
Barrier Synchronisation in Java

Carwyn Ball and Mark Bull

Abstract

Since barrier routines are widely used in the paradigm of shared memory parallel programming, it is impor-
tant that they are as efficient and reliable as possible. Unfortunately, due to the weak memory model of the Java
Virtual Machine, special care must be taken writing such routines, to allow for the case of the JVM executing on
a multiprocessor with a weak memory model.Programmers’ safety nets, which contrain the reordering of code,
are used to enforce correctness. However as they can also prevent a number of common code optimisations they
can damage performance.

Java and C versions of a central barrier, a software-combining-tree barrier, a butterfly barrier, a dissemination
barrier and a static F-way tournament barrier were timed on a Sun Fire 6800. The Java versions included anaive
case (which works on the Sun Fire 6800 as it employs the Total Store Ordering memory consistency model), an
undelayed synchronizedcase, and threedelayed synchronizedcases.

The naive barriers outperform the correctly synchronised barriers by a considerable margin.

1 Introduction

Race conditions can cause a program to execute in a non-deterministic fashion, producing inconsistent results.
Synchronisation routines are used to remove race conditions from a code. Anepisodeof a synchronisation routine
forces a “fast” thread to wait for other threads to reach the same episode. Thus operations on shared data can be
separated into differentepochs, insuring the correct execution of a code.

Barrier synchronisationis a common technique. A thread executing an episode of a barrier waits for all other
threads before proceeding to the next epoch. Therefore, when a barrier is reached, all threads are forced to wait
for the last thread to arrive.

Use of barriers is common in shared memory parallel programming. The OpenMP library [1], [2], [3], which
facilitates the transformation of sequential codes for shared memory multiprocessors, not only contains explicitly
called barriers, but a number of the routines also contain hidden orimplicit barriers.

For parallel programming in Java, it is natural to implement barrier synchronisation routines (no such routine
is available in the standard Java libraries). Unfortunately, the Java memory model has raised controversy as it has
been suggested [15] that there are anomalies in its design, which in some circumstances may allow code to execute
in an inappropriate order and render erroneous results, while also preventing many optimisation techniques.

A selection of barrier algorithms have been written in both C and Java. The C implementations use the
OpenMP library and the Java implementation uses theThreads class. As the multi-threaded Java memory
model has been shown to be unreliable, two different versions of the Java codes were made: a naive version and
a completely safe version.

The completely safe version uses thesynchronized() fg construct to separate read and write operations
to individual memory locations, while allowing memory access to different memory locations freely and concur-
rently. This creates a problem, as there is no way of giving write operations priority over read operations. Hence,
there is a very expensive ownership problem with barrier algorithms which have threads busy-waiting for a central
flag change to notify completion. Each thread claims the relevant variable for as long as it takes to read its value,
and the updating thread must wait in line for its turn. The Java memory model issues are discussed further in
Section 2.1.2.

The remainder of this report is organised as follows: Section 2 contains discussions of various issues involved
with implementing synchronisation routines on different shared memory multiprocessors and memory consistency
models. Section 3 contains descriptions of a number of barrier algorithms. Section 4 contains descriptions of
experiments which were performed, and the results of these. Section 5 contains conclusions based on these
experiments.

1



2 Synchronisation and Memory Consistency in C and Java

Non-deterministic and unexpected behaviour can occur when multi-threaded codes are not correctly synchronised.
Though this is true of many programming languages, problems are more common with object orientated languages
and languages which make safety guarantees. There is much hidden functionality behind the scenes, involving
many layers of data structures which are not available to the programmer. The Java Virtual Machine complicates
matters further.

Although multithreaded programming is supported by core Java with theThreads class, care must be taken
to ensure that surprising results are avoided. It is fairly straightforward to writelegalJava code which will produce
unpredictable or obscure results. There are problems with the Java memory model, or more precisely, there are
problems with the memory consistency model of the Java Virtual Machine. Memory consistency models are
described in Section 2.1. The memory model of the multiprocessor used for the experiments (see Section 4) is
described in Section 2.1.1. The Java memory model and its problems are described in Section 2.1.2. There are
descriptions of preventative measures for programmers in Section 2.1.3.

2.1 Introduction to Memory Consistency Models

A memory consistency modelis designed to formalise the appearance of the memory to the programmer. It is an
interface between the programmer and the memory hardware structure.

On a single processor machine, a read returns the value of the last write. The last write is easily defined by
the program order. This is not the case for shared memory machines. Different operations occur on different
processors, and are not related by program order.

The first attempt to extend the single processor model in an intuitive way to shared memory machines is called
thesequential consistency model. A multiprocessor system is sequentially consistent if:

the result of any execution is the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in this sequence in the order
specified by its program. [5]

This definition is based on two basic ideas: (a) conserving the order of operations performed by a single processor,
and (b) performing operations in a well defined order; one at a time (atomically).

On single processor machines, it is sufficient to preserve the order of just data dependencies (recognised by
reads from and writes to the same memory address) and control dependencies (such asif() control sequences),
to maintain sequential consistency. This allows hardware and compilers a great deal of freedom to transform the
code to benefit performance. (This process is referred to asoptimisation.) On multiprocessors, preserving the
order of reads and writes per-location like this is insufficient for correctness, as more complicated data depen-
dencies are common. The requirement for sequential consistency curtails the optimisation procedures which may
be performed. There are many standard optimisation procedures which cannot be used on a strictly sequentially
consistent system without the possibility of changing the outcome (breaking the code).

For systems with a cache based memory hierarchy, enforcing sequential consistency requires that special care
must be taken regarding: (a) cache coherence, (b) making threads aware of completion of write-operations and (c)
making writes appear atomic. Again, for an implementation to adhere strictly to sequential consistency, a number
of cache optimisations must be neglected.

As sequential consistency can be too restrictive for a reasonable optimisation process, a number of more
“relaxed” memory consistency models have been devised. These can be characterised by how they relax the
sequential consistency model. Sequential consistency is defined by two ideas: program order and atomicity, and
can therefore be relaxed in these two ways. The order of reads and writes to different memory addresses can be
relaxed. Impositions placed on cache updates and invalidates can also be relaxed.

In all cases, writes are eventually made visible to all threads/processors and all writes to the same memory
location are serialised (forced to be atomic) in order preserve data dependencies.

In general, relaxed models require that memory be consistent only at certain synchronisation events. They
thus allow buffering, merging, and pipelining writes within certain constraints specified by the model.

Release consistency is an example of a commonly used relaxed model. Memory accesses are classified as
ordinary, anacquire or a release. An acquire indicates that a processor is beginning an operation on which
another processor may depend—writes by other processes must be made visible to this processor. A release



indicates that the processor has completed such a job—all this processor’s writes must be made visible to any
acquiring processors. Thus there is a certain amount of freedom as to when writes are made visible, and memory
latency can be hidden behind computation.

As most optimisations break a programmer’s intuitive model of what memory should do, there aresafety-
netsavailable, which a programmer uses to force correctness where it is necessary. An example of a safety-net
is a fence, which is similar to a synchronisation routine, guaranteeing all outstanding memory operations are
completed before proceeding.

Unlike in C, where the code is compiled directly for the machine it executes on, Java is translated intobytecode
to execute on a (software)virtual machine, which is itself executed on the (hardware) real machine. The memory
models of these machines are described in subsections 2.1.1 and 2.1.2.

2.1.1 SPARC Memory Consistency Model

The memory consistency model of the SPARC machines is calledtotal store ordering(TSO).
TSO works as follows. Writes are buffered and stored in order. Reads are performed in order, but can bypass

writes. The store buffer is flushed when a fence is executed. In other words only the write followed by a read
condition is relaxed. All other operation orderings are preserved.

This means that there are no important inconsistencies between what we expect to happen and what actually
happens. The only safety-net required to ensure correctness when using C is that certain variables are declared as
volatile , and sufficient synchronisation enforced. In C,volatile means that the variable is not stored in a
processor register for improved serial performance on a processor. This would delay the change of the variable
becoming visible to the other processors. Instead the variable is flushed straight into cache as soon as its value is
set.

2.1.2 Java Virtual Machine Memory Consistency Model

The Java memory model [4] is a special case, as it describes the memory structure of a generic virtual machine—
which itself is layered upon an SMM. It is described in in terms of variables.

A variable is any memory location which may be stored into: class variables, instance variables and array
members. Amastercopy of each variable is stored inmain memorywhich is shared by all threads. Every thread
has aworking copyof variables it is using, which it stores in itsworking memory. There is a set of rules defining
when a thread should transfer its working copy to the main memory. A thread acquires a lock (also stored in main
memory) before updating the main memory.

When data is copied from main memory to a working memory, two actions must occur: a read performed by
the main memory, followed by a load action performed by working memory. Correspondingly, transferring data
to main memory requires a store to working memory and a write to main memory. There may be a delay between
these actions, so actions on one thread may be appear to another thread as having occurred in a different order.
For individual variables, the actions in main memory are order-preserved.

There are a set of rules concerning ordering: actions performed by any one thread are totally ordered; actions
performed by main memory for any individual variable or lock are totally ordered. This does not mean that their
orders are preserved, only that they have an order.

There are a set of rules which constrain actions performed by a thread with respect to a variable, and a set
of rules for when a variable becomes visible to threads which use it. Effectively, the orders of operations are
completely relaxed. The Java memory model is weaker than release consistency.

For correctness the Java memory model has been shown to require memorycoherence[6]:

for each variable in isolation, the uses and assigns to that variable must appear as if they acted directly
on global memory in some order that respects the order within each thread (i.e., each variable in
isolation is sequentially consistent.) [15]

Implementing a Java Virtual Machine on an SMM with a weak memory model therefore raises issues—no strength
is gained using the virtual machine.

There follow some examples of situations which are allowed according to the memory model. The first is
shown in Figure 1 (taken from [15]—Figure 1). The code is not executed in a sequentially consistent way. This is
allowed because ofprescient stores. Prescient stores allow store actions to be executed first on each thread.



Initially: x = y = 0

Thread 1 Thread 2
a = x b = y
y = 1 x = 1

Result: a = 1, b = 1

Figure 1: Out of order execution is valid because of prescient stores.

Default:p = new point(1,2)

Thread 1 Thread 2 Thread 3
p = new point(3,4)

a = p.x b = p.x

Result: a, b = 0(!?), 1 or 3.

Figure 2: Reordering of field initialisation and ref update

Another example is shown in Figure 2 (based on Figure 9 from [16]).
Writes initialising the point (on thread 1) are not required to be sent to main memory before the write of the

reference to the newly created point. Different threads accessing the object could see different values—actions
may be made visible to different threads at different times. This would account for the values of 1 or 3.a,b =
0 is possible if the default initialisation is not complete.

Synchronising the writes will not help here. The only way to fix this problem currently is to also synchronise
the reader. This may be a problem for applications which involve threads busy-waiting for a central flag to change,
as the “changer” thread will have to queue behind the waiting threads to gain a lock to change the flag.

The problem is that two writes to global memory are allowed to be reordered in a weak memory consistency
model, by the hardware or by the compiler. As there is no data dependence the order will not be preserved. If
these writes are reordered, then the results are unexpected.

It has been said that the Java memory model is “both too weakand too strong” [16]. Too strong in that it
prevents certain optimisations, and too weak in that much of the code which has been written at present is not
guaranteed to be correct according to the model. As current memory consistency models are tending to be weaker
and compiler optimisations more aggressive, there may be a large collection of code which currently appears to
be safe which will later be revealed to be unsafe.

2.1.3 Java Safety-Nets

synchronized The synchronized keyword can be used to prevent threads from running sections of code
at the same time. Also, when two threads synchronise on the same object, they become aware of each other’s
updates. Thus usingsynchronized can prevent unusual behaviour such as that illustrated in Figure 2. It can
be used in two ways:

1. synchronized method. The syntax is shown in Figure 3 Declaring a method assynchronized

synchronized boolean doSomething() f
// lines of code to run exclusively
System.out.println(‘‘Hello

world.’’);
g

Figure 3: Syntax for the declaration of asynchronized method.

excludes it from running at the same time as all othersynchronized methods executed on the same



instance of the object. Two threads can concurrently execute asynchronized method on different
instances of the same object. They cannot execute asynchronized method on the same instance of the
object.

2. synchronized code block. The syntax is shown in Figure 4 The block is said to besynchronized

synchronized (object) f
// lines of code to run exclusively.
System.out.println(‘‘Hello

world.’’);
g

Figure 4: Syntax of asynchronized block.

on the object. Blocks which aresynchronized on the same object are executed exclusively. A section
of exclusive code may be executed concurrently with a different exclusive section by using a different
object .

Declaring a methodsynchronized is the same as placing the code of the method inside asynchronized
block, using the object which the method is called by as theobject on which the block issynchronized .

There is an overhead associated with usingsynchronized . Calling asynchronized method or block
is significantly more expensive than calling a non-synchronized method or block, because of the extra book-
keeping which is required in the virtual machine. The performance ofsynchronized methods has been mea-
sured as between six and 100 times slower than that of non-synchronized methods.

volatile Similarly to in C, the Javavolatile prevents the variable from being stored in a processor register
and not being made visible to other threads.volatile variables are flushed straight into cache after being
changed. Furthermore, actions on the master copy of avolatile variable are executed in program order.

wait-notify This is useful for multithreaded code which is run on a single processor, but is worth mentioning
here. A thread which has finished its current job can callwait , which makes it relinquish its time on the CPU,
allowing threads with unfinished jobs to take priority. A singlewait -ing thread can proceed when anotify
call is made, or all can proceed at once if a thread callsnotifyall . A barrier can be made which uses this pair
of calls for its wake-up phase but the performance is not competitive. For comparison, await-notify barrier
version of the Central Barrier was tested. See Section 3.10 for details.

3 Barrier Routines

An episode of a barrier prevents any thread from entering the next epoch before each thread has left the previous
one. Thus, an episode prevents two threads from executing adjacent epochs at the same time. If reads and writes
to global data are contained in separate epochs, then their order is guaranteed.

Each episode is typically composed of phasesarrival, wake-up notificationandre-initialisation. In the arrival
phase, threads communicate that they have arrived. Often only one thread “knows” that all have arrived, and
it is this thread which performs the wake-up notification. Sometimes the notification phase is not required (for
example with the dissemination barrier, synchronisationdisseminatesthrough all the threads and no single global
wake-up is required). Re-initialisation returns the central data structure to a suitable state for the thread to enter
another episode successfully, without passing straight through or getting stuck.

3.1 Wake-up Notification

Notification can be achieved in a number of ways, the more efficient depending on the architecture used. A simple
method uses a shared central flag, which is changed to indicate that the arrival has been completed. Expectant
threads busy-wait for it to change like so:



while(flag != local target);

Here the local target is a thread-private boolean variable. For each new episode of the barrier, the sense of this
local target is changed. This procedure is known assense reversal. Examples of variations on this theme use
linear and exponential delay functions to reduce contention between threads.

An alternative is to use awake-up tree. Each thread except the “aware” thread is designated a parent. The
aware thread notifies its children. Each notified parent thread notifies its child threads. Mellor-Crummey and Scott
[13] used a fan-out of two because it resulted in the shortest critical path for a uniform tree, but larger fan-outs
may be better, as they result in fewer wake-up stages.

The rest of this section contains descriptions of several barrier algorithms. Implementations of a central
barrier, software combining tree barrier, butterfly barrier, dissemination barrier and a static f-way barrier have
been made using C with OpenMP, and Java. A basic test code executes 1,000,000 iterations of each. The master
thread executes the difference in time between the start and the finish. The C barriers have been compared with the
OpenMP standard barrier, and various other comparisons have been made. More details about these experiments
can be found in Section 4.

3.2 Central Barrier

Each of theN threads entering the barrier atomically decrements a shared integer, the initial value of which isN .
If the value of the integer after decrementation is0 then the thread resets the counter and changes a shared central
flag. Otherwise, the thread waits for notification.

Figure 5: Control flow diagram for Central Barrier Algorithm, with a central flag wake-up.

Figure 5 illustrates the procedure. As each thread enters the barrier,L is swapped, andC is decremented.
WhenC reaches0, then it is reset and the central flag is swapped. The waiting threads can proceed whenL and
C have the same value.

The algorithm relies on every thread reading and writing to a single memory location: the counter. This
memory location is known as ahot-spot, as the threads all need read and write access.

As each increment needs to be performed atomically, the lower bound of the algorithm overhead scales with
O(N ).



3.3 Software Combining Tree Barrier

The software combining tree barrier, proposed by Yew, Tzeng and Lawrie[12], is composed of groups of threads,
which each have a central counter, as in the central barrier. The last thread in the group goes through to the next
level, while the others wait for wake-up notification. This procedure is illustrated in Figure 6.

Figure 6: Control flow diagram for Software Tree Barrier Algorithm, with a central flag wake-up.

The first four threads find themselves in group0, and so decrement counterC0. The final four threads find
themselves in group1, and so they decrement the counterC1. The last thread in each of these groups is the thread
which sets the counter to0 (threads3 and6). This thread resets the counter to its original value (4) and proceeds
to the next level, decrementing the counterC2. Thread6 decrementsC2 to 0, resets it to2 and swaps the shared
central flag.

When the barrier is initialised, the number of levels and number groups are calculated, followed by arrays
containing the numbers of groups in lower levels and numbers of threads in each group. The counter for each
group is initialised with the number of threads in that group.

The number of levelsL = dlogANe, where A is a predetermined constant—the maximum number of threads
in a group. Yewet al. [12] reported that aA = 4 produced the best performance with software-combining trees.

At each stage, each thread firstly works out which group it is in, then atomically decrements the relevant
counter. If the counter becomes zero, then this thread resets the counter to the value of the number of threads in
the group and continues to the next level. Otherwise it busy-waits for the flag to change. The last thread in the
last group changes the flag. As in the central barrier, the sense of the flag target is changed at each barrier.

The overhead of this barrier relates to how the threads percolate into groups. The effect of hot-spots is reduced
as thread contention is spread across more memory locations—different counters can be decremented at the same
time. The length of time taken for a thread to pass through a level is (at least) proportional to the number of
threads in a group. The number of levels is (at least) proportional to the logarithm of the number of threads. The
overhead therefore scales as O(A� dlogANe).



3.4 Brooks Butterfly Barrier

This multi-stage barrier was proposed by Brooks [10]. It is built out of pair synchronisations and uses a shared
array of flags. The pair synchronisation algorithm shown in Figure 7.

At stage 1 each thread waits until any previous instance of the pair-synchronisation has finished. At stage 2
each thread sets its own flag to true. At stage 3, each thread waits until its partner’s flag has been set to true. Stage
4 is resetting the partner’s flag to false.

When the number of threads is a power of2, then at each ofS (= log2[N ]) stages (s), each thread(t) syn-
chronises with threadt XOR 2s. In doing so, it is also synchronising with each of the threads which the partner
thread has synchronised with at previous stages. The array of flags is aN � log2[N ] shared array of booleans.
This procedure is illustrated in Figure 8.

When the number of threads is not a power of two, some of the threads have to synchronise with two threads.
The array of flags isM � log2M , whereM is the next power of two higher thanN , the number of threads. If, for
example, there are5 threads, the array of flags is8� 3, and threads0, 1 and2 also represent the virtual threads7,
6 and5, as illustrated in Figure 9.

The algorithm is therefore most efficient when the number of threads is a power of two—none of the threads
are ever required to synchronise with more than one other. When the number of threads is slightly higher than a
power of two is when the algorithm is the least efficient, as nearly half of the threads will be synchronising with
two. The lower bound of the overhead of the algorithm varies with O(log2N ), and there are expected to be are
steps at powers of two.

3.5 Dissemination Barrier

The Dissemination Barrier addresses the problem with the Butterfly Barrier—being inefficient for non-powers of
two numbers of threads. It is not built out of pair synchronisations, but uses a similar procedure of flag setting and
waiting. This is shown in Figure 10.

The procedure is exactly the same as for the previous pair-synchronisation except that the thread whose flag
is altered is not the same as the thread which checks that this thread’s flag is altered. Threadt checks the flag of
the (cyclically) next thread (t + 2smodN ), and waits for its own flag to be set by the cyclically previous thread
(t � 2smodN ). The correctness of the algorithm is not obvious, and is detailed in [11]. Figure 11 illustrates the
procedure.

Each thread only ever needs to check the flag of one other, so the target threads can be stored in a globalN�S
array (whereS is dlog2Ne), which means that no arithmetic needs to be performed to find the thread pair at any
stage after initialisation.

The overhead of this algorithm scales as O(dlog2Ne).

3.6 Tournament Barrier

The Tournament Barrier was also proposed by Hengsenet al. [11]. The barrier is built out of two-threadgames,
which are arranged in a tournament structure—the winners play other winners until there is an overall champion.
The losers await wake-up notification which is performed by the champion. The two-thread games are as follows:

1
2
3
4

Partner 0

while(flag[0]!=false);
flag[0]=true;
while(flag[1]!=true);
flag[1]=false;

Partner 1

while(flag[1]!=false);
flag[1]=true;
while(flag[0]!=true);
flag[0]=false;

Figure 7: A pair synchronisation algorithm. Theflag variable is a shared array of booleans, initialised toffalse,
falseg.



Figure 8: Control flow diagram for Butterfly Barrier Algorithm with a power of 2 number of threads.

In the first step, the winner is just waiting for the loser to arrive. In the second step, the winner resets the
loser’s flag, while the loser waits for one thread to win overall. Notice, these games are not competitive. The
order at which the threads arrive at the game is unimportant. They represent a one-way synchronisation. If the
loser arrives first, then its flag is already set when the winner arrives. This means the “winner” can be chosen
(arbitrarily) in advance.

As in the previous two algorithms, each episode is made up ofdlog2Ne rounds. At each round (s), threadt
enters a game with threadt XOR 2s. The opponents at each round are calculated at initialisation and stored. The
communication structure of the algorithm is illustrated in Figure 13.

In the first round, the games are between thread pairs:0 and1, 2 and3, 4 and5, 6 and7; in each case, the
former is the winner. In round two, the games are between:0 and2 and4 and6. and in round three, the winners:
0 and4 play, with0 becoming the overall “champion”.0 then swaps the central flag and all the threads proceed
into the next epoch.

The overhead of this algorithm is again proportional todlog2Ne. The synchronisation-game code is shorter
than that of the butterfly and dissemination barriers, so the tournament barrier is expected to be more efficient than
these.

3.7 MCS-Tree Barrier

This barrier was proposed by Mellor-Crummey and Scott [13]. Each thread is assigned a unique tree-node, and a
parent. The barrier is initialised so that the thread’sparent pointer variable is directed to thechild arrived
flag of its parent.

When a thread arrives at an episode of the barrier, it checks or waits for itschild arrived flag to be set by
each child. Threads without children have these flags set permanently. After the children arrive, the thread resets
its child arrived flag, sets its parent’s flag, and waits for notification. The top thread notifies. Notification
can be achieved by a central flag or a wake-up tree. The communication structure of this algorithm used with 16



Figure 9: Control flow diagram for Butterfly Barrier Algorithm with a non-power of two number of threads.

Partner me

1. while(flag[me]!=false);
2. flag[me]=true;
3. while(flag[other]!=true);
4. flag[other]=false;

Figure 10: Building block of the Dissemination Barrier. Note that his procedure is not the same as Figure 7.

threads is shown in Figure 14.
Mellor-Crummey and Scott used a fan-in of four for the arrival-tree. This value is chosen because Yew

et al. reported that this value produced the best performance with software-combining trees and it allows the
child arrived flags to be packed into a data-structure of length one word. This means that a parent can check
all the children have arrived in the same time that it would take to check one, if the memory was not so arranged.

3.8 f-way Tournament Barrier

This algorithm was proposed by Grunwaldet al. [14]. The idea is the same as the tournament barrier, but the
number of threads “competing” at each round is more than two. The number is called the fan-in and the choice of
this affects the efficiency if the algorithm. The advantage is that there are fewer rounds.

There are two versions of the f-way tournament barrier: static and dynamic. The static version is more similar
to the 2-way tournament barrier described previously. The fan-inf depends on the number and arrangement of
threads at any stage, and may differ between levels. The aim is to balance each level as much as possible. The
critical path is of lengthlogfN , and has a value between two and the number of bytes in a memory word (usually
four). In the same way as with the MCS tree, the flags are packed into a memory word.

The communication structure is illustrated in Figure 15.
With the static tournament barriers and the MCS tree, the readers (parents/winners) and writers (children/losers)

are predetermined. At runtime, the order of arrival cannot be predicted, so there can be problems on systems with
cache. In the case where a reader thread arrives before a writer thread:

1. The writer will cache-miss as it brings the shared line into cache.



Figure 11: Control flow diagram for Dissemination Barrier Algorithm.

1
2

Winner

while(SetByLoser==false);
SetByLoser=false;

Loser

SetByLoser==true;
while(SetByChampion==false);

Figure 12: The building block of the Tournament Barrier.

2. The reader will cache-miss as it reads the shared line which has been invalidated.

The expected number of cache misses for the MCS tree and the static f-way is approximately3

2
f .

The dynamic f-way tournament differs from the static in that the last thread to arrive at a node goes on to
the next level. There are fewer cache misses, as in each case the writers are the first to arrive. There are no
cache-line invalidation problems. The only other differences between this and the static version is that a sense-
reversal mechanism is used to detect the arrival of the child threads and consecutive epochs of the barrier run in
two separate flag-trees.

The overheads of both the static and dynamic f-way tournament barriers are approximately proportional to
logfN .

3.9 C implementation

For each barrier, there is an initialisation function, which is executed on each thread. This sets up the threads’
private data with the appropriate values, for example thelocal sense variable. The initialisation function also
contains a section to be executed on a single thread—using thesingle OpenMP directive. This sets up global
shared data structures with appropriate values. These global data are then acted upon by the barrier routines called
by each thread.

As the C version is implemented using OpenMP which requires optimisation level 3 on Sun machines, care
must be taken to prevent the compiler breaking the code. This can simply be done by removing the relevant
functions to a separate file to be compiled separately.



Figure 13: Control flow diagram for Tournament Barrier Algorithm, with a central flag wake-up.

3.10 Java Implementation

This section contains a breakdown of the barrier objects and their methods. Objects and methods are named
according to the convention whereby objects begin with capital letters and methods do not.

3.10.1 Timing Code

Each barrier is tested and timed using a similar benchmark class. The main method takes in a command line
prompt of the number of threads to use. If nothing is typed, the default is one. It then initialises abenchmark
object and calls itsrun method, which initialises thebarrier objectand spawns the appropriate number of threads
(i.e. initialises that number of thread objects). Each thread then executes thedoBarrier of the barrier.

3.10.2 Naive Barriers

The Central Barrier uses a simpleFlagObject and CounterObject . The CounterObject contains
a counter volatile integer,top , a volatile integer ontaining the maximum value of the counter variable,
and an emptyLockObject . The LockObject is used for thesynchronized blocks, contained in the
methodsdecrementCounter (which returnscounter ) and resetCounter. This to make the decrementa-
tion of the counter atomic—to prevent overlapping which may cause two decrements to appear as one, stalling
the barrier. TheFlagObject contains a volatile booleanflag , andswapFlag() and isDifferent-
From(boolean) method. Thelocal sense is a thread variable that is passed into theisDifferent-
From(boolean) method.

The Software Tree Barrier is composed ofFlagObject s, an array ofCounterObjects which aresyn-
chronized on a corresponding array ofLockObjects , one for each group. All these objects are the same as
those contained in the Central Barrier. Againlocal sense is a thread variable which is passed in.

The Butterfly Barrier and Dissemination Barrier contain a booleanflag[] array. The Static f-Way Barrier
contains a booleanisDone[] array.

A Wait-Notify barrier from the Java Grande Benchmark Suite [7] [8] [9] is also tested. The algorithm is
similar to that of the Central Barrier, but thewait replaces busy-waiting, andnotify replaces swapping the
central flag.



Figure 14: Control flow diagram for an MCS Tree Barrier Algorithm with 16 threads.

Figure 15: Control flow diagram for f-Way Tournament Barrier Algorithm with a fan-in of 4.

3.10.3 Safe Java

These barriers are largely the same as the naive barriers, except thesynchronized keyword is used to make
reads and writes mutually exclusive. In order to make the barriers safe, all reads of and writes to shared coun-
ters and flag variables and arrays must besynchronized . Different flag variables must besynchronized
on different objects. The emptyLockObject class is used again. Where there are arrays of flags, arrays of
LockObject s are also defined.

These changes require threads to lock other threads out while they busy-wait for a flag to be set. In effect, the
threads must queue up for access to the variable. This leads to problems where all the threads are spinning on a
central flag, waiting for a thread to change it. This can allow all the waiting threads to get a head-start in the queue
before the changer thread arrives which can result in a huge overhead.

In an attempt to reduce this problem, the busy-wait command can be altered to introduce a delay, as follows:

while (flag !=local sense);
+

while (flag != local sense) delay(D);

The delay method is defined as in Figure 16.
D is referred to as thedelay factor. The Java compiler is not capable of dependence-analysis sophisticated

enough to recognize that the increasing non-negative functiontotal will never be negative. (Unfortunately, this
could happen in theory iftotal overflowed, but this will not happen for the order of magnitude required here.)



private void delay(int D) f
int i,total;

for(i=0; i<D; i++) f
total += i;

g

if (total < 0)
System.out.println(‘‘This will

never be
printed.’’);
g

Figure 16: The delay function used to reduce thread contention around flag variables.

The if() statement therefore prevents the compiler from recognizing that the code resulttotal is not used, and
getting rid of it as a performance optimisation. The value of the delay factor will change the length of the delay.
If it is too small, then it will not reduce the thread contention, but if it is too big, then it will introduce a new
overhead—the delay overriding the queuing effect. The code was tested with values D of 50, 100 and 150.

4 Experiments

Code was developed and compiled on a Sun HPC 3500 with eight 400MHz UltraSPARC II processors, each with
16Kb Level One cache and 4Mb Level Two cache.

Experiments were performed on a Sun Fire 6800 RISC based SMM with 24 750MHz UltraSPARC III pro-
cessors. The caches are arranged as follows: Level One—64Kb, is four way associative with write through
consistency protocol; Level Two—8Mb, is direct mapped, combined data and instruction cache. The nominal
peak performance of the machine is approximately 36Gflops. The (shared) memory is 48Gbytes.

The C compiler used was Sun WorkShop 6 update 2 C Compiler. The Java translator used was Sun Java 2
SDK, Standard Edition Version 1.4.0. All C and naive-Java barrier programs executed 1,000,000 iterations of the
relevant barrier routine. Safe Java codes’ run-times were significantly longer, so these were only executed 1000
times.

Times were taken, before and after the barrier executions, usingSystem.currentTimeMillis() for
Java andgettimeofday() for C. The difference in the times measured by the master thread (id=0 ) were
recorded.

The “safe” Java codes were timed with values of 50, 100 and 150 for the delay factor. All the results obtained
from the barrier codes are shown below.

4.1 C

Figure 17 shows the timings obtained from the C implementations of our barriers and the barrier provided by the
OpenMP library.

The Central Barrier has the worst performance. The time approaches 90 microseconds for 24 threads. The
time scales worse than O(N ); it is closer to O(N2). This is caused by thread-contention for memory hot-spots.

The Butterfly Barrier takes approximately 50 microseconds on 24 threads. It appears to scale as O(N ). There
are very pronounced steps at powers of two. At these stages, the algorithm requires an extra stage of execution,
and most of the threads perform extra work.

The Software Combining Tree Barrier takes approximately 38 microseconds on 24 threads. The curve has a
logarithmic shape, as predicted. There is drop in the time on 20 threads, which cannot be explained.

The Dissemination Barrier takes approximately 19 microseconds on 24 threads. It scales with O(logN ). There
are steps at powers of two which are not as pronounced as those from the Butterfly Barrier. This is because the



0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

"OpenMP"
"central"

"softwaretree"
"butterfly"

"dissemination"
"static"

Figure 17: Times of all C barrier implementations.

algorithm requires an extra stage of execution, but extra work is more evenly distributed between the threads. This
barrier is more than twice as fast as the Butterfly Barrier.

The Static f-Way Barrier produces the best performance. Its time for one execution is approximately 6 mi-
croseconds. It scales with O(logN ). The OpenMP Barrier curve and the Static f-Way Barrier curve are very close,
which leads one to speculate that they are the same.

All barriers appear to have a sudden increase when they are executed on 24 threads. This may be caused by
contention with operating system processes. These execute on unused processors when there are fewer threads
than processors. When all processors are used, there is contention.

4.2 Java

All timings from the naive codes are shown in Figures 18 and 19.
Again the Central Barrier is the worst. It closely resembles O(N ) on up to 20 threads, and for more threads

the times diverge. The time for 24 threads was so long it was not recorded.
The Software Combining Tree Barrier obtained the next best performance. It appears to scale with O(logN ).

Again the time diverges approaching 24 threads.
The Butterfly Barrier again appears to scale with O(N ). Again, the graph is stepped at powers of two. The

time for 24 threads is approximately 70 microseconds.
The Dissemination Barrier appears to scale with O(logN ). The time for 24 threads steps up to about 20

microseconds. The performance of this is significantly better than that of the Butterfly Barrier above eight threads.
The Static f-Way Barrier is again the best performer. The time for 24 threads is approximately 10 microsec-

onds. It again scales with O(logN ).
The results obtained from the safe code are shown in Figures 20 to 31, without delay (which is referred to as

“original safe”) and with the delay factor set to 50, 100 and 150. These also contain the times of the naive and C
implementations.

Figure 20 shows the results obtained from all the codes executing the Central Barrier. Figure 21 shows the
naive Java and C results more clearly. The times from the safe codes are closely grouped. Using no delay is



0

100

200

300

400

500

600

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

"Central"
"Software"
"Butterfly"

"Dissemination"
"Static"

Figure 18: Times of all naive Java barrier implementations.

clearly the most efficient. The safe routines take approximately 4 milliseconds using 24 threads. They scale with
O(eN ). The wait-notify code scales with O(N ), taking approximately 800 microseconds on 24 threads. There
are spikes at N=18 and N=22. The wait-notify code is approximately twice as fast as our safe codes.

The runtime of the naive code is approximately six times faster than the safe code (three times faster than the
wait-notify code).

The undelayed safe routine has a runtime spike of approximately 1500 microseconds on two threads. The
delayed safe codes do not display similar values. The contention for the shared data is extremely large for this
value.

The naive Java routine takes approximately six times longer than the C routine.
Figure 22 shows all the results obtained from the Butterfly routines. Figure 23 shows the same except with the

dominating undelayed safe Java timings removed. Figure 24 shows the C and naive Java codes. The undelayed
safe Java gives the worst performance. The next is that with delay factor set to 150, which appears to scale with
O(eN ). The routines with delay factors of 50 and 100 have a similar runtime overall. A delay factor of 50 produces
the best performance on 24 threads, taking approximately 650 microseconds. The safe Java is between 5 and 150
times slower than the naive Java (approximately). The C routine’s runtime takes approximately2

3
that of the naive

Java routine.
Figure 25 shows all the results obtained from the Dissemination codes. Figure 26 shows the same except with

the dominating delay=150 results removed. Figure 27 shows the results from the C and naive Java codes. The
delay=150 routine gives the worst performance, scaling with O(eN ). The other safe codes perform better overall,
staying below 4 milliseconds for all numbers of threads below 23. Again, there is divergence at 24 threads. The
delay=50 code give the best performance of the safe codes overall, but reaches approximately 100 milliseconds
on 24 threads. The naive code is approximately 30 times faster than the D=50 routine. The naive Java and C codes
give similar performance, both taking about 20 microseconds on 24 threads.

Figure 28 shows all the results obtained from Software Combining Tree codes. The safe codes are closely
grouped with none clearly giving a best performance. They scale with O(N2), taking about 3 milliseconds on 24
threads. The naive Java implementation performs approximately five times better than the safe implementations.
The C code performs approximately 3 times better than the naive code.



0

20

40

60

80

100

120

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

"Central"
"Software"
"Butterfly"

"Dissemination"
"Static"

Figure 19: Times of all naive Java barrier implementations—without extreme values.

Figure 30 shows all the results obtained from the Static f-Way codes. Figure 31 shows the results obtained
from the C and naive Java codes. All the safe codes scale with O(N2), and slightly increase on 24 threads. There
is unusual spiky behaviour on small numbers of threads for all except the delay=150 code, but on more threads
none is clearly the best. They take about 3.5 milliseconds on 24 threads. The naive code is approximately 200
times faster than the safe codes. The C code is approximately twice as fast as the naive Java.

5 Conclusions

Many shared memory codes require a large amount of thread synchronisation in order to correctly operate. It is
therefore useful to minimise the overhead of synchronisation routines. The use of barriers is the simplest way to
synchronise threads.

A number of barrier routines were implemented using C with OpenMP and Java: a Central Barrier, a Software
Tree Barrier, a Butterfly Barrier, a Dissemination Barrier and a Static f-Way Tournament Barrier. 1,000,000
iterations of these were executed on a 24 processor Sun Fire 6800, and the times recorded.

The most efficient barrier for both C and Java was the Static F-Way Tournament Barrier. The C implementa-
tion takes approximately 6 microseconds on 24 processors, and the Java implementation takes approximately 18
microseconds. In general the C implementations are faster than the naive Java implementations, typically by a
factor of two or three. Bearing in mind that Java is an object-oriented language which runs on a virtual machine,
this performance is acceptable.

However, there are problems with the memory consistency model of the Java Virtual Machine, which permit
certain unpredictable behaviour on some architectures, if special care is not taken. The Java implementations were
extended usingsynchronized blocks, to ensure that the current version of any shared variable is visible to the
thread reading it. This means that the threads all “own” the variable while they read or write to it, so must queue
for ownership when it is required. As a result the performance of thesafeversions is much worse that that of the
naiveversions. To reduce this effect, a delay function was included in the busy-wait code.

The safe Java implementations produced times which were between five and 200 times worse than those



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

D = 50
D = 100
D = 150

original safe
naive

C
wait-notify wakeup

Figure 20: Times of all safe and naive Java (including wait-notify) and C implementations of the Central Barrier.

produced by the naive implementations. The best safe barrier was the Butterfly Barrier, which with the appropriate
delay would produce an extrapolated time of 500 microseconds on 24 threads. The time on 24 processors must
be extrapolated because timings are slowed down when the number of threads running matches the number of
processors. The effect of full machine contention is more of a problem for the Java codes, as the Java Virtual
Machine runs threads such as the garbage collector.

The cases for which the delay function was beneficial were the Butterfly and Dissemination Barriers. For the
Butterfly Barrier, a delay of 50 produced the best results, improving the performance of the code by as much as
30 times. For the Dissemination Barrier, a delay of 50 was also most productive, improving the performance by
a factor of five, approximately. In this case, a delay of 150 significantly damaged performance, making the code
scale with O(eN ). For the other barriers, the delay did not have an obvious effect.

The implementation which was most efficient compared to its naive equivalent was the Software Combining
Tree. The times of each of its safe routines were grouped around five times slower than those of the naive version.
The worst implementations were the safe Java Static f-Way implementations, which were grouped around 200
times slower than the naive code.

Thewait-notify algorithm is a contention-free version of the central barrier, and scales with O(N ), as
predicted. A number of implementations of the Central Barrier scale with O(N2). It appears that thread contention
for memory hot-spots scales with O(N ) on this architecture. The wait-notify barrier is approximately three times
slower than the naive version.

Usingsynchronized is not the most suitable way to overcome the current problems with the Java Memory
Model. The contention caused slows down code significantly, particularly for a large number of threads, and for
situations where threads are required to busy-wait.wait-notify is a safe contention-free wake-up method,
but it is still slow.

To gain more of an understanding of synchronisation, it would be advantageous to test out our implementations
of the barriers on a number of different machines—particularly those with different architectures and different
memory consistency models—and also on a number of different Java Virtual Machines.

Different barrier wake-up stages should be tested for those barriers which require it: the central barrier, soft-
ware tree barrier and tournament barriers. For example, the wakeup-tree algorithm. Thewait-notify wake-up



0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

naive
C

wait-notify wakeup

Figure 21: Times of naive and wait-notify Java and C implementations of the Central Barrier.

should also be tested for the rest of the barriers.

References

[1] “The OpenMP Homepage”, http://www.openmp.org/

[2] “OpenMP C and C++ Application Program Interface”, Version 1.0, October 1998.

[3] “OpenMP Fortran Application Program Interface”, Version 2.0, November 2000.

[4] “Java Language Specification”, Chapter 17. http://java.sun.com/

[5] “How to Make a Correct Multiprocess Program Execute Correctly on a Multiprocessor”, Leslie Lamport,
IEEE Transactions on Computers, 1993.

[6] “The Power of Processor Consistency”, M. Ahamad, R. A. Bazzi, R. John, P. Kohli and G. Neiger. In
Proceedings of the Fifth ACM Symp. on Parallel Algorithms and Architectures, 1993.

[7] “The Java Grande Forum Homepage.”
http://www.javagrande.org/

[8] “Java Grande at EPCC.”
http://www.epcc.ed.ac.uk/computing/researchactivities/javagrande/

[9] “A Multithreaded Java Grande Benchmark Suite”, L. A. Smith and J. M. Bull, Edinburgh Parallel Computing
Centre, Edinburgh University, June 2001.

[10] “The Butterfly Barrier”, Eugene D. Brooks III. International Journal of Parallel Programming, Vol. 15, No.
4, 1986.



0

5000

10000

15000

20000

25000

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

D = 50
D = 100
D = 150

original safe
naive

C

Figure 22: Times of all safe and naive Java and C implementations of the Butterfly Barrier.

[11] “Two Algorithms for Barrier Synchronization”, Debra Hengsen, Raphael Finkel, Udi Manber. International
Journal of Parallel Programming, Vol. 17, No. 1, 1988.

[12] “Distributing Hot Spot Addressing in Large Scale Multiprocessors”, P.C. Yew, N.F. Tzeng and D.H. Lawrie.
IEEE Trans. on Computers, Vol. C-36, No. 4, pp. 388-395, April 1987.

[13] “Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors”, John Mellor-Crummey and
Michael Scott. ACM Transactions on Computer Systems, Vol. 9, No. 1, February, 1991, Pages 21-65.

[14] “Efficient Barriers for Distributed Shared Memory Computers”, Dirk Grunwald and Suvas Vajracharya.
Technical Report CU-CS-703-94-93, Department of Computer Science, University of Colorado at Boulder,
1993.

[15] “The Java Memory Model is Fatally Flawed”, William Pugh. Dept. of Computer Science. Univ. of Maryland,
College Park. http://www.cs.umd.edu/ pugh/java/memoryModel/

[16] “Fixing the Java Memory Model”, William Pugh. Dept. of Computer Science. Univ. of Maryland, College
Park. http://www.cs.umd.edu/ pugh/java/memoryModel/



0

500

1000

1500

2000

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

D = 50
D = 100
D = 150

naive
C

Figure 23: Times of all delayed safe and naive Java and C implementations of the Butterfly Barrier.

0

10

20

30

40

50

60

70

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

naive
C

Figure 24: Times of naive Java and C implementations of the Butterfly Barrier.



0

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

D = 50
D = 100
D = 150

original safe
naive

C

Figure 25: Times of all safe and naive Java and C implementations of the Dissemination Barrier.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

D = 50
D = 100

original safe
naive

C

Figure 26: Times of naive, C and a number of safe Java implementations of the Dissemination Barrier.



0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

naive
C

Figure 27: Times of the naive Java and C implementations of the Dissemination Barrier.

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

D = 50
D = 100
D = 150

original safe
naive

C

Figure 28: Times of all safe and naive Java and C implementations of the Software Tree Barrier.



0

20

40

60

80

100

120

140

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

naive
C

Figure 29: Times of the naive Java and C implementations of the Software Tree Barrier.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

D = 50
D = 100
D = 150

original safe
naive

C

Figure 30: Times of all safe and naive Java and C implementations of the Static f-Way Barrier.



0

2

4

6

8

10

12

0 5 10 15 20 25

T
im

e 
pe

r 
ite

ra
tio

n 
(m

ic
ro

se
co

nd
s)

.

Number of threads.

naive
C

Figure 31: Times of the naive Java and C implementations of the Static f-Way Barrier.


