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Abstract. We are interested in diffusion PDE’s for smoothing multi-valued im-
ages in an anisotropic manner. By pointing out the pros and cons of existing
tensor-driven regularization methods, we introduce a new constrained diffusion
PDE that regularizes image data while taking curvatures of image structures into
account. Our method has a direct link with a continuous formulation of the Line
Integral Convolutions, allowing us to design a very fast and stable algorithm for
its implementation. Besides, our smoothing scheme numerically performs with a
sub-pixel accuracy and is then able to preserves very thin image structures con-
trary to classical PDE discretizations based on finite difference approximations.
We illustrate our method with different applications on color images.

1 Introduction

Computing regularized versions of corrupted images has always been a desirable goal
in the field of computer vision. It is useful, either to restore degraded images, or - more
indirectly - as a pre-processing step that eases further data analysis. Since the pioneering
work of Perona-Malik [21], the framework of anisotropic diffusion PDE’s has partic-
ularly raised a strong interest for such a task : it has the ability to smooth data in a
nonlinear way, allowing the preservation of significant image discontinuities. PDE’s
are local formulations which are well adapted to deal with degraded images containing
local or semi-local data corruption sources : Gaussian noise, scratches or compression
artifacts are local degradations usually encountered in digital images. Important histor-
ical steps in PDE-based image regularization have been reached with the extension of
the classical heat flow to deal with anisotropic smoothing [21, 17, 25, 36], the interpreta-
tion of diffusion PDE’s as gradient descents of energy functionals [2, 8, 10, 13, 24], and
the link between regularization PDE’s and the concept of non-linear scale spaces [1, 18,
19]. Extensions of these techniques have been more recently tackled to deal with gen-
eral multi-valued images (including colors) [26, 31, 32, 37], fields of unit vectors [14,
20, 29], orthonormal matrices [11, 31], positive-definite matrices [11, 31], or image data
defined on implicit surfaces [3, 9, 30]. Despite this wide range of existing formalisms,
all regularization methods have something in common : they locally smooth the image
along one or several directions of the space that are different at each image point. Typ-
ically, the principal smoothing direction is chosen to be parallel to the image contours,
resulting in an anisotropic regularization that do not destroy edges. As a requirement,
defining a correct smoothing behavior is one of the first aim of a good regularization al-
gorithm, the second being the precision of the smoothing process itself : it must respect
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the pre-defined smoothing geometry as much as possible. This general principle has
been recently adopted in [32, 36] with the proposal of regularization PDE’s designed
to fit a given (user-defined) underlying local smoothing geometry, modeled as a field
of diffusion tensors. Separating the smoothing geometry from the regularization itself
allows to unify a lot of previously proposed equations into generic formulations, and
generally provides a local geometric interpretation of the corresponding processes.
Here, we first propose a quick analysis of these unifying methods, then introduce a
comparable tensor-driven diffusion PDE that regularizes multi-valued images while re-
specting specific curvature constraints. We show that this general formalism, which is
naturally positioned between the two previous ones, has interesting smoothing proper-
ties. Moreover, it is directly related to the framework of LIC’s (Line Integral Convo-
lutions, firstly proposed by Cabral & Leedom [6]). This analogy leads to the proposal
of an efficient L1C-based scheme that implements our proposed method. It allows the
preservation of thin image structures, thanks to its sub-pixel accuracy and runs up to
three times faster than classical explicit scheme thanks to its high stability. Results are
finally illustrated with applications on color images, including denoising, inpainting and
non-linear resizing.

2 Anisotropic Smoothing of Imageswith PDE’s: A Review

2.1 Local geometry and diffusion tensors

We consider a noisy multi-valued image I : {2 — R™ (n = 3 for color images), defined

on £2 C R2. I, denotes the particular vector channel ; of I : Ix)= (h(x), vy In(x))T.
PDE-based regularizations act as local smoothers of T along defined directions depend-
ing themselves on the local configuration of the pixel intensities : one wants to smooth
I mostly along directions of the edges if there are any. Naturally, this means we need
first to retrieve the local geometry of 1. As pointed out in [12, 36], it may be seen as the
definition of these important features at each image point X = (z,y) € 2

e Two orthogonal directions 9&) , G(X) € S! (unit vectors of R?) directed along the
local maximum and minimum variations of image intensities at X. The direction 6~
corresponds to the edge direction, when there is one.

e Two corresponding positive values )‘ZLX) , >‘(_x) that measure the effective variations
of image intensities (local signal contrast) along 9’;() and 9(3() respectively.

This geometry can be retrieved by the field G of structure tensors, which is a natural
tensor-valued extension of the gradient field for multi-valued images [12] :

T
VX €0, Gx) =i, VIx)VIly, Wwhere VI;= (%I; %2’ ) 1)

A Gaussian-smoothed version G, = G * G, is usually computed to retrieve a more
coherent geometry (the standard deviation o being proportional to the noise scale [36]).
Then, the spectral elements of G, x) give at the same time the contrast (eigenvalues
A7, AT) and the orientations (eigenvectors #~_L67) of the local image structures.

Once the local geometry G, of the image I has been determined, authors of [32, 36]
propose to design a particular field T : {2 — P(2) of diffusion tensors which specifies



Lecture Notes in Computer Science 3

the local smoothing geometry that should drive the regularization process. T naturally
depends on the spectral elements A=, A" and 0—, 6" of G,, :

VX €02, Tix)= foun 0707+ fe e oro+" )

Basically, the functions f*/~ : R? — IR set the strengths of the desired smoothing
along the corresponding directions 81/~ Several choices for f+/— are possible, de-
pending on the considered application. For image denoising, a possible choice is (pro-
posed in [10,31,32]) : £}/ | = sy With p— < py.

Intuitively, if a pixel X is located on an image contour ()\&) is high) then the smooth-

ing must be performed mostly along the contour direction G(X) with a strength inversely

proportional to the local contrast. Conversely, if X is located on a flat region ()\+X is
low), the smoothing must be performed in all possible directions (isotropic behavior),
leading then to T ~ T; (identity matrix). Modeling the local smoothing geometry as
a field T of diffusion tensors is the first stage proposed both in [32,36]. The desired
smoothing must be applied then, using a possible choice of diffusion PDE’s, as de-
tailed below. Most existing regularization PDE’s [1-4, 8, 10, 13,18, 19, 21, 24-26] may
be seen as particular cases of such diffusion equations with different tensor fields T.

2.2 Thedivergence-based PDE

A corrupted multi-valued image I : 2 — R™ can be anisotropically regularized “along”
a diffusion tensor field T : 2 — P(2) by the following divergence PDE :

Vi=1,..,n, 9L — div (TV1I;) (3)

This tensor-driven regularization equation has been introduced in [36], and adapted for
color/multi-valued images in [37]. Note that T is the same for all image channels I,
ensuring that the I; are smoothed along a common multi-valued geometry, contrary to
an uncorrelated channel-by-channel approach. Despite its popularity, the PDE (3) does
not strictly respect the geometry T, since the smoothing performed is not always the
one that could be expected. Particularly, consider the case of choosing

T
Tix) = (%) (%) or Ty(x) = 14 (identity matrix). For scalar images, these

different fields both lead to the well known heat flow equation % = AIJ that is equiv-
alent to the convolution of the image I by a normalized Gaussian kernel (isotropic
smoothing [15]), despite the pure anisotropic form of T x). The divergence is indeed
a differential operator which makes the PDE (3) implicitly depending on the spatial
variations of T. It is actually not conceivable to easily define a pointwise smoothing
behavior T with a divergence equation (3).

2.3 Thetrace-based PDE

In order to better respect the local smoothing geometry T, we have proposed in [31, 32]
a tensor-driven PDE, similar to (3), but based on a trace operator :

Vi=1,.,n, 9L — trace (TH,) (4)
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H,; stands for the Hessian of I;. As noticed in [31,32], the evolution of (4) has an
interesting geometric interpretation in terms of local image filtering with spatially vary-
_xTrl'x

ing short-time Gaussian kernels GtT(x) = ﬁexp ( =—— ), locally oriented by

the tensor T'(x. It particularly ensures that the smoothing is truly done along the pre-
defined smoothing geometry T. As trace() is not a differential operator, the spatial
variation of T does not trouble the diffusion directions here and two differently shaped
tensors necessarily lead to distinct smoothing behaviors.

Unfortunately, this analysis also points out one important drawback of the trace-based
formulation. On curved structures (like corners), the Gaussian behavior of the smooth-
ing is not desirable : when the local variation of the edge orientation 6~ is high, a
Gaussian filter tends to round corners, since an oriented Gaussian kernel is not curved
itself. This classical behavior is also best known as the “mean curvature flow” effect,
characterized by the equation % = 8‘22,12. This is illustrated on Fig.1b where (4) has
been applied on a real color image and T has been defined as (2) (then f— # 0). Here,
the mean curvature flow effect results in blending parallel thin curved structures. To
avoid this over-smoothing, one usually try to vanish f+/~ on curved structures (cor-
ners). But the detection of such structures on noisy images is a hard task. Conversely,
image under-smoothing on edges may occur when one wants to limit the diffusion too
much. There is a difficult trade-off between complete noise removal and preservation of
curved structures, when using trace-based PDE’s (4). This kind of regularization pro-
cess does not care about the curvature of the smoothing directions, and by extension, of
the curvature of the image contours. Taking this curvature into account is a very desir-
able goal and has motivated the work presented in this paper. For illustration purposes,
results of our proposed curvature-preserving equation is shown on Fig.1c.
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(b) Applying trace-based PDE (4), (c) Applying our constrained PDE

(8) Image of afi ngerprint withpy = 0.5, p2 = 1.2. (11), with p1 = 0.5, ps = 1.2.

Fig. 1. Comparisons between trace PDE (4) and our proposed curvature-preserving PDE’s (11).
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3 TheFramework of Curvature-Preserving PDE’s

3.1 Thesingledirection case

We introduce now the general idea of curvature-preserving PDE’s, focusing first on
image regularization along a vector field w : £2 — R? instead of a tensor field T. We
consider then a local smoothing everywhere along a single varying direction HX_H with a
strength || w]|. The two spatial components of w are denoted by w x) = (u(x) v(x))”.
We define the curvature-preserving regularization PDE that smoothes I along w by :

oI;
ot
where J,, stands for the Jacobian of w , and H; the Hessian of I;.

Let us study more closely how (5) is related to w. We consider the curve C’i defining
the integral curve of w, starting from X and parameterized by a € R (Fig.2a) :

Vi=1,...,n, = trace (ww” H;) + VI J,w (5)

X _X and 20— w(eX 6
(0) da W( (a)) ( )

We denote by F the family of integral curves of w. A second-order Taylor development
. ack p2 0°¢% .
of C7%, around a = 0/is Cf) = C§ + h et lamo T 5 Bar jamo T O(R?), 1€

C

2

h
C();i) = X+hW<x) + —

5 Jwoo Wix) + O(h?)

with o — 0, and O(h™) = h™ ¢,. Then, we can compute a second-order Taylor de-
velopment of I; (C(’i)) around a = 0, which corresponds to the variations of the image

intensity near X when following the integral curve CX :

h h?
Ii(c(),i)) = Ilix) + hVIi?X) (W(X) + 5 Jw(x)W(X)) + ?trace (W(X)W?X)Hi) + O(hg)

The second derivative of the function a — I; (C()Z)) ata = 0isthen:

921,(CX) .
v (a) . X X X
9 oo A T2 () + 1) 203

= trace (W(X)W(TX)HZ-(X)) + VIZ-TJW(X)W(X) (7

This is exactly the right term in our curvature-preserving PDE (5). Actually, (5) can be
seen individually for all integral curves of F instead of each point X € (2 : consider
another point Y € C*. Then, there exist ¢ € R such that Y = C%,. Indeed, C* and C¥
describe the same curve (6) with different parameterizations : Va € R, C(‘;) =cX

(c+a)’
(pX 27 (X
As (5) is verified on Y, then allg’}“)) lame = %\a:e' This is obviously true for

e € R since (5) is verified for all points Y lying on the integral curve CX. Then, the

PDE (5) may be also writtenas : VC € F, Va € R, 811'(;;“)) = 821;(5;“’).
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We recognize thus a one-dimensional heat flow constrained on C. This is very different
from a heat-flow oriented by w, as i 6 I% since the curvatures of integral curves
of w are now implicitly taken into account In partlcular the velocity of our constrained
equation has the interesting property to vanish when image intensities are locally con-
stant on C, whatever the curvature of C is. In this context, defining a field w that is
tangent everywhere to the image structures allows the preservation of these structures,
even if they are curved (this concerns corners particularly, Fig.2b and Fig.1c). This is
not the case with divergence (3) or trace-based PDE’s (4).

(b) Example of integral curves Cfi) when w is the lowest eigenvector

Integral curve of avector fi eld w. .
(@ Integ w of the structure tensor G, of acolor image I.

Fig. 2. Integral curve C* of vector fields w : £2 — R?.

The existence and unicity of the solutions of (5) are not directly approached in this
article, although we show below that these solutions can be approximated by the line
integral convolution technique, which is a well-posed analytical approach [6].

3.2 Curvature-preserving PDE’s and lineintegral convolutions

Line Integral Convolutions (LIC) have been first introduced in [6] as a technique to
create a textured image I“/C that represents a vector field w : 2 — R2. The idea
consists in smoothing an image I"°#*¢ - containing only noise - by averaging its pixel
values along the integral curves of w. Actually, a continuous formulation of a LIC is :

VX €2, THC =L [T f(p) I (X)) dp (8)

where f : R — R is an even function (strictly decreasing to 0 on R*) and CX is
defined as the integral curve (6) of w through X. The normalization factor N allows
the preservation of the average pixel value along C* and is equal to N = ff:oo f(p) dp.
As noticed in previous section, our curvature-preserving PDE (5) can be seen as the one-
dimensional heat flow Migct‘”)) o'l (C(“)) constrained on the integral curve CX € F.
Using the variable substitution L, = I(C(’;)) this PDE becomes 2% (a) = L(a). The

solution L") attime ¢ is known to be the convolutlon of L*=0] by a normalized Gaussian

kernel G, (see [15]) : L( )= f+°° (p) Gt p) dp With Gy, \/ﬁ exp (—%).
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Substituting L with & = 0, and remembering that C(’(‘)) =Xand Gy_p) = Gy

VX € 0, Ig() = [T T=0UCX ) Gy dp (9)

Thus, the equation (9) is a particular form of the continuous LIC-based formulation
(8) with a Gaussian weighting function f = G;. Here, the normalization factor is
N = fj;: G (py dp = 1. Intuitively, the evolution of our curvature-preserving PDE (5)
may be seen as the application of local convolutions by normalized one-dimensional
Gaussian kernels along integral curves C of w, which is a possibly curved filtering
instead of an oriented one. Applying this setting on a multi-valued image I, with w
being the lowest eigenvector of the structure tensor field G (i.e. the contour direction)
allows the preservation of curved image structures. This is illustrated on Fig.2b, where
few integral lines CX are shown, around a typical T-junction structure. Note how the
streamlines rotate when arriving at the junction.

Note that (9) is an analytical solution of (5) when w does not evolve over time. This is
generally not true when dealing with general nonlinear regularization PDE’s, where the
smoothing geometry is re-evaluated at each time step. We can anyway perform several
iterations of our LIC scheme (9), where the vector field w is updated at each iteration,
exactly as it is done in explicit PDE implementations, where the smoothing geometry
w is considered as constant between two successive time steps ¢ and ¢ + dt.

3.3 Between tracesand divergence formulations
It is worth to notice than our curvature-preserving PDE (5) is naturally positioned be-
tween the trace and divergence formulations. We can express div (wa VL-) as

div (ww” VI;) = trace (ww”' H;) + VI Jyw + div(w) VI w

The first term corresponds to the trace PDE (4) (that smoothes locally I along w),
the two first terms correspond to our curvature-constrained regularization PDE (5),
(that smoothes locally I along w while taking the curvature of integral curves C of
w into account), and the three terms together correspond to the classical divergence
PDE (3) that performs local diffusions of I along w. In our point of view, the last term
div(w)VII'w is responsible for the perturbations of the effective smoothing direction
(as described in section 2.2) and is not desirable for image regularization purposes.
Our proposed curvature-constrained PDE (5) allows at the same time the full respect
of the pre-defined smoothing directions w, while preserving images structures which
are curved along w. Note also that we can also see our curvature-preserving PDE (5)
as the corresponding divergence-based equation minus the term div(w)V 1! w. Thus,
where w is a divergence-free field, the divergence and curvature-preserving approaches
are strictly equivalent.

3.4 Extension to multi-directional smoothing

Here, we extend our single-direction smoothing PDE (5) so that it can deal with a
tensor-valued geometry T : {2 — P(2), instead of a single vector-valued geome-
try w. Indeed, a diffusion tensor can describe much more complex smoothing be-
haviors (isotropic and anisotropic) than single directions (only anisotropic). This ex-
tension is not straightforward : curvatures and integral curves of tensor-valued fields
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T are not easily defined. Instead, we propose to locally decompose a tensor-driven
smoothing process by several vector-driven smoothing processes along different orien-

tations. We first notice that [”_ aqal do = 5 I with an = (cosa sina)T. Then,
any 2 x 2 tensor T may be written as : T = 2 VT (7_, aqal do) VT where

VT = /fTuu” + \/f—vv” stands for the square root of T. One can easily ver-
ify that (v/T)? = T and (v/T)” = V/T. Thus, the tensor T may be written as :
T = % f;;o(\/Taa)(\/Taa)T do (10)

We have split the tensor T into a sum of atomic tensors (v Ta, )(vTa,)”, each be-
ing purely anisotropic and directed only along the vector v Ta, € R2. The equa-
tion (10) naturally suggests to decompose any tensor-driven regularization PDE into
a sum of single direction smoothing processes, each of them respecting the over-
all geometry T. For instance, if T = I, (identity matrix), the tensor is isotropic
and Vo € [0,7], vV Ta, = aq. The resulting smoothing will be then performed in all
directions a,, of the plane with the same strength, while if T = uu” (where u € S'),
the tensor is purely anisotropic and : Vo € [0, 7], VTa, = (u”a,)u. The resulting
smoothing will be then performed only along the direction u of the tensor T.

Then, considering that each single direction smoothing must be done with a curvature-
preserving PDE (5), we define the following constrained regularization PDE, acting on
a multi-valued image I and driven by a tensor-valued smoothing geometry T :

L _ 2 [T trace ((\/Taa)(\/Taa)THi) +VIT T 5, VTaq, da,

(03

which can be simplified as :

Vi=1,...,n, & =trace(TH,) + 2VIT [T J 5, VTaada  (11)

where a,, = (cosa sina)?, and J /7., stands for the Jacobian of the vector field

2 — V/Ta,. A similar idea of smoothing decomposition along all orientations of the
plane can be also found in [35]. As in the single direction case, (11) may be seen as
a trace-based equation (4), where an extra term has been added in order to respect the
curvature of all integral lines passing through the tensor-valued geometry T.

4 Implementation and Applications

The implementation of our regularization method (11) benefits from the LIC-based in-
terpretation of curvature-preserving PDE’s presented in section 3.2. Indeed, we can ex-
plicitly discretize (11) by the Euler scheme : T+t = 111 - 2dt ( o R(\/Taa))
where a = kn/N (in the interval [0,7]), dt is the usual temporal discretization

step and R(w) represents a discretization of the curvature-preserving PDE (5) that
preserves curvatures along the single direction w. If we write this expression as :

It = L (fo:’(}l It 4 24t R(\/Taa)), we can express it as the averaging of
different LIC’s along vector fields v/ Ta,, :

t+dt] _ 1 N—1 1[t]
I J= N ( k=0 ILIC(ﬁaa))
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The only difficult part here is the LIC implementation which needs the computation of
integral curves. A classical second-order Runge-Kutta integration [23] has been used
with success for our implementation. On one hand, our scheme allows the preservation
of thin image structures from a numerical point of view : the smoothing is performed
along integral curves of w, with a sub-pixel accuracy (see comparisons with a classical
finite difference discretization, Fig.3). On the other hand, this scheme is unconditionally
stable and allows to choose very large time steps dt, without visible artifacts in the ob-
tained regularization (dt ~ 50 in our experiments). As a result, the algorithm performs
very fast (~ x3) compared to traditional diffusion PDE implementations.

(b) Regularization using a finite-(c) Regularization using our LI1C-based
difference scheme (stopped at ¢ = 100). scheme (stopped at t = 100).

(a) Noisy color image.

Fig. 3. Comparison between traditional and LI1C-based implementations of our PDE (11).

Fig.4 and 5 present different application results of our curvature-preserving PDE
(11), implemented by the LIC-based scheme and applied on 24bits RGB color
images I: 2 — [0,255]3. All experiments have been performed on a single-CPU
PC 2.8 Ghz running Linux. Possible application range covers color image regu-
larization (PDE is applied on the entire image), inpainting (PDE is applied only
inside regions to inpaint), and non-linear resizing (similar to inpainting with a
sparse mask). See [31,32] for more precisions on how diffusion PDE’s are used
in these contexts. Processing time is displayed for each example. Other results,
as well as the C++ source code of the proposed algorithm can be found at :
http://www.greyc.ensicaen.fr/~dtschump/greycstoration/.
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(b) Watered effect suppression in a color image (11s).

s i
(€) Dendising of adigital photograph with digital noise (5.65). Efz)sgee“ ng painting effects with over-smoothing procedures

Fig. 4. Results of color image regularization using our curvature-preserving PDE’s (11).
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(c) Left : Zoomof (b). Right : Reconstruction of acolor image where 50% of the pixel values have been suppressed
(1ImO1s).

et s : N

Fromleft toright : First row : Original color image, bloc-resizing, bicubic resizing, PDE-based resizing.

Fig.5. Result of our curvature-preserving PDE (11) for interpolation of color images. (More
results at http://www.greyc.ensicaen.fr/ “dtschump/greycstoration/)



