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Abstract

By using a combination of 32-bit and 64-bit floating point arithmetic the per-
formance of many sparse linear algebra algorithms can be significantly enhanced
while maintaining the 64-bit accuracy of the resulting solution. These ideas can
be applied to sparse multifrontal and supernodal direct techniques, and sparse iter-
ative techniques such as Krylov subspace methods. The approach presented here
can apply not only to conventional processors but also to exotic technologies such
as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU),
and the Cell BE processor.

Infroduction

Benchmarking analysis and architectural descriptions reveal that on many commodity
processors the performance of 32-bit floating point arithmetic (single precision compu-
tations) may be significantly higher than 64-bit floating point arithmetic (double pre-
cision computations). This is due to a number of factors. First, many processors have

vector instructions like the SSE2 instruction set on the Intel IA-32 and IA-64 and AMD

Opteron family of processors or the AltiVec unit on the IBM PowerPC architecture; in
the SSE2 case a vector unit can complete four single precision operations every clock
cycle but can complete only two in double precision. (For the AltiVec, single precision
can complete 8 floating point operations per cycle as opposed to 4 floating point op-
erations in double precision.) Another reason lies in the fact that single precision data
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can be moved at a higher rate through the memory hierarchy as a result of a reduced
amount of data to be transferred. Finally, the fact that single precision data occupies
less memory than double precision data also means that more single precision values
can be held in cache than the double precision counterpart which results in a lower rate
of cache misses (the same reasoning can be applied to Translation Look-aside Buffers
— TLBs). A combination of these factors can lead to significant enhancements in per-
formance as we will show for sparse matrix computations in the following sections.
A remarkable example is the IBM Cell BE processor where the single precision float-
ing point arithmetic peak performance is more than an order of magnitude higher than
the double precision (204.8 GFlop/s vs 14.6 GFlop/s for the 3.2 GHz version of the
chip). The performance of some linear algebra operations can be improved based on
the consideration that the most computationally expensive tasks can be performed ex-
ploiting single precision operations and only resorting to double precision at critical
stages while attempting to provide the full double precision accuracy. This technique,
is supported by the well known theory of iterative refinement [1, 2], which has been
successfully applied to the solution of dense linear systems [3]. This work is an ex-
tension of the work by Langou [3] to the case of sparse linear systems, covering both
direct and iterative solvers.

2 Sparse Direct and lterative Solvers

Most sparse direct methods for solving linear systems of equations are variants of ei-
ther multifrontal [4] or supernodal [5] factorization approaches. There is a number of
freely available packages which implement these methods. We have chosen for our
tests the software package MUMPS [6, 7, 8] as the representative of the multifrontal
approach and SuperLU [9, 10, 11, 12] for the supernodal approach. Our main reason
for selecting these two software packages is that they are implemented in both single
and double precision which is not the case for other freely available solvers such as
UMFPACK [13, 14, 15].

Fill-ins, and the associated memory requirements, are inherent for direct sparse
methods. And although there are various reordering techniques designed to minimize
the amounts of these fill-ins, for problems of increasing size there is a point where
the memory requirements become prohibitively high and direct sparse methods are no
longer feasible. Iterative methods are a remedy because only a few working vectors
and the primary data are required (see for example [16, 17]).

Two popular methods on which we will illustrate the techniques addressed in this
paper are the conjugate gradient (CG) method (for symmetric and positive definite
matrices) and the generalized minimal residual (GMRES) method (for non-symmetric
matrices, see [18]). The preconditioned versions of the two algorithms are given cor-
respondingly in Tables 1 and 2 (the descriptions follow [16, 17]).

The preconditioners, denoted in both cases by M, are operators intended to improve
the robustness and the efficiency of the iterative algorithms. In particular, we will use
left preconditioning, where instead of

Ax=0>b



PCG (b, %o, Eto1, --- )

1 ro =b—Ax,

2 d, =0

3 fori=1,2,...

4 zi1=Mr; 4

5 B=

6 di =23 1+Bd; 4

e~

8 X; =Xj_1+0d;

9 ri =riy 11— OtAdl
10 check convergence and exit if done
11 end

Table 1: The Preconditioned Conjugate Gradient (PCG) algorithm in solving Ax = b
with preconditioner M and initial guess xp.

GMRES (b, %o, Eto1, M, ... )

1 fori=0,1,...
2 Iri :b*AXi
3 B =hio=|lrill2
4 check convergence and exit if done
5 fork=1,...,m
6 Vk =T /hk,k—1
7 Iry = AM Vi
8 forj=1,....k
9 hj,k =7Ti-Vj
10 ;s =T; —hjy V;
11 end
12 hiyix = [|Ti]]2
13 end
// Take Vm = [Vl, ce ,Vm}, Hm = {hl_]}
14 Find W, = [wy,..., W)’ that minimizes ||b—A(x; + MV, Wy)||2
// as the minimizer of ||fe; —Hy Wy||2 as well
15 X3 =X; +MVp Wy
16 end

Table 2: The GMRES(m) algorithm with right preconditioning in solving Ax = b with
preconditioner M and initial guess xo.



we solve MAx = Mb, and right preconditioning, where the problem is transformed to
AMu = b, x = Mu. Intuitively, to serve its purpose, M needs to be easy to compute,
apply, and store, and to approximate A~!.

The basic idea of our approach, namely to use faster but lower precision computa-
tions whenever possible, can be used to design preconditioners M featuring the above
mentioned two requirements, as we show in the rest of the paper. And since our basic
idea can be exploited (in iterative solvers) through proper preconditioning, the appli-
cability of the approach is far-reaching, and not limited to either the preconditioners or
the solvers used to demonstrate the idea in this paper.

3 Mixed Precision lterative Refinement

The iterative refinement technique is a well known method that has been extensively
studied and applied in the past. A fully detailed description of this method can be found
in [1, 2, 19]. The iterative refinement approach has been used in the past to improve
the accuracy of the solution of linear systems and it can be summarized as:

(1) xg — A\D

k=1

untill convergence do:
(2) Ty < b 7A)Ck_1
G we—A\n

4 X Xp—1 + 2k
et =1
done

Once the system is solved at step 1, the solution can be refined through an iterative
procedure where, at each step k, the residual is computed based on the solution at
step kK — 1 (step 2), a correction is computed as in step 3 and finally this correction is
applied as in step 4. While the common usage of iterative refinement (see [20]) consists
of performing all the arithmetic operations with the same precision (either single or
double), we have investigated the application of mixed precision iterative refinement
where the most expensive steps 1 and 3 are performed in single precision and steps 2
and 4 are performed in double precision. Related work can be found in [21, 22, 23].
The error analysis for the mixed precision iterative refinement is explained in [3] and
shows that using this approach it is possible to achieve the same accuracy as if the
system was solved in full double precision arithmetics provided that the matrix is not
too badly conditioned. From a performance point of view the potential of this method
lies in the fact that the most computationally expensive steps 1 and 3 can be performed
very fast in single precision arithmetic while the only tasks that require double precision
accuracy are the steps 2 and 4 whose cost can be considered much less.



3.1 Mixed Precision lterative Refinement for Sparse Direct
Solvers

Using the MUMPS package for solving systems of linear equations can be described
in three distinct steps:

1. System Analysis: in this phase the system sparsity structure is analyzed in or-
der to estimate the element growth which provides an estimate of the memory
requirement which will be allocated in the following steps. Also pivoting is per-
formed based on the structure of A+ A7 ignoring numerical values. Only integer
operations are performed at this step.

2. Matrix Factorization: in this phase the PA = LU factorization is performed. This
is the computationally most expensive step of the system solution.

3. System Solution: the system is solved in two steps: Ly = Pb and Ux =y

Once steps 1 and 2 are performed, each iteration of the refinement loop needs only
to perform the system solution (i.e. step 3) whose cost is negligible when compared to
the system factorization. The implementation of mixed precision iterative refinement
method with the MUMPS package can, thus, be summarized as:

(1) system analysis

(2) LU+~ PA (&)
(3) solve Ly = Pb (&)
(4) solve Uxyg =y (&)

until convergence do:
5) neb-Ax_1 (&)
(6) solve Ly=ry (&)
(7)  solveUzi =y (&)
@) xe—x1tzm (&)
done

At the end of each line of the algorithm we indicate the precision used to perform
this operation as either & for single precision computation or &; for double precision
computation. Based on backward stability analysis, we consider that the solution x is
of double precision quality when

16— Ax|l2 < [lx]l2 - |All 5ro - €4 v/n

where || - || s, is the Frobenius norm and n is the problem size. This provides us a
stopping criterion. If some maximum number of iterations is reached, then the algo-
rithm should signal failure to converge. All the control parameters for the MUMPS
solver have been set to their default values which means that the matrix scaling, matrix
permuting and pivoting order strategies are determined at runtime based on the matrix
properties.



3.2 Mixed Precision lterative Refinement for Sparse ltera-
tive Solvers

The general framework of mixed precision iterative refinement given at the beginning
of this Section can be easily extended to sparse iterative solvers. Indeed, it can be
interpreted as a preconditioned Richardson iteration in solving

MAx = Mb,

where the preconditioner M represents A~! as being computed and applied in sin-
gle/lower precision arithmetic. This interpretation can be further extended to any pre-
conditioned iterative method. And in general, as long as the iterative method at hand
is backward stable and converges, one can apply similar reasoning [3] to show that the
solution obtained would be accurate in higher precision.

The feasibility of introducing lower precision computations in the preconditioner
depends first on whether there is a potential to introduce speedups in the computation,
and second on how the method’s robustness would change.

We distinguish three approaches for doing this. First, this is when any higher pre-
cision data is simply replaced with a corresponding lower precision, but all the com-
putations are still done in higher precision. The success of this approach, regarding
speed, depends on what percent of the overall computation is spent on the precondi-
tioner. For example, a simple diagonal preconditioner may not benefit from it, while
a domain decomposition-based block diagonal preconditioner, or a multigrid V-cycle,
may benefit. Also multigrid-based solvers may benefit both in speed (as the bulk of
the computation is in their V/W-cycles) and memory requirements. An example of
successful application of this type of approach in CFD was done [24, 25] in a PETSc
solver which was accelerated with a Schwartz preconditioner using block-incomplete
factorizations over the separate subdomains that are stored in single precision. Re-
garding robustness, there are various algorithmic issues to consider, including ways to
automatically at run time determine limitations of the approach. This brings up another
possible idea to explore, which is the use of lower precision arithmetic only for parts
of the preconditioner. Examples here may come from adaptive methods which auto-
matically locate the singularities of the solution sought, and hence the corresponding
parts of the matrix responsible for resolving them. This information may be used in
combination with the solver and preconditioner (e.g. hierarchical multigrid) to achieve
both speedup and robustness of the method.

The second approach, a straightforward extension of the first, is when not just the
higher precision storage but also the higher precision arithmetic are replaced with lower
precision. This is the case that would allow one to apply the technique not only to
conventional processors but also to FPGAs, GPUs, Cell BE processor, etc.

The third approach, and the focus of the current work, is to enable the efficient use
of lower precision arithmetic to sparse iterative methods in general, when no precondi-
tioner, or when just a simple and computationally inexpensive (relative to the rest of the
computation) preconditioner is available. The idea of accomplishing this is to use the
preconditioned version of the iterative method at hand and replace the preconditioner
M by an iterative method as well, but implemented in reduced precision arithmetic.



Thus, by controlling the accuracy of this iterative inner solver more computations can
be done in reduced precision and less work needed in the full precision arithmetic.

The robustness of variations of this nesting of iterative methods, known in the lit-
erature also as inner-outer iteration, has been studied before, both theoretically and
computationally (see for example [26, 27, 28, 29, 30, 31, 32]). The general appeal
of these methods is that computational speedup is possible when the inner solver uses
an approximation to the original matrix that is also faster to apply. Moreover, even
if no faster matrix-vector product is available, speedup can be often observed due to
improved convergence (e.g. see restarted GMRES vs GMRES-FGMRES [28] and Sub-
section 4.3). To our knowledge using mixed precision for performance enhancement
has not been done in the framework suggested in this paper. In the subsections below
we show a way to do it for CG and GMRES. We would refer below to single precision
(SP) as 32-bit and to double precision (DP) as 64-bit floating point arithmetic and also
lower and higher precision arithmetic will be correspondingly associated with SP and
DP.

3.2.1 CG-based Inner-Outer Iteration Methods

We suggest the PCG-PCG inner-outer algorithm given in Table 3. The algorithm is
given as a modification to the reference PCG algorithm from Table 1, and therefore
only the lines that change are written out. The inner PCG is in SP where SP data and
arithmetic are colored in blue. The preconditioner available for the reference PCG is
used in SP in the inner PCG. Note that our initial guess in the inner loop is always
taken to be 0 and we perform a fixed number of iterations (step 10 is in brackets since
practically we want to avoid exiting due to small residual, unless it is of order of ma-
chine’s single precision). It is not clear what is the optimal number of inner iterations.
In our implementation the first outer iteration is unrolled and the call to PCG_single
sets it as the number of iterations it took to do a fixed (e.g. 0.3) relative reduction for
the residual.

If a preconditioner is not available, we can similarly define a CG-PCG algorithm,
where the inner loop is just a CG in SP. Furthermore, other iterative solvers can be
used for the inner loop, as long as they result in symmetric and positive definite (SPD)
operators. For example stationary methods like Jacobi, Gauss-Seidel (combination of
one backward and one forward to result in SPD operator), and SSOR can be used. Note
that with these methods a constant number of iterations and initial guess O result in a
constant preconditioner, and hence in optimal convergence for the outer PCG iteration.
The use of a Krylov space method in the inner iteration, as in the currently considered
algorithm, results in a non-constant preconditioner. Although there is convergence the-
ory for these cases [28], it still remains to be resolved how to set the stopping criteria,
variations in the algorithms, etc. [26, 30] in order to obtain optimal results. For exam-

ple G. Golub and Q. Ye in [26] consider the inexact PCG (f is taken as %)
which allows certain local orthogonality relations to be preserved from the standard
PCG, which on the other hand gives grounds for theoretically studied aspects of the al-
gorithm. We tried this approach as well, and although our numerical results confirmed
the similar findings [26], overall the algorithm described here gave better results. In

general non-constant preconditioning deteriorates the CG convergence, often resulting



PCG_PCG (b, Xo, Evor, ... )
4 PCG_single(r;_4, Zi_1, NumIters, ... )
11 end

PCG_single( b, x, NumIters, ... )

1 ro=Db; X, =0

2 d, =0

3 fori=1, ..., NumIters
10 [check convergence and break if done]
11 end
12 X =X

Table 3: PCG-PCG algorithm with inner PCG in SP (SP data and arithmetic colored
in blue). Only the lines that change from the reference PCG algorithm on Table 1 are
given.

in convergence that is characteristic of the steepest descent algorithm. Still, shifting
the computational load to the inner PCG, reduces this effect and gives convergence
that is comparable to the convergence of a reference PCG algorithm. Note that in our
case by setting an inner number of iterations so that a fixed relative reduction for the
residual is achieved, we expect to have only a constant number of outer iterations until
convergence.

3.2.2 GMRES-based Inner-Outer lteration Methods

For our outer loop we take the flexible GMRES (FGMRES [27, 17]). This is a minor
modification to the algorithm from Table 2 meant to accommodate non-constant pre-
conditioners. Note that on line 7 the preconditioner M actually depends on vy, so the
update of x; at line 15 will make the algorithm unstable if first V,,W,, is computed and
then apply M. This can be remedied for the price of m additional storage vectors. Our
GMRES-FGMRES inner-outer algorithm is given on Table 4 (the additional vectors are
introduced at line 7: z; = Mv; where M is replaced with the GMRES_single solver).

As with PCG-PCQG, the algorithm is given as a modification to the reference GM-
RES(m) algorithm from Table 2, and therefore only the lines that change are written
out. The inner GMRES is in SP where SP data and arithmetic are colored in blue. The
preconditioner available for the reference GMRES is used in SP in the inner GMRES.
Note that again our initial guess in the inner loop is always taken to be 0 and we per-
form a fixed number of cycles (in this case just 1; step 4 is in brackets since we want to
avoid exiting due to small residual, unless it is of order of machine’s single precision).

The potential benefits of FGMRES compared to GMRES are becoming better un-



GMRES_FGMRES ( b, Xo, Eto1, My, My, ... )

5 fork=1,...,mp

7 GMRES_single( vy, zx, 1, my, ... )
r; =Az
15 Xi = X5+ Zm wm
16 end

GMRES single (b, x, NumIters, m, ... )

1 X, =0
fori=0, ..., NumIters
4 [check convergence and break if done]
5 e
16 end
17 X=X

Table 4: GMRES(m;)-FGMRES(m,) with inner GMRES(m;) in SP (SP data and
arithmetic colored in blue) and with outer FGMRES(m,) in DP. Only the lines that
change from the reference GMRES(m) algorithm from Table 2 are given.



derstood [28]. Numerical experiment, as we also show, confirm cases of improvements
in speed, robustness, and sometime memory requirements for these methods. For ex-
ample, we show a maximum speedup of close to 12 times on a problem of size 602,091
(see Section 4). The memory requirement for the method is the sum to store the matrix
(e.g. in CSR format with nonzero coefficients in DP), the nonzero matrix coefficients
in SP, two X outer restart size x the vector size in DP, and inner restart size x the
vector size in SP.

The Generalized Conjugate Residuals (GCR) method [31, 33] is comparable to the
FGMRES and can replace it successfully as outer iterative solver.

4 Results Overview

4.1 The Test Collection for Mixed Precision Sparse Direct
and Iterative Solvers

We tested our implementation of a mixed precision sparse direct solver on a test suite of
41 matrices taken from the University of Florida’s Sparse Matrix Collection [34]. The
matrices have been selected randomly from the collection since there is no information
available about their condition number. A smaller subset of 9 matrices (described in
Table 5) will be discussed in this and the next sessions for readability reasons. The
matrices in this smaller subset has been chosen in order to provide examples of all the
significant features observed on the test suite. The results for all the 41 matrices in the
test suite are listed in appendix A.

] | Size | Nonzeroes | Cond. num. est. |

G64 7000 82918 0(10%)
Sil0H16 17077 | 875923 0(10%)
c-71 76638 | 859554 0(10)
cagel 1 39082 | 559722 o(1)

dawson5 51537 | 1010777 0(10%)
nasasrb 54870 | 2677324 0(107)
poisson3Db | 85623 | 2374949 0(10%)
rmal0 46835 | 2374001 0(10)
wang4 26068 | 177196 0(10°)

Table 5: Properties of a subset of the tested matrices. The condition number estimates
have been computed on the Opteron 246 architecture by means of MUMPS subrou-
tines.

For the iterative sparse methods we used matrices from an adaptive 3D PDEs dis-
cretization package. Presented are results on a set of 5 matrices of increasing size,
coming from the adaptive discretization of a 3D linear elasticity problem on a tetrahe-
dral mesh, using piecewise linear elements (see Table 6).

10



[ Level [ Size Nonzeroes | Cond. num. est. |

1 11,142 | 442,225 0(10%)
2 25,980 | 1,061,542 0(10%)
3 79,275 | 3,374,736 0(10%)
4 230,793 | 9,991,028 0(10%)
5 602,091 | 26,411,323 0(10%)

Table 6: Properties of the matrices used with the iterative sparse solvers.

4.2 Performance Characteristics of the Tested Hardware Plat-
forms

The implementation of the mixed precision algorithm for sparse direct methods pre-
sented in Section 3.1 has been tested on the architectures reported, along with their
main characteristics, in Table 7. All of these architectures have vector units except
the Sun UltraSparc-Ile one; this architecture has been included with the purpose of
showing that even in the case where the same number of single and double preci-
sion operations can be completed in one clock cycle, significant benefits can still be
achieved thanks to the reduced memory traffic and higher cache hit rate provided by
single precision arithmetic.

The implementation of the mixed precision algorithms for sparse iterative solvers
described in Section 3.2 has been only tested on the Intel Woodcrest architecture.

Table 8 shows the difference in performance between the single and double preci-
sion implementation for the two dense BLAS operations matrix-matrix product (_GEMM)
and matrix-vector product ((GEMV). They are the two principal computational kernels
of sparse direct solvers: sparse data structures get rearranged to fit the storage require-
ments of these kernels and thus benefit from their high performance rates (as opposed
to the performance of direct operation on sparse data structures). In particular, column
3 (5) reports the ratio between the performance of SGEMM (SGEMV) and DGEMM
(DGEMYV). The BLAS libraries used are capable of exploiting the vector units where
available and, thus, the speedups shown in Table 8 are due to a combination of higher
number of floating point operations completed at each clock cycle, reduced memory
traffic on the bus and higher cache hit rate.

Table 9 shows the difference in performance for the single and double precision
implementation of the two sparse iterative solvers Conjugate Gradient and General-
ized Minimum Residual. Columns 2 and 3 report the ratio between the performance
of single and double precision CG for a fixed number (100) of iterations in both pre-
conditioned and unpreconditioned cases. Columns 4 and 5 report the same information
for the GMRES(20) method where the number of cycles has been fixed to 2. Since
the sparse matrix kernels involved in these computations have not been vectorized, the
speedup shown in Table 9 is exclusively due to reduced data traffic on the bus and
higher cache hit rate.

11



Clock Vector Memory | Compiler Compiler BLAS
freq. Units flags
AMD Opteron 246 2 GHz SSE, SSE2 2GB Intel v9.1 -03 Goto
3DNOW!
-fast
Sun UltraSparc-Ile | 502 MHz none 512MB | Sunv9.0 | -xchip=ultra2e | Sunperf
-xarch=v8plusa
Intel PIII Copp. 900 MHz | SSE,MMX | 512MB | Intel v9.0 -03 Goto
PowerPC 970 2.5GHz AltiVec 2GB IBM v8.1 -03 Goto
-qalign=4k
Intel Woodcrest 3 GHz SSE, SSE2 4 GB Intel v9.1 -03 Goto
MMX
Intel XEON 24 GHz | SSE, SSE2 2GB Intel v8.0 -03 Goto
MMX
Intel Centrino Duo 2.5 GHz SSE, SSE2 4 GB Intel v9.0 -03 Goto
MMX

Table 7: Characteristics of the architectures used to measure the experimental results.

Size | SGEMM/ | Size | SGEMV/

DGEMM DGEMV
AMD Opteron 246 | 3000 2.00 5000 1.70
Sun UltraSparc-Ile | 3000 1.64 5000 1.66
Intel PIII Copp. 3000 2.03 5000 2.09
PowerPC 970 3000 2.04 5000 1.44
Intel Woodcrest 3000 1.81 5000 2.18
Intel XEON 3000 2.04 5000 1.82
Intel Centrino Duo | 3000 2.71 5000 2.21

Table 8: Performance comparison between single and double precision arithmetics for
matrix-matrix and matrix-vector product operations.

12




SCG/DCG SGMRES/DGMRES
Size no prec. | prec. | no prec. prec.
11,142 2.24 2.11 2.04 1.98
25,980 1.49 1.50 1.52 1.51
79,275 1.57 1.50 1.58 1.50
230,793 1.73 1.72 1.74 1.69
602,091 1.50 1.50 1.67 1.63

Table 9: Performance comparison between single and double precision arithmetics on
a fixed number of iterations of Conjugate Gradient (100 iterations) and Generalized
Minimal RESidual (2 cycles of GMRES(20)) methods both with and without diago-
nal scaling preconditioner. The runs were performed on Intel Woodcrest (3GHz on a

1333MHz bus).
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4.3 Experimental results
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Figure 1: Experimental result measured on the Intel Centrino Duo (using a single pro-
cessor) (left) and the Intel XEON (right) architectures. The yellow bars reports the
ratio between the performance of the single precision solver and the double precision
one; the blue bars report the ratio between the mixed precision solver and the double
precision one. The number of iterations required to converge is given by the number
above the bars.
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Figure 2: Experimental result measured on the Sun UltraSparc-Ile (/eff) and the Intel
Woodcrest (right) architectures. The yellow bars reports the ratio between the perfor-
mance of the single precision solver and the double precision one; the blue bars report
the ratio between the mixed precision solver and the double precision one. The number
of iterations required to converge is given by the number above the bars.

Figures 1 to 4 show that the single precision solver is always faster than the double
precision solver (i.e. the yellow bars are always above the thick horizontal line that
corresponds to 1). This is mainly due to both reduced data movement and better ex-
ploitation of vector arithmetics (via SSE2 or AltiVec where present) since multifrontal
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Figure 3: Experimental result measured on the Intel Pentium III Coppermine (/eft) and
the AMD Opteron 246 (right) architectures. The yellow bars reports the ratio between
the performance of the single precision solver and the double precision one; the blue
bars report the ratio between the mixed precision solver and the double precision one.
The number of iterations required to converge is given by the number above the bars.
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Figure 4: Experimental result measured on the PowerPC 970 architecture. The yellow
bars reports the ratio between the performance of the single precision solver and the
double precision one; the blue bars report the ratio between the mixed precision solver
and the double precision one. The number of iterations required to converge is given
by the number above the bars.

methods have the ability to do matrix-matrix products.

The results presented also show that mixed precision iterative refinement is capa-
ble of providing considerable speedups with respect to the full double precision solver
while providing the same (in many cases also better) accuracy. To run these exper-
iments a convergence criterion different than that discussed in Section 3.1 has been
used. To make the comparison fair, in fact, the iterative refinement is stopped when-
ever the residual norm is the same as that computed for the full double precision solver.
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Reference BLAS Goto BLAS

Name Isp tpp  tpp/tsp Isp tpp  tpp/tsp
benzene 34.290 42.400 123.65% 46.030 40.390 87.75%
sme3Db 11.030 14.200 128.74% 13.470 14.340 106.46%
Kuu 0.160 0.160 100.00% 0.180 0.160 88.89%
airfoil 2d 0.390 0.440 112.82% 0.390 0.440 112.82%
twotone 6.830 8.140 119.18% 7.280 8.600 118.13%
torso2 2.310 2.760 119.48% 2.360 2.810 119.07%
bcsstk39 5.800 6.270 108.10% 7.330 7.350 100.27%
ecl32 69.070 91.360 132.27% 91.350 85.510 93.61%
bbmat 24.470 31.010 126.73% 28.310 29.320 103.57%
raefsky3 5.190 5.880 113.29% 5.360 5.850 109.14%
heart1 3.250 3.920 120.62% 3.730 3.520 94.37%
epb3 1.320 1.560 118.18% 1.410 1.690 119.86%
Zhaol 6.300 8.440 133.97% 7.230 8.230 113.83%
wathen120 1.020 1.270 124.51% 1.140 1.360 119.30%
mult_dcop_01 0.230 0.270 117.39% 0.240 0.260 108.33%
finan512 1.520 1.670 109.87% 1.510 1.720 113.91%
ex40 0.650 0.700 107.69% 0.760 0.840 110.53%
venkatO1 2.820 3.390 120.21% 3.420 4.140 121.05%
bundlel 7.190 9.230 128.37% 8.500 8.000 94.12%
wang4 16.720 21.580 129.07% 22.020 20.890 94.87%
Sil0H16 303.550 390.960 128.80% 394.840 367.780 93.15%
graham1 0.760 0.890 117.11% 0.780 0.930 119.23%

Table 10: Time to solution of sequential SuperLU in single and double precision for
selected sparse matrices on the Intel Woodcrest with reference and optimized BLAS.

The performance of the mixed precision solver is usually very close to that of the sin-
gle precision mainly because the cost of each iteration is often negligible if compared
to the cost of the matrix factorization. It is important to note that, in some cases, the
speedups reach very high values (more than 4.0 faster for the Poisson3Db matrix on the
Sun UltraSparc-Ile architecture). This is due to the fact that, depending on the matrix
size, the fill-in generated in the factorization phase and the available memory on the
system, the memory requirements may be too high which forces the virtual memory
system to swap pages on disk resulting in a considerable loss of performance; since
double precision data is twice as large as single precision, disk swapping may affect
only the double precision solver and not the single precision one. It can be noted that
disk swapping issues are not affecting the results measured on those machines that
are equipped with a bigger memory while it’s usual on th Intel Pentium III and the
Sun UltraSparc-Ile architectures that only have 512 MB of memory. Finally the data
presented in figures 1 to 4 show that for some cases the mixed precision iterative refine-
ment solver does not provide a speedup. This can be mainly associated to three causes
(or any combination of them):

1. the difference in performance between the single and the double precision solver
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is too small. In this case even a few iterations of the refinement phase will com-
pensate the small speedup. This is, for example, the case of the Dawson5 matrix
on the PowerPC 970 architecture.

2. the number of iterations to convergence is too high. The number of iterations to
convergence is directly related to the matrix condition number (see [3] for de-
tails). The case of the Nasasrb matrix on the PowerPC 970 architecture show
that even if the single precision solver is almost 1.4 times faster, the mixed pre-
cision solver is slower than the double precision one because of the high number
of iterations (11) needed to achieve the same accuracy. If the condition number
is too high, the method may not converge at all; this is the cable of the qaf8k
matrix (see Appendix A).

3. the cost of each iteration is high as compared to the performance difference be-
tween the double precision solver and the single precision one. In this case even
a few iterations can eliminate the benefits of performing the system factorization
in single precision. As an example take the case of the RmalO matrix on the
Intel Woodcrest architecture; two iteration steps on this matrix take 0.1 seconds
which is almost the same time needed to perform 6 iteration steps on the G64
matrix.

It is worth noting that, apart from the cases where the method does not converge, when-
ever the method results in a slowdown, the loss is on average only 7%. Table 10 shows
timings of sequential version of SuperLU on selected matrices from our test collection
for single and double precision solvers. Both reference and Goto BLAS timings are
shown. The sequential version of SuperLU calls matrix-vector multiply (.GEMV) as
its computational kernel. This explains rather modest gains (if any) in the performance
of single precision solver over the double precision one: only up to 30%. The table
also reveals that when optimized BLAS are used, the single precision is slower than
double for some matrices: an artifact of small sizes of dense matrices passed to BLAS
and the level of optimization of the BLAS for this particular architecture. The results
are similar for other tested architectures which leads to a conclusion that there is not
enough benefit of using our mixed precision approach for this version of SuperLU.

Finally, we present our results on the mixed precision iterative sparse solvers from
Subsection 3.2. All the results are from runs on Intel Woodcrest (3GHz on a 1333MHz
bus).

In Figure 5 we give the speedups in using mixed SP-DP vs DP-DP CG (in blue).
Namely, on the left we have the results for CG-PCG and on the right for PCG-PCG
with diagonal preconditioner in the inner loop PCG. Similarly, in Figure 6, we give
the results for GMRES-FGMRES (on the left), and PGMRES-FGMRES (on the right).
Also, we give a comparison with the speedups of using SP vs DP for just the reference
CG and PCG (correspondingly left and right in Figure 5; in yellow), and SP vs DP for
the reference GMRES and PGMRES (in Figure 6 in yellow). Note that in a sense the
speedups in yellow should represent the maximum that could be achieved by using the
mixed precision algorithms. The fact that we get close to this maximum performance
shows that we have successfully shifted the load from DP to SP arithmetic (with overall
computation having less than 5% in DP arithmetic). The reason that the performance

17



speedup for SP-DP vs DP-DP GMRES-FGMRES in Figure 6, left, 4th matrix is higher
than the speedup of SP GMRES vs DP GMRES is that the SP-DP GMRES-FGMRES
did one less outer cycle until convergence than the DP-DP GMRES-FGMRES.

Conjugate Gradient Preconditioned Conjugate Gradient
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Figure 5: Left: Speedup of using SP vs DP CG (in yellow) and the SP-DP vs DP-
DP CG-PCG (in blue). Right: Similar graph comparison but for the PCG algorithm
(see also Subsection 3.2.1. The computations are on a Intel Woodcrest (3GHz on a
1333MHz bus).
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Figure 6: Left: Speedup of using SP vs DP GMRES (in yellow) and the SP-DP vs DP-
DP GMRES-FGMRES (in blue). Right: Similar graph comparison but for the PGM-
RES algorithm (see also Subsection 3.2.2. The computations are on a Intel Woodcrest
(3GHz on a 1333MHz bus).

Finally, we show results comparing the SP-DP methods with the reference DP
methods. In Figure 7 left is a comparison for CG, and on the right for GMRES. The
numbers on top of the bars on the left graph indicate the overhead, as number of itera-
tions, that took the mixed precision method to converge versus the reference DP method
(e.g. overhead of 0.1 indicates 10% more iterations were performed in the mixed SP-
DP vs the DP method). Even with the overhead we see a performance speedup of at
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Figure 7: Left: Speedup of mixed SP-DP CG-PCG vs DP CG (yellow) and SP-DP
PCG-PCD vs DP CG (blue) with diagonal preconditioner. Right: Similar graph com-
parison but for the GMRES based algorithms. The computations are on a Intel Wood-
crest (3GHz on a 1333MHz bus).

least 20% over the tested matrices. For the GMRES-based mixed precision methods
we see a significant improvement, based on reduced number of iterations and the ef-
fect of the SP speedup (from 45 to 100% as indicated in Figure 6). For example, the
speedup factor of 12 for the biggest problem is due to speedup factors of approximately
7.5 from improved convergence and 1.6 from effects associated with the introduced SP
storage and arithmetic.

It is not known how to choose the restart size m to get optimal results even for the
reference GMRES (m) . A reasonable working assumption is the bigger m the better,
because one assumes that bigger m will get closer to the full GMRES. Following this
assumption though does not guarantee better execution time, and sometimes the con-
vergence can get even worse [35]. An interesting approach is self adaptivity (see [36]).
Here, to do a fair comparison, we run it for m = 25, 50 (PETSc’s default [37]), 100,
150, 200, and 300, and chose the best execution time. Experiments show that the mixed
precision method suggested is stable in regard to changing the restart values in the in-
ner and outer loops. The experiments presented are for inner and outer m = 20. Note
that this choice also results in less memory requirements than GMRES with m ~ 70
and higher (for most of the runs GMRES(100) was best among the above choices for
m), since the overhead in terms of DP vectors is 20 + 20 (outer GMRES) +10 (20 SP
vectors in the inner loop) +20 (matrix coefficients in SP; there are approximately 40
non-zeroes per row; see Table 6). In all the cases presented we had the number of inner
cycles set to one.

Finally, we note on speedup for direct and iterative methods and its effect on perfor-
mance. The speed up of moving to single precision for GEMM-calling code (MUMPS)
was approaching 2 and thus guaranteed success of our mixed-precision iterative refine-
ment just as it did for the dense matrix operations. Not so for the _.GEMV-calling
code (SuperLU) for which the speedup did not exceed 30% and thus no performance
improvement was expected. However, for most of the iterative methods, the speedup
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was around 50% and still we claim our approach to be successful. Inherently the rea-
son for speedup is the same for both settings (SuperLU and the iterative methods): the
reduced memory bus traffic and possible super-linear effects when data fits in cache
while being stored in single precision. But for the SuperLU case there is the direct
method overhead: the maintenance of evolving sparse data structures which is done in
fixed-point arithmetic so it does not benefit from using single precision floating-point
arithmetic and hence yields the overall performance gains insufficient for our iterative
refinement approach.

5 Future Work

We are considering a number of extensions and new directions for our work. The most
broad category is the parallel setting. MUMPS is a parallel code but it was used in a
sequential setting in this study. Similarly, SuperLU has a parallel version which differs
from the sequential counterpart in a very important way: it uses the matrix-matrix
multiply kernel ((GEMM). This would give a better context for comparing multifrontal
and supernodal approaches as they use the same underlying computational library. The
only caveat is the lack of a single precision version of the parallel SuperLU solver.
Another aspect brought by the latter solver is using static pivoting — while it vastly
improves numerical stability of parallel SuperLU it also improves the convergence of
the iterative refinement that follows. This should result in less iterations and shorter
solve time.

Using PETSc and its parallel framework for (among others) iterative methods could
give us opportunity to investigate our approach for a wider range of iterative methods
and preconditioning scenarios. First though, we would have to overcome a technical
obstacle of combining a two versions of PETSc (one using single and one using double
precision) in a single executable.

We have done preliminary experiments on an actual IBM Cell BE hardware (as op-
posed to the simulator which does not account accurately for memory system effects —
a crucial component of sparse methods) with sparse matrix operations and are encour-
aged by the results to port our techniques in full. This would allow us to study their
behavior with much larger gap in the performance of the two precisions.

Our algorithms and their above descriptions focus solely on two precisions: single
and double. We see it however in a more broader context of higher and lower precision
where, for example, a GPU performs computationally intensive operations in its native
16-bit arithmetic and consequently the solution is refined using 128-bit arithmetic em-
ulated in software (if necessary). As mentioned before, the limit factor is conditioning
of the system matrix. In fact, an estimate (up to the order of magnitude) of the con-
dition number (often available from previous runs or the physical problem properties)
may become an input parameter to an adaptive algorithm [38] that attempts to utilize
the fastest hardware available if its limited precision can guarantee convergence.

Also, the methods for sparse eigenvalue problems that result in Lanczos and Arnoldi
algorithms are amenable to our techniques and we would like to study their theoretical
and practical challenges.
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Intel PowerPC Intel Intel AMD Intel Sun
Core 970 XEON PentiumIII Opteron | Wood- | Ultrasparc
Duo Coppermine 246 crest Ile
2.39 1.65 1.58 1.89 1.78 1.73 1.69
Gset/G64 2.32 1.58 1.51 1.82 1.71 1.63 1.66
(5 6) (6) (5) (5 (6) 3
1.23 1.12 1.11 1.26 1.18 1.12 1.26
MathWorks/Kuu 0.89 0.96 0.92 0.93 1.02 0.94 0.99
3 (3) 3 3 (2 (2) 3
2.50 1.90 1.73 2.60 1.85 1.75 2.03
PARSEC/Sil0H16 2.48 1.85 1.70 2.56 1.82 1.70 2.01
(3) (5) (4 (4 (4) (4) (3)
1.45 1.14 1.13 1.33 1.26 1.15 2.78
Zhao/Zhaol 1.34 1.08 1.03 1.24 1.19 1.05 2.61
(2 3 (2) (2) (2) (2 (2)
1.24 1.11 1.11 1.25 1.15 1.08 1.25
Engwirda/airfoil 2d 1.11 1.05 1.03 1.13 1.08 0.99 1.15
(2 3 (2 (2 (2) (2 (2)
2.01 1.50 1.43 1.67 1.57 1.47 2.15
Simon/bbmat 1.91 1.40 1.34 1.51 1.48 1.34 2.04
(5) (6) (5) (7 (5) (5) (5)
1.73 1.40 1.28 1.58 1.47 1.26 1.56
Boeing/besstk39 1.42 1.11 1.05 1.22 1.20 0.96 1.33
(5) (6) (5) (5) (5) (5) (4
2.32 1.70 1.57 1.97 1.80 1.69 1.62
PARSEC/benzene 2.29 1.67 1.54 1.94 1.78 1.65 1.60
(2 3 (2) (2) (2) (2 (2)
1.02 1.05 1.06 1.06 1.17 1.10 1.04
GHS indef/blockqpl 0.80 0.86 0.84 0.80 0.97 0.96 0.83
3 4 3 3 3 3 3
1.37 1.19 1.15 1.31 1.22 1.14 1.28
Lourakis/bundlel 1.20 1.03 1.00 1.06 1.08 1.00 1.14
(2) (4 (3) (3) (3) (2) (2)
2.29 1.42 1.44 4.07 1.68 1.64 3.65
GHS indef/c-71 2.26 1.41 1.42 4.03 1.67 1.61 3.55
(3 3 (2) (2) (2) 3 (2)
2.44 1.83 1.70 222 1.87 1.73 3.94
vanHeukelum/cage11 242 1.80 1.68 2.20 1.85 1.70 3.92
(2 3 (2 (2 (2) (2 (2)
1.19 1.94 1.11 1.27 1.14 1.23 2.22
DRIVCAV/cavity26 0.78 1.63 0.96 0.99 0.97 1.03 1.81
(2) (3) (2) (2) (2) (2) (2)
1.85 1.42 1.38 1.62 1.52 1.35 3.49
Rothberg/cfdl 1.75 1.34 1.30 1.52 1.44 1.25 3.35
(3) (4 (3) (3) (3) (3) (3)
1.33 1.11 1.11 1.26 1.17 1.10 1.26
GHS indef/dawson5 1.14 0.99 0.97 1.04 1.06 091 1.15
(5 (5) 4 (5 4 (5 3
2.02 1.31 1.40 1.68 1.56 1.46 1.85
Sanghavi/ecl32 1.95 1.27 1.31 1.62 1.49 1.35 1.79
3 4 (4 3 4 4 (3)
1.12 1.04 1.04 1.10 1.07 1.05 1.27
Averous/epb3 1.01 0.96 0.94 1.00 0.96 0.91 1.13
(2) (4 (2) (2) (3) (3) (3)
1.53 1.31 1.25 1.48 1.29 1.18 1.42
FIDAP/ex40 1.36 1.20 1.13 1.31 1.20 1.01 1.30
3 4 3 3 3 (€)) 3
1.07 1.03 1.01 1.07 1.04 1.03 1.19
Mulvey/finan512 0.96 0.97 0.90 0.97 0.96 0.91 1.07

continued on the next page
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Intel PowerPC Intel Intel AMD Intel Sun
Core 970 XEON PentiumIII Opteron | Wood | Ultrasparc
Duo Coppermine 246 crest Ile
(2) (3) (2) (2) (2) (2) (2)
1.33 1.14 1.12 1.27 1.11 1.11 1.18
Graham/graham1 1.10 1.02 0.98 1.05 1.00 0.95 1.03
(3) (4) (3) (3) (3) (3) (3)
1.98 1.53 1.38 1.66 1.55 1.43 1.90
Norris/heart1 1.78 1.43 1.30 1.49 1.46 1.28 1.76
3 (3 (2) (2) (2 (2 (2
2.48 1.42 1.57 3.87 1.82 1.62 3.07
kivap001 2.46 1.32 1.54 3.29 1.79 1.58 1.85
(2) (3) (2) (2) (2) (2) (2)
2.00 1.47 1.38 1.70 1.56 1.43 3.05
kivap004 1.95 1.42 1.31 1.62 1.52 1.37 2.98
(2) (3) (3) (3) (2) (2) (2)
1.83 1.39 1.30 1.60 1.47 1.35 1.52
kivap005 1.73 1.30 1.22 1.49 1.40 1.24 1.44
3 (€) 3 3 (3 (3 3
2.00 1.47 1.38 1.67 1.57 1.43 1.54
kivap006 1.93 1.41 1.31 1.58 1.53 1.36 1.50
(3) (3) (3) (3) (2) (2) (2)
2.14 1.57 1.46 1.79 1.66 1.51 291
kivap007 2.10 1.51 1.42 1.74 1.62 1.45 2.86
(2) (3) (2) (2) (2) (2) (2)
1.04 1.01 1.00 1.01 1.03 1.02 1.02
Sandia/mult dcop 01 1.02 1.00 0.97 1.00 1.01 1.00 1.01
(2) (2) (2) (2) (2) (2) (2)
1.38 1.31 1.13 1.42 1.29 1.20 1.47
Nasa/nasa4704 0.81 0.84 0.76 0.68 0.83 0.82 1.00
(6) N ()] an (€)) (6) (6)
1.73 1.37 1.29 1.57 1.44 1.26 2.36
Nasa/nasasrb 1.37 0.99 0.99 1.13 1.09 0.86 1.86
(8) a1 9 9 (10) (10) (9
1.09 1.04 1.04 1.12 1.06 1.03 1.11
Nemeth/nemethO1 0.99 0.98 0.97 1.00 1.01 0.96 1.02
(2) (3) (2) (2) (2) (2) (2)
1.14 1.07 1.04 1.14 1.08 1.04 1.04
Nemeth/nemeth26 1.07 1.01 0.99 1.04 1.04 0.98 0.99
(2) (3 (2) (2) (2 (2 (2
2.11 1.46 1.38 2.92 1.57 1.46 4.30
FEMLAB/poisson3Db 2.06 1.40 1.34 2.83 1.53 1.41 4.23
(2) (3) (2) (2) (2) (2) (2)
2.15 1.60 1.48 2.34 1.66 1.51 3.80
Cunningham/qa8fk 1.77 1.17 1.11 1.79 1.29 1.06 3.35
(20) * [ (20) * (20) * (20) * (20) * (20) *
1.91 1.47 1.39 1.69 1.57 1.38 2.46
Simon/raefsky3 1.75 1.34 1.29 1.51 1.44 1.23 2.28
(2) (3) (2) (2) (2) (2) (2)
1.36 1.19 1.16 1.38 1.23 1.12 2.02
Bova/rmal0 1.21 1.08 1.06 1.18 1.10 0.98 1.80
2 (3 (2) (2) (2 (2 (2
1.79 1.37 1.33 1.58 1.46 1.32 1.86
FEMLAB/sme3Db 1.60 1.14 1.16 1.29 1.22 1.05 1.47
(4) (7N (5) (5) (6) (6) (6)
1.18 1.06 1.07 1.16 1.11 1.06 1.13
Norris/torso2 1.07 1.00 0.97 1.06 1.02 0.95 1.04
(2) (3) (2) (2) (2) (2) (2)
2.36 1.52 1.28 1.51 1.71 1.61 2.69
ATandT/twotone 2.35 1.52 1.28 1.51 1.71 1.61 2.69
0* (H* 0* 0* (0 * 0* (0 *
1.52 1.26 1.23 1.46 1.34 1.19 1.79
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Intel PowerPC Intel Intel AMD Intel Sun
Core 970 XEON PentiumIII Opteron | Wood | Ultrasparc
Duo Coppermine 246 crest Ile
Simon/venkatO1 1.34 1.12 1.10 1.26 1.18 1.03 1.60
(2 3 (2 2 (2 (2 (2)
1.90 1.35 1.34 1.58 1.52 1.41 1.49
Wang/wang4 1.82 1.29 1.27 1.51 1.45 1.33 1.44
(2 3 2 (2 2 2 2
1.19 1.06 1.08 1.16 1.12 1.07 1.13
GHS psdef/wathen120 | 1.04 1.00 0.99 1.05 1.03 0.98 1.05
3 (3) (2) (2) (2) (2) (2
Size | Nonzeroes [ Cond. Num. Est. ‘
Gset/G64 7000 82918 0(10%)
MathWorks/Kuu 7102 340200 o( 104)
PARSEC/Si10H16 17077 875923 0(103)
Zhao/Zhaol 33861 166453 o(1)
Engwirda/airfoil 2d 14214 259688 0(103)
Simon/bbmat 38744 1771722 0(10%)
Boeing/besstk39 46772 | 2089294 0(10°)
PARSEC/benzene 8219 242669 0(10%)
GHS_indef/blockgp1 60012 640033 o(1)
Lourakis/bundlel 10581 770901 0(10)
GHS_indef/c-71 76638 859554 0(10)
vanHeukelum/cagell | 39082 | 559722 o(1)
DRIVCAV/cavity26 4562 138187 o( 103 )
Rothberg/cfd1 70656 1828364 o( 10°)
GHS_indef/dawson5 51537 | 1010777 0(10%)
Sanghavi/ecl32 51993 380415 0(105)
Averous/epb3 84617 463625 0(10%)
FIDAP/ex40 7740 | 458012 0(10%)
Mulvey/finan512 74752 596992 o(1)
Graham/graham1 9035 335504 0(10%)
Norris/heart] 3557 1387773 0(10%)
kivap001 86304 1575568 0(102)
kivap004 42204 755416 0(10%)
kivap005 25054 436468 o(1 0%
kivap006 42204 755416 o( 103 )
kivap007 56904 1028800 0(10%)
Sandia/mult_dcop_01 25187 193276 0(10)
Nasa/nasa4704 4704 104756 0(106)
Nasa/nasasrb 54870 | 2677324 0(107)
Nemeth/nemethO1 9506 725054 0(10)
Nemeth/nemeth26 9506 1511760 o(1)
FEMLAB/poisson3Db | 85623 | 2374949 o( 103 )
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Size Nonzeroes \ Cond. Num. Est. ‘

Cunningham/qa8fk 66127 | 1660579 0(10'°)
Simon/raefsky3 21200 1488768 0(10%)
Bova/rmal0 46835 2374001 0(10)
FEMLAB/sme3Db 29067 | 2081063 0(10%)
Norris/torso2 115967 | 1033473 o(1)
ATandT/twotone 120750 | 1224224 0(10%)
Simon/venkat01 62424 1717792 0(10)
Wang/wang4 26063 177196 0(10%)
GHS _psdef/wathen120 | 36441 565761 o(1)
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