, one cannot associate ver-
tices of Hg to arguments of g. Nevertheless, as shown in the proof of soundeness,
the existence of a timed morphism from Hf to Hg allows us to construct a term

1 In the general case, one cannot associate vertices to an argument. In our example
por

2
, this is obvious. For more details, see the proof of soundness.



g-defining f , in general, even if the construction is more complicated than the
one sketched above.

Another exemple: let f(x, y) be tt whenever x or y is defined, and ⊥ else-
where. Hf is

⊥tt

tt⊥

ff⊥

⊥ff

The only subsets that are not coherent are {tt⊥, ff⊥} and {⊥tt,⊥ff}. In the
following, we will not put the hyperarcs again. Here is a timed morphism from
Hf to H2, and the corresponding term λgλxλyM defining f with por2:

tt⊥

ff⊥

⊥ff

⊥tt ⊥tt

tt⊥

M = g(if y then ⊥ else tt, N)

tt⊥

ff⊥

⊥ff

⊥tt ⊥tt

tt⊥

N = g( P, if x then ⊥ else tt)

tt⊥

ff⊥

⊥ff

⊥tt ⊥tt

tt⊥

P = g(if y then tt else ⊥, if x then tt else ⊥)

The corresponding tree is:

but one can also easily find morphisms (and terms) for these nesting trees (and
for some others, too):



The leftmost nesting tree corresponds to the “natural” solution to this rela-
tive definability problem, namely:

λgλxλy g(if x then tt else tt, if y then tt else tt)

Timed morphisms are sequences. For a given problem, shorter sequences cor-
respond to terms with smaller depth, w.r.t. the nesting of calls of g. Timed
morphisms provide a handy tool for constructing these optimal solution.

Actually, we give a more abstract, equivalent definition of timed morphisms.
We will argue that the two notions coincide after the following couple of defini-
tions.

Definition 4. Let H = (VH , AH , CH) be a (functional) hypergraph.

– The timed image of H, H is defined by: V
H

= VH , C
H

= CH and A
H

=
AH ∪ {{v} | v ∈ VH}.

– Let B⊆VH . H|B is the sub-hypergraph of H defined by:







VH|B
= B

AH|B
= {X ∈ AH | X ⊆ B}

CH|B
= (CH )|B

Given two functional hypergraphs H, K, we say that a morphism α ∈ H(H, K)
is non-trivial if #α(VH ) > 1.

Definition 5. Let H, K be functional hypergraphs. A timed morphism α ∈
T H(H, K) is a collection

{αX ∈ H(H|X , K)}X∈AH

where all the αA’s are non-trivial, and non-redundant in the following sense:

∀X ⊆ Y ∈ AH αY |X is non trivial ⇒ αX = αY |X

The intuitive description of timed morphisms in terms of sequences, given
in the examples of this section coincides with the definition above. Given a
sequence m = m1, ..., mk of h-morphisms from H to K, and a hyperarc X ∈ AH ,
define αm

X = mj
|X , where j is the smallest index such that mj

|X is non trivial.
Conversely, given {αX}X∈AH

we have to construct a sequence of morphisms

m1, . . . , mk from (restrictions of) H to K, such that if mi collapses an hyperarc
B, there exists mi+k non-trivial of domain B. Let {Ai}i∈I be the set of maximal
elements of VH (note that these are disjoint, H being functional); m1 is obtained
by “gluing” all the αAi

, i ∈ I . Now, letting {Ai}i∈J J = {j1, .., jl} be the
set of maximal elements of VH which are “collapsed” by m1, we define m2 =
αAj1

, ..., ml+1 = αA
jl

, and we proceed by considering the hyperarcs collapsed by

m2, ..., ml+1. By finiteness of H , iterating this construction we obtain a sequence
m1, .., mk obeying the definition of timed morphism in terms of sequences.

Timed morphisms compose componentwise (i.e. (α◦β)A = αβ(A)◦βA). To any
h-morphism m : H → K corresponds canonically the timed morphism defined
by αA = m|A.



4 Subsequential Functions

A monotone function f : Bn → B is subsequential if it is extensionally upper
bounded by a sequential (i.e. PCF-definable) function. As shown in proposition
6 subsequential functions correspond to hypergraphs with monochromatic hy-
perarcs and to functions preserving linear coherence. Such a class of functions
admits hence a natural characterization in order theoretic, graph theoretic and
algebraic terms.

Proofs of the statements of this section can be found in [5].

Proposition 6. Let f : Bn → B be a monotone function. The following are
equivalent:

1. f is subsequential.
2. For all A ∈ C(Bn), f(A) ∈ C(B). (i.e. f preserves the linear coherence of

Bn.)
3. If X ∈ AHf

then for all x, y ∈ X CHf
(x) = CHf

(y) (i.e. X is monochro-
matic).

Given a set A = {v1, . . . , vk} ⊆ Bn, there exist in general a number of
functions whose minimal points are exactly the elements of A. For instance,
if the vi are pairwise unbounded, there exist 2k such functions. The following
lemma states that, among these functions, the subsequential ones are those whose
degree of parallelism is minimal.

Lemma 7. Let f, g : Bn → B be such that g is subsequential and π1(tr(f)) =
π1(tr(g)). Then g ≤par f .

In section 5, we prove that if there exists a timed morphism α : Hf → Hg ,
then f ≤par g. The following lemma introduces a key notion toward that result,
namely that of slice function. The idea is the following: in order to reduce f :
Bm → B to g : Bn → B we start by transforming the minimal points of f into the
ones of g. This amounts to defining a function from Bm to Bn, that we describe
as a set of functions f1, . . . , fn : Bm → B. If these functions are g-definable, then
we can already g-define a function which is defined (that is, not equal to ⊥) if
and only if f is defined, namely

h = λx. g(f1x) . . . (fnx)

and we are left with the problem of forcing h to agree with f whenever it con-
verges.

For the time being we show that, if the fi’s are defined via a timed morphism
α : Hf → Hg, then they are subsequential, hence “relatively simple”.

Lemma 8. Let f : Bm → B, g : Bn → B be monotone functions and α : Hf →
Hg be a timed morphism. For B ∈ AHf

, 1 ≤ i ≤ n let fB
i : Bm → B be the

function defined by

tr(fB
i ) = {(v, αB(v)i)|v ∈ B, αB(v)i 6= ⊥}

Then fB
i is subsequential. We will call fB

i the ith−slice of αB.



5 Soundness

Timed morphisms are sound with respect to ≤par, in the sense expressed by the
following theorem:

Theorem 9. Let f : Bl → B, g : Bm → B be monotone functions such that
T H(Hf , Hg) 6= ∅. Then f ≤par g.

The proof is essentially the same is in [5]. The key point lies in the restriction
of morphisms to a hypergraph. In [5], the hypothesis was too strong: we only
need a morphism from this hyperarc to Hg , we do not need it to be a part of
the initial morphism from Hf to Hg. This generalization allows us to prove a
completeness result.

6 Sequentiality Relations

Definition 10 (Sieber). For each n ≥ 0 and each pair of sets A⊆B⊆{1, . . . , n}
let Sn

A,B⊆Bn be defined by

Sn
A,B(b1, . . . , bn) ⇔ (∃i ∈ A bi =⊥) ∨ (∀i, j ∈ B bi = bj)

An n-ary logical relation R is called a sequentiality relation if it is an intersection
of relations of the form Sn

A,B.

We define Sn,n+1 = Sn+1
{1,...,n},{1,...,n+1}.

We write






x11 . . . x1n

...
...

xm1 . . . xmn






∈ R

meaning that each row is in R. A function f : Bm → B is invariant under the
logical relation R of arity if, n whenever the matrix (xij)1≤i≤m,1≤j≤n is in R:

(f(x11, . . . , xm1), . . . , f(x1n, . . . , xmn)) ∈ R

Proposition 11. For any f : Bn → B and g : Bm → B continuous functions,
f ≤par g if and only if for any sequentiality relation R, if g is invariant under
R then f is invariant too.

Actually this is a relativized version of the main theorem of [12]: a continuous
function of first or second order is PCF-definable if and only if it is invariant
under all sequentiality relations.

Coherence is tightly related to sequentiality relations:

Lemma 12. Let A = {x1, . . . , xn} ⊆ Bm, and B be a subset of {1, . . . , n}.
{xi}i∈B is coherent iff (xij) ∈ Sn

B,B. Moreover, A is coherent iff:







x11 . . . x1n

∧

1≤i≤n x1i

...
...

...
xm1 . . . xmn

∧

1≤i≤n xmi






∈ Sn,n+1



These sequentiality relations are closely related to strong stability at first
order (see [4] for an overview on strong stability): f is strongly stable if it pre-
serves linear coherence (that is, f is invariant by the relations Sn

B,B), and f is
conditionally multiplicative: if A is coherent f(

∧

A) =
∧

a∈A f(a), (that is, f is
invariant for the relation Sn,n+1).

7 Completeness

Theorem 13. Let f : Bn → B and g : Bm → B be subsequential functions, such
that T H(Hf , Hg) = ∅. Then f 6≤par g.

Proof. The first remark is that T H(Hf , Hg) = ∅ if and only if there exists A ∈
AHf

such that there is no non-trivial morphism from Hf |A to Hg . Throughout

this proof, we restrict our attention to Hf |A, for such an A = {v1, . . . , vk}. Let

A1, . . . , Al be the arcs of H|A, and, for 1 ≤ j ≤ l, let Bj be the corresponding
set of the indices: Aj = {vi}i∈Bj

.
We consider the (k + 1)-ary sequential logical relation

SA = (∩1≤j≤lS
k+1
Bj ,Bj

) ∩ Sk,k+1

If we prove that g is invariant with respect to SA and f is not, we are done. Let
us start by proving that f is not invariant.

Let V = (v1, . . . , vk,
∧

1≤j≤k vj): by lemma 12, for 1 ≤ j ≤ l, V ∈ Sk+1
Bj ,Bj

and V ∈ Sk,k+1, i.e. V ∈ SA. On the contrary:


f(v1), f(v2), . . . , f(vk), f(
∧

1≤j≤k

vj)



 6∈ Sk,k+1

since the first k components of this vector are defined (the vj are in the trace of
f), and the last is ⊥ (

∧

vi can’t be above a vj). Therefore, this tuple does not
belongs to SA.

It remains to show that that g ∈ SA. Let us suppose by reductio ad absurdum
that there exists a matrix W = (w1, . . . , wk+1) ∈ Bm×(k+1) such that:

W ∈ SA and g(W ) = (g(w1), . . . , g(wk+1)) 6∈ SA

First, we note that, since W ∈ SA, for all 1 ≤ j ≤ l, W ∈ Sk+1
Bj ,Bj

, that is {wi}i∈Bj

is coherent, so {g(wi}i∈Bj
is coherent, and g is subsequential, which entails,

by proposition 6 and lemma 12, that g(W ) is invariant by Sk+1
Bj ,Bj

. Therefore,

g(W ) 6∈ SA means that g(W ) 6∈ Sk,k+1, that is, ∀j ≤ k, g(wj) 6= ⊥ and ∃j, j′ ≤
k + 1, g(wj) 6= g(wj′). Since g is subsequential and {w1, . . . , wk} is coherent
(lemma 12), ∀j, j′ ≤ k, g(wj) = g(wj′ ): there exists b ∈ {tt, ff} such that

∀j ≤ k, g(wj) = b and g(wk+1) =⊥

Hence any wj , for 1 ≤ j ≤ k, has at least a lower bound in π1(tr(g)), which we
denote by zj . We have:



– the set {z1, . . . , zk} is not a singleton, otherwise g(wk+1) = b, being wk+1 ≥
∧

1≤j≤k wj , by definition of Sk,k+1.
– for all 1 ≤ j ≤ l the set {zi}i∈Bj

is coherent, being an Egli-Milner lower
bound of the coherent set {wi}i∈Bj

(see fact 1).
– Last, by proposition 6, f being subsequential, CHf

is constant on A.

Hence the function α : A → Hg defined by αA(vi) = zi is in H(Hf |A, Hg), and

it is not trivial, a contradiction.

Remark that, if g is subsequential and f is not, then f 6≤par g, hence the
hypothesis of Theorem 13 could be weakened.

In order to see that completeness of timed morphisms fails in general, let us
consider the following monotone functions:















f(⊥, tt, tt, ff) = tt

f(ff,⊥, tt, tt) = tt

f(tt, ff,⊥, tt) = tt

f(tt, tt, ff,⊥) = tt






g(⊥, tt, ff) = tt

g(ff,⊥, tt) = tt

g(tt, ff,⊥) = ff

Since all subsets of Hf with at least three elements are hyperarcs, and Hg

is composed by a single ternary hyperarc, it is easy to see that there is no non
trivial h-morphism from the maximal hyperarc of Hf to Hg , and hence no timed
morphism from Hf to Hg . On the other hand f ≤par g, since the degree of g

(the “B-K function”) is the top of stable degrees ([6], p. 334), and f is stable.

8 On the Complexity of Weak and Timed Morphisms

Saturated hypergraphs are particularly simple functional hypergraphs, namely
those whose sets of arcs are closed by union.

We will reduce the set-splitting problem to the problem of the existence of a
h-morphism between two saturated hypergraphs; then we will reduce this latter
problem to that of the existence of a timed morphism between two saturated
hypergraphs.

Hence, we show that deciding the existence of both h-morphisms and timed
morphism between saturated hypergraphs are NP-hard problems.

On the other hand, deciding the existence of h-morphisms and timed mor-
phisms, in the general case, are NP problems, since checking that a given function
preserves hyperarcs is a polynomial task, and the guess of such a function is also
polynomial in the size of the hypergraphs.

Summing up, we show that deciding the existence of both h-morphisms and
timed morphism are NP-complete problems.

Let us start by defining the set splitting problem (see for instance [1], problem
number 37):



Instance: a set U and a family A1, ..., Ak of subsets of U .
Question: is there a (non-trivial) partition U = U1∪U2 such that Aj ∩U1 6= ∅

and Aj ∩ U2 6= ∅ , for all j?

Given an instance U, A1, ..., Ak of the set splitting problem, we may suppose
that for all i, j Ai 6⊂ Aj (otherwise we drop Aj , without altering the instance).

We define the saturated hypergraph H1, whose set of vertices is U and whose
minimal arcs are A1, ..., Ak, and the hypergraph 2 whose set of vertices is a pair,
say {0, 1}, and whose unique arc is {0, 1}.

Lemma 14. The given instance of the set splitting problem has a solution if
and only if there exists a h-morphism from H1 to 2.

Proof. If we have a h-morphism f : H1 → 2, we set U1 = f−1(0) and U2 =
f−1(1). By construction, U1 ∪ U2 = U , and for all i, f(Ai) = {0, 1} because Ai

is a hyperarc of H1, so U1 ∩ Ai 6= ∅ and U2 ∩ Ai 6= ∅.

Conversely, if U1, U2 is a solution, we define f : x 7→ j s.t. x ∈ Uj . f is a
h-morphism from H1 to 2: f is well-defined because U1 ∩ U2 = ∅, and if A is
a hyperarc of H1, then A = Ai for some i and since Ai ∩ Uj 6= ∅ (j = 1, 2),
f(A) = {0, 1} which is a hyperarc of 2.

We are left with the problem of reducing the existence of an h-morphism
between a saturated hypergraph and 2 to the existence of some timed morphism.

Given a saturated hypergraph H and ∗ 6∈ VH , let H∗ be the (saturated)
hypergraph defined by VH∗ = VH ∪ {∗} and AH∗ = {A ∪ {∗} | A ∈ AH} Let 3
be the hypergraph with three vertices, say {0, 1, 2} whose unique arc is the set
of vertices itself.

Lemma 15. Let H be a saturated hypergraph. There exists a h-morphism from
H to 2 if and only if there exists a timed morphism from H∗ to 3.

Proof. Let H be a saturated hypergraph.
First, if f is an h-morphism from H to 2, define, for B ∈ AH∗ ,

αB(x) =

{

f(x) if x 6= ∗
2 if x = ∗

{αB} is clearly a timed morphism from H∗ to 3.

Now, for the converse, let {αB} be a timed morphism from H∗ to 3. We have
to define a h-morphism from H to 2 which “splits” every arc of H .

The idea is the following: given two arcs A ⊂ B of H∗, we know that either
αB(A) = {αB(∗)} or αB(A) = {0, 1, 2}. In the latter case we can easily construct
a (partial) morphism from H to 2 which splits A\{∗}, in the former, there must
exist an arc C ⊂ α−1

B {∗} such that αC(A) = {0, 1, 2}. In any case any arc
will eventually be split. Gluing together all the (partial) splitting morphisms
obtained in this way gives us the result.

More formally, we define a decreasing sequence of arcs of H∗, as follows:



– A0 =
⋃

{A ∈ AH∗}
– An+1 =

⋃

{A ∈ AH∗ | A ⊆ α−1
An

{∗}}

For all n, such that An 6= ∅, An+1 ⊂ An, since αAn
is non-trivial. Let l0 be

the smallest index such that Al0 = ∅ (remark that l0 ≤ |AH∗ |, since at least one
arc is split at each stage).

Let
in = αAn

(∗)
jn = (in + 1) mod 3
kn = (in + 2) mod 3

We define two disjoint subsets of VH :

U1 =

l0−1
⋃

s=0

α−1
As

{js}, U2 =

l0−1
⋃

s=0

α−1
As

{ks}

It is not hard to check that U1, U2 split all the arcs of H ; le us define:

f(x) =

{

0 if x ∈ U1

1 otherwise

We check that f is an h-morphism from H to 2, i.e. that given A ∈ AH ,
f(A) = {0, 1}.

First, note that, for some n, A ⊆ An−1 and A 6⊆ An, since An is a decreasing
sequence. Moreover, 0 < n < l0, since A0 is the union of all the arcs of H∗, and
Al0 = ∅.

This means that αAn−1
(A∪{∗}) = {0, 1, 2}, hence A∩U1 6= ∅ and A∩U2 6= ∅.

Finally, f(a) = {0, 1} and we are done.

9 Conclusion

For a wide class of boolean functions (the subsequential ones) we are able to solve
relative definability problems in a geometric way, using a suitable representation
of functions as hypergraphs and PCF-terms as hypergraphs morphisms.

We can also list all the (sensible) terms solving a given problem f ,g, by
enumerating the timed morphisms from Hf to Hg , and choose, for instance, the
one which uses as few calls of g as possible (but other notions of optimality could
be considered).

A natural question is wether this approach can be extended to non subse-
quential boolean functions and/or to higher-order functions. We do not know at
present, but probably a combination of more complex representations of func-
tions as hypergraphs and of more involved notions of morphisms is required.

In section 8 we have seen that the problem of relative definability is in-
tractable in general; on the other hand, the algorithm of [13] can solve first
order definability problems in reasonable time in some cases; it could be worth
to compare the performances of the two approches.
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