
Electronic Notes in Theoretical Computer Science 59 No. 1 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume59.html 14 pages

Tail call elimination on the Java Virtual
Machine

Michel Schinz 1 Martin Odersky 2
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Abstract

A problem that often has to be solved by compilers for functional languages target-
ing the Java Virtual Machine is the elimination of tail calls. This paper explains
how we solved it in our Funnel compiler and presents some experimental results
about the impact our technique has on both performance and size of the compiled
programs.

1 Introduction

A problem faced by authors of compilers for functional languages targeting
the Java Virtual Machine (JVM) [7] is the elimination of tail calls. Functional
programming languages typically do not have explicit looping constructs, and
programmers therefore have to resort to recursion to perform loops. While
this is no major problem for programmers, compiler writers have to make
sure that their implementations perform tail call elimination, an optimisation
which guarantees that loops implemented using recursion execute in constant
space.

Implementing tail call elimination in its full generality typically requires
some support from the target machine. Unfortunately, the JVM does not
provide such support, and implementors either have to abandon general tail
call elimination, or use special tricks.

We have implemented general tail call elimination for our Funnel compiler.
This paper explains the technique we used, and shows its impact on code size
and execution time for several benchmark programs. It is structured in the
following way: Section 2 explains why tail call elimination is needed, espe-
cially in the current version of Funnel; Section 3 presents known techniques to
eliminate tail calls, then our technique and some experimental results about
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it; Section 4 presents related work; finally, Section 5 concludes and talks about
future work.

2 The Problem

Most functional programming languages, as well as some object-oriented lan-
guages like SmallTalk, do not provide loops as a built-in construct. Program-
mers in these languages use recursion to implement loops, and while the two
constructs might appear equivalent to them, recursive calls, like any calls,
consume stack space while loops do not.

An optimisation which is commonly done by these languages’ implemen-
tations is tail call elimination, which replaces calls that appear in tail position
with jumps. Intuitively, a call is said to be in tail position if it appears as the
very last statement of a function.

A recursive tail call, that is one which calls the function to which it belongs,
can usually be optimised without any kind of support from the target language,
as most target languages permit jumps within function boundaries or loops.
For most programming languages, the tail calls which are used to simulate
(non-nested) loops are recursive. Therefore, optimising only recursive tail
calls already covers a large number of cases.

The situation is a bit different in the currently implemented version of
Funnel where visitors [5] are used to simulate algebraic data types [8]. This
use of visitors unfortunately reduces the number of recursive tail calls and
increases stack usage. For example, here is how the well-known reverse onto

function, which reverses its first list argument onto the second, can be written
in Funnel:

def reverse onto[a] (l1 : List[a], l2 : List[a]) : List[a] = l1.match {
def Nil = l2

def Cons (hl1, tl1) = reverse onto (tl1, hl1::l2)
}

The body of this function is composed of a single call to the match function
of the first list, l1. This match function expects a list visitor as argument. A
list visitor is a record containing two functions: the first one, Nil, is called if
the list is empty; the second one, Cons, is called if the list is not empty, with
the list head and tail as arguments.

At first sight it might seem that the tail call to reverse onto is recursive—
and in a language with algebraic data types this would be the case—but it
is not since it appears in the body of the visitor’s Cons function. It cannot,
therefore, be replaced by a simple GOTO. However, by expanding the match

function, one could see that the recursive invocation of reverse onto is in fact
reached by a series of tail calls, two of which call dynamically bound methods.
Hence, a general tail call elimination scheme that can also eliminate tail calls to
statically unknown targets is required to make function reverse onto operate
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in constant space.

Funnel is currently being redesigned to include a form of algebraic data
types. In that version, the reverse onto function could be formulated in a
way that made the tail call directly recursive, and hence easy to eliminate
statically. However, there are also many other examples that involve tail calls
to unknown targets. For these, techniques like the ones developed here are
still essential.

Ideally, the JVMs themselves should eliminate tail calls. In [2], Benton,
Kennedy and Russell explain why they do not, and claim to have good rea-
sons to believe that JVMs performing tail call elimination would appear soon.
Unfortunately, three years later, none of the JVMs we are aware of perform
general tail call elimination, although some (Microsoft’s and IBM’s are exam-
ples) eliminate recursive tail calls. The reason usually given for the omission of
tail-calls are possible conflicts with Java’s stack-walking security mechanism.

3 Eliminating Tail Calls

Various techniques have been proposed over the years to eliminate general
(and not only recursive) tail calls, mostly for compilers targeting C.

A first one is to put the whole program in a big function and to simulate
function calls using direct jumps or switch statements inside this function.
This is often inadequate for large programs, and certainly not realistic on
the JVM which does not allow method bodies of more than 64 kilobytes.
This technique can however be used to remove tail calls among a small set of
mutually recursive functions, while other tail calls are handled differently.

A popular technique is to use a trampoline [9]. A trampoline is an outer
function which repeatedly calls an inner function. Each time the inner function
wishes to tail call another function, it does not call it directly but simply
returns its identity (e.g. as a closure) to the trampoline, which then does the
call itself. Unlimited stack growth is thus avoided, but some performance is
inevitably lost, mostly because all the calls made by the trampoline are calls
to statically unknown functions.

Another well-known technique is Henry Baker’s “Cheney on the M.T.A.”
[1]. With his technique, the program first has to be converted to continuation-
passing style (CPS), therefore turning all calls into tail calls, and can then be
compiled as usual. At run-time, when the stack is about to overflow, the
current continuation is built and returned (or longjmped) to the trampoline
“waiting” at the bottom of the call stack. An interesting property of Baker’s
technique is that the stack can be used as an allocation region for the youngest
generation of a generational garbage collector—provided, of course, that a
minor garbage collection is triggered just before the stack is shrunk, in order
to copy live young data to the next generation.
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3.1 Baker’s technique on the JVM

Although most of the techniques presented above were originally developed
for C as target language, they could be adapted without too much trouble to
the JVM. For example, although the JVM does not have direct equivalents
to C’s setjmp/longjmp functions, one could simply use a chain of RETURNs or
exceptions to simulate them.

Using the stack as the young generation of a generational garbage collector,
as with Baker’s technique, is not feasible with the JVM, however, because it
does not give enough control over the memory allocation process.

Baker’s technique can nevertheless seem interesting, because it guarantees
that the program will always execute in a bounded stack space. To get a very
rough idea of how much slowdown CPS conversion would imply on the JVM,
we wrote a Fibonacci function both in standard and CPS style, in Funnel,
and measured the execution time of both versions. The CPS version was
approximately 25 times slower than the standard version. 3

Since the current Funnel compiler does not perform a lot of optimisations,
we rewrote the benchmark directly in Java and hand-optimised it using all
the techniques we hope to put in our compiler in the future. Unfortunately,
the results were not much better: the CPS version was still 20 times slower
than the standard version.

It should be noted that the Fibonacci function suffers a lot from CPS
transformation, as it contains two non-tail calls which imply the creation of
continuations, and little else. Nevertheless, these results did not encourage
us to use Baker’s technique in our Funnel compiler to remove tail calls. We
therefore devised another technique, described in the next section.

We did not measure the cost of the trampoline technique on the JVM, but
Baker reports a slowdown of 2–3 for trampoline calls in C. Considering that
with our compiler, calls to unknown functions go through dispatch functions
(as will be seen in Section 3.3), we can conjecture that for us the slowdown
would be even worse.

3.2 Technique used by the Funnel compiler

Let’s take a closer look at the stack space needed by the different tail call
optimisations. As a baseline we take the stack space needed by a hypothetical
implementation on a virtual machine with a tail call instruction. Both the
trampoline technique and the technique of compiling many functions into one
work with the baseline stack space plus maybe a constant amount of space.
Baker’s technique needs only a constant amount of stack space but requires
corresponding space on the heap for storing continuations, so that the needed
stack and heap space together again correspond to the baseline plus a constant.

3 Measurments were made using Sun’s HotSpot Client JVM for Intel x86 architecture,
version 1.3. Results are similar for HotSpot Server, however.
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Performing no tail call optimisation at all, on the other hand, requires stack
space which exceeds the baseline by a potentially unlimited factor.

The observation underlying our technique is that we can trade speed for
space by accepting a worst-case stack space which corresponds to the base-
line multiplied by a predetermined factor. A factor of 1 corresponds to the
trampoline technique. Higher factors give better performance but require
correspondingly larger stack size. With a factor of infinity, one obtains the
implementation without tail call optimisation.

Our technique adds a new integer argument to all functions. This parame-
ter, called the tail call counter (TCC), keeps track of the number of successive
tail calls currently on top of the call stack. That is, each time a tail call is
made, the current TCC plus one is passed to the callee, whereas for non-tail
calls, 0 is passed.

The TCC is used to decide when the stack should be shrunk: at the be-
ginning of every function, code is inserted to check its value and, if it is above
some predefined tail call limit (TCL), the current continuation is built and
returned to a trampoline “waiting” at the bottom of the tail call chain.

For this to work, some trampoline code also has to be inserted at all tail
call sites. This code checks whether the callee returned a continuation and the
TCC is equal to zero—meaning that this tail call is the first in the chain—in
which case the continuation is invoked.

Therefore, at any one point during execution, we might have up to TCL tail
called procedure frames on the stack, followed by at least one non-tail called
procedure frame. Assuming that all frames have the same size, we arrive at
an increase of the worst case stack size by a factor of TCL with respect to an
ideal implementation optimising every tail call.

A small optimisation can be applied to this general scheme. Functions
which do not contain any tail call do not need to check the TCC on entry.
In that case, the maximum number of successive tail calls will potentially be
TCL + 1 and not just TCL as before, but this is not important.

This trick could even be carried further, for example to functions which
only call functions which do not contain tail calls, and so on. What we are
really interested in, after all, are potentially unbounded chains of tail calls.

3.3 Implementation on the JVM

The Funnel compiler [11] always replaces directly recursive tail calls by simple
GOTO instructions. To handle the remaining tail calls, it uses the technique
described in the previous section.

Implementing this technique on the JVM is relatively straightforward, but
the question of how to shrink the stack remains: as explained in section 3.1,
the stack can be shrunk either using a chain of RETURN instructions or using
exceptions.

Shrinking the stack using a chain of RETURN instructions means that the
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topmost function in the call stack builds the current continuation and returns
it to its caller. The caller will itself return it to its caller, and so on, until it
reaches the trampoline waiting at the bottom of the chain. The trampoline
then calls the continuation.

Shrinking the stack using exceptions means that the topmost function in
the call stack builds the current continuation and throws it as an exception.
This exception is immediately caught by the trampoline, provided that it
installed an exception handler properly. The trampoline then calls the con-
tinuation.

We will now show how these two variants of our technique translate into
real code by showing an example. The following Funnel function gets two
functions and a value as arguments and applies the composition of the two
functions to the value. It contains one non-tail call to g and one tail call to f.

def compose[a,b,c] (f : b→c, g : a→b, x : a) : c = f (g (x))

When the stack is shrunk using a chain of RETURN instructions, the code
generated by our Funnel compiler for this function is equivalent to the Java
code below—with some minor differences.

Object compose (int tcc, Object f, Object g, Object x) {
if (tcc ¡ TCL) {

Object res = dispatch (tcc + 1, f, dispatch (0, g, x));
if (tcc == 0 && res instanceof Continuation)

return callContinuation (res);
else

return res;
} else

return new Continuation (COMPOSE CLOSURE, f, g, x);
}

When the stack is shrunk using exceptions, the code looks like this:

Object compose (int tcc, Object f, Object g, Object x) {
if (tcc ¡ TCL) {

Object res g = dispatch (0, g, x);
if (tcc == 0) {

try { return dispatch (tcc + 1, f, res g); }
catch (Continuation c) { return callContinuation (c); }

} else
return dispatch (tcc + 1, f, res g);

} else
throw new Continuation (COMPOSE CLOSURE, f, g, x);

}
This code makes use of the Continuation class, and calls the dispatch and
callContinuation predefined functions. A short description of these parts of
the Funnel run-time follows, but a more thorough description including code
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can be found in the appendix.

Continuations are represented as instances of the predefined Continuation

class which simply holds a closure and the arguments it has to receive. The
predefined dispatch function applies a closure to some arguments. The pre-
defined callContinuation function calls the continuation it receives, and if
this continuation returns (or throws) another continuation, it is also invoked,
and so on until something else than a continuation is returned. This last re-
turned value is the result of callContinuation. Finally, COMPOSE CLOSURE is
the constant closure for the compose function.

3.4 Impact on performances and code size

The technique presented above increases both execution time and code size of
compiled programs. In order to get an idea of the cost of our tail call elimi-
nation technique, we measured the increase of both code size and execution
time it implied on five benchmarks.

The programs used as benchmarks are described in table 1. The line count
given is the number of non-blank lines as seen by the compiler. This number
is furthermore split in two: the number of lines of the program itself, and the
number of lines imported from the Funnel “standard library”.

For each benchmark, we measured how many stack shrinks happened dur-
ing their execution, using a tail call limit TCL of 40. For the first three
benchmarks, no shrinks ever happen, because they do not contain enough
successive tail calls; therefore, they give a good idea of the overhead imposed
by our tail call elimination technique when it is not actually used.

The last two benchmarks, on the other hand, make heavy use of tail calls
and thus benefit from their elimination. Notice that, strictly speaking, tail
call elimination could be turned on only for these two programs. In practice,
it can however be hard for a programmer to guess whether tail call elimination
should be turned on or off for a given program.

We measured code size increase by looking at two things: the size in bytes
of the generated .class file, and the size of the code part of these class files.
As can be seen in table 2, in all cases but one, the size of the .class file
increases by a little less than 30% when tail call elimination (TCE) is turned
on, independently of the technique used. The higher increase—in percent—for
the Fibo benchmark is due to its very small size: when TCE is turned on,
some utility functions have to be added to the executable, and in this case
their size is important compared to the overall program size.

In the following tables and graphs, the abbreviation RET is used for the
technique which uses a chain of RETURN instructions to shrink the stack, while
the abbreviation EXN is used for the technique which uses exceptions.

We measured the cost of our technique in terms of speed on three different
virtual machines: Sun’s HotSpot Client VM v1.3 (build 1.3.0), IBM’s VM
v1.3 (build cn130-20010609) and Microsoft’s SDK 4.0 VM (build 3802). All
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Name Description Line count (approx.) Stack

own library total shrinks

Othello Play a full Othello game. 400 500 900 0

Expr Build a 100 000 elements al-
gebraic expression, derive it,
evaluate it.

90 350 440 0

Fibo Compute fibonacci(37) using
naive algorithm.

3 0 3 0

Queens Solve the 8 queens problem
20 times.

40 350 390 10 020

Sort Build 500 lists of 250 random
elements, merge-sort them.

100 0 100 149 500

Table 1
Benchmarks description

.class size Code size

Name TCE RET TCE EXN TCE RET TCE EXN

Othello 25% 27% 57% 31%

Expr 25% 27% 65% 35%

Fibo 70% 70% 65% 48%

Queens 28% 29% 73% 38%

Sort 23% 24% 40% 21%

Table 2
Increase in code size

measurements were made on a 600 Mhz Pentium running Microsoft Windows
NT 4.0, except for one case (Queens) which was tested on the same machine
running Linux, because of stack overflow problems on NT. For each bench-
mark, we measured elapsed time (i.e. wall-clock time) three times in a row,
and kept only the best time of the three.

Figure 1 shows graphically the impact of tail call elimination on execu-
tion time, using the two different techniques to shrink the stack. As was said
above, the Queens benchmark causes a (legitimate) stack overflow when com-
piled without tail call elimination on all three VMs on NT. For this reason
measures were made on Linux, and thus no data exist for this benchmark on
the Microsoft VM.

The differences in speed between the normal version and the versions with

8



Othello Expr Fibo Queens Sort
0

10

20

30

Benchmark

E
xe

cu
ti

on
 t

im
e 

(s
)

Sun

Sun RET

Sun EXN

IBM

IBM RET

IBM EXN

Microsoft

Microsoft RET

Microsoft EXN

Othello Expr Fibo Queens Sort
0

10

20

30

Fig. 1. Running time with and without tail call elimination

tail call elimination are summed up in table 3. As one can see, the cost of tail
call elimination is moderate, since most benchmarks are not slowed down by
more than 15%. Comparing the two techniques is instructive: on benchmarks
which do not shrink the stack, EXN seems preferable; but on benchmarks
which do shrink the stack, RET seems to perform better. We can conjecture
that this is partly due to the implementation of exceptions on JVMs: since in
Java exceptions are used only to signal real errors, and not as a control-flow
mechanism, installing exception handlers should be cheap whereas throwing
exceptions can be more expensive.

Sun IBM Microsoft

Name RET EXN RET EXN RET EXN

Othello 5% 0% 12% 16% 9% 6%

Expr 8% 2% 4% 5% 6% 6%

Fibo 0% 1% −14% 0% −1% −1%

Queens −19% −23% −3% 4% n/a n/a

Sort 9% 74% 3% 26% −14% 7%

Table 3
Slowdown implied by tail call elimination

Some benchmarks—e.g. Queens—even run faster when tail call elimination
is turned on. What happens in these cases is that tail call elimination, by
periodically shrinking the stack, destroys pointers to dead objects which are
still on the stack, thereby making them reclaimable by the garbage collector.
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This reduces the time spent in the garbage collector, and thus also the overall
running time.

There are two ways to circumvent this problem. The first one is to start
the JVM with a bigger heap size. For example, if the Queens benchmark is
started with an initial heap size of 50 Mb, then the version without tail call
elimination runs slightly faster than the two other versions. The second way
to circumvent this problem is to clear all pointers before doing a tail call.
We experimented with this technique in our compiler, but the results were
disappointing: even though the version which clears the pointers usually runs
faster than the normal version, it is still slower than the version performing
tail call elimination.

As a final note, it should be said that the current version of the Funnel
compiler does not generate highly optimised code. As things improve, the time
spent in tail call elimination code will inevitably represent a higher percentage
of the total execution time. The above numbers should therefore be taken
more as lower bounds than as definitive values. That said, some optimisations
we plan to introduce—most notably inlining—will reduce the number of calls,
thus also reducing the cost of tail call elimination.

3.5 Choosing the right limit

As explained in section 3.2, our technique of tail call elimination counts the
number of successive tail calls and shrinks the stack when more than a pre-
defined number of them have been made. Choosing intuitively a good value
for this tail call limit is not easy, since a compromise has to be made: on the
one hand, a low value seems preferable to minimise stack usage; on the other
hand, a high value seems preferable for performance, since some time is lost
each time the stack is shrunk.

To know how the choice of this limit affects performance, we compiled the
Sort benchmark with different limits and measured its execution time. The
results are presented graphically in figure 2. As could be expected, low values
(10 and below) have a very bad impact on performance, but then the curve
tends to stabilise. A limit of 40 looks like a good compromise between low
stack usage and decent performances.

4 Related Work

We looked at only a subset of the huge amount of compilers which produce
code for the JVM in order to know how they dealt with the problem of tail
call elimination.

MLj [2] optimises recursive tail calls, but does not do general tail call
elimination.

Kawa [3], like our Funnel compiler, has an option to turn on general tail
call elimination. Although Kawa’s author originally planned to eliminate tail
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Fig. 2. Influence of tail call limit on performance

calls by compiling every compilation unit to one big function [4], the current
version of Kawa uses the standard trampoline technique.

Wakeling’s Haskell compiler for the JVM [10] apparently uses the standard
trampoline technique.

5 Conclusion and Future Work

Although we still do not have experience with large Funnel programs, the tail
call elimination technique presented above has proved useful in avoiding stack
overflows in many practical cases.

Unfortunately, as explained in section 2, because of their heavy use of
visitors, typical Funnel programs put a lot of pressure on the JVM stack.
Since our technique only optimises tail calls, it cannot do anything to reduce
stack usage of normal calls.

One way of reducing stack usage of Funnel programs would be inlining.
Using techniques similar to Hölzle’s polymorphic inline caching [6], visitors
could even be removed completely. We plan to implement such optimisations
in future versions of our compiler.
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Appendix: run-time classes and functions

The Continuation class

The Continuation class holds a closure and the arguments it has to receive. It
can hold up to 4 separate arguments, and when more arguments are required,
they are simply wrapped in a tuple, which is passed as a single argument.
This wrapping is not done in the Continuation class, but in the code which
uses it, and therefore does not appear below.

The Continuation class extends the standard Java class Throwable so
that continuations can be thrown when the stack is shrunk using exceptions.
Following [2], we redefine the fillInStackTrace method to avoid losing time
creating a stack trace that will never be used.

final public class Continuation extends Throwable {
final public Closure closure;
final public int args;
public Object arg1, arg2, arg3, arg4;

public Continuation (Closure closure) {
this.closure = closure;
this.args = 0;

}

public Continuation (Closure closure, Object arg1) {
this.closure = closure;
this.arg1 = arg1;
this.args = 1;

}

// ... constructors for 2, 3 and 4 arguments are similar.

public Throwable fillInStackTrace () {
return this;

}
}

Dispatch functions

The dispatch functions are used to apply closures and to call functions of
records. For simplicity, we only consider here that they are used to apply
closures. Notice that if they were really used only to apply closures, other,
more efficient techniques could be used, like the one of MLj [2].

There is a dispatch function for functions taking 0 arguments, one for
functions taking 1 argument, and so on to cover all the functions in the pro-
gram. In the code below, only dispatch functions with 1 and 3 arguments
are shown.

Closures are composed of an integer index, which plays the role of the code
pointer, and an environment.
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Object dispatch (int tcc, Closure c, Object arg1) {
switch (c.index) {
case 2:

return f1 (tcc + 1, c.env, arg1);
case 11:

return f2 (tcc + 1, c.env, arg1);
// ... and so on ...
}

}

Object dispatch (int tcc, Closure c, Object arg1, Object arg2, Object arg3) {
switch (c.index) {
case 15:

return compose (tcc + 1, c.env, arg1, arg2, arg3);
// ... and so on ...
}

}

5.1 The callContinuation function

The callContinuation function gets a continuation as argument and applies
it repeatedly until a “real” result (i.e. something else than a continuation) is
returned, and finally return that result.

There are in fact two different versions of callContinuation, one which
is used when continuations are returned, and one which is used when contin-
uations are thrown as exceptions. Only the first version is presented here.

Object callContinuation (Continuation c) {
Object res;
while (true) {

switch (c.args) {
case 0:

res = dispatch (1, c.closure); break;
case 1:

res = dispatch (1, c.closure, c.arg1); break;
// ... cases for 2, 3 and 4 arguments are similar

}
if (! (res instanceof Continuation))

break;
c = (Continuation) res;

}
return res;

}

14


	Introduction
	The Problem
	Eliminating Tail Calls
	Baker's technique on the JVM
	Technique used by the Funnel compiler
	Implementation on the JVM
	Impact on performances and code size
	Choosing the right limit

	Related Work
	Conclusion and Future Work
	Acknowledgement 
	References
	The callContinuation function


