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Abstract
A memory model for a concurrent imperative programming lan-
guage specifies which writes to shared variables may be seen by
reads performed by other threads. We present a simple mathemat-
ical framework for relaxed memory models for programming lan-
guages. To instantiate this framework for a specific language, the
designer must choose the notion of atomic steps supported by the
language (e.g. 32-bit reads and writes) and specify how a composite
step may be broken into a sequence of atomic steps (the decompo-
sition rule). This rule determines which sequence of intermediate
writes (if any) are visible to concurrent reads by other threads. Dif-
ferent choices of the rule lead to models which permit a read to re-
turn any value if there is a concurrent write (race), or models which
satisfy a “No Thin Air Read” property. The former is suitable for
languages such as C++ (programs with races have undefined behav-
ior), and the latter for Java. Other intermediate models are possible,
useful and interesting.

We establish that all models in the framework satisfy the Fun-
damental Property of relaxed memory models: programs whose se-
quentially consistent(SC) executions have no races must have have
only SC executions. We show how to define synchronization con-
structs (such as volatiles, of various kinds) in the framework, and
discuss the causality test cases from the Java Memory Model.

1. Introduction
Memory models address a central question of imperative concur-
rency: When can a write done by one thread be read by another?

Leslie Lamport provided a simple answer in [Lam79]. Assume
the state of the memory can be described by an assignment of
values to variables. Assume that exactly one thread is permitted to
perform exactly one read or write operation in a single step. Then
the possible executions of the program are given by all possible
interleavings of the steps of the threads making up the program.
This notion of execution is called Sequential Consistency (SC).

Unfortunately, SC is not consistent with a wide array of com-
piler optimizations geared towards optimizing the performance of
single-threaded code. Such optimizations often work by rearrang-
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ing the code of a single thread while guaranteeing that its in-
put/output (i/o) behavior is unchanged. For any piece of sequential
code s, let us define its i/o function io(s) to be the function from
total stores (mappings that assign a value to every variable) to total
stores given by executing s in the input store and returning the final
store. Consider, for instance, the program P, for r, x and y distinct
variables: x=1; r=y;. An implementation may replace this code
by P′: r=y; x=1 since io(P) = io(P′). However, under SC these
two code fragments are not identical. Consider running it in paral-
lel with Q: r0 = x; if (r0 ==1) y=1. Assume execution
is initiated in a store in which x=0, y=0. Now P | Q may result
in r=1, whereas P′ | Q will never do so. Thus, SC makes it diffi-
cult for multiple threads to perform multiple operations on memory
simultaneously, contrary to what is done by modern architectures.

It should be noted that Shasha and Snir [SS88] recognized
this problem and proposed solutions involving extra computational
overhead (e.g. the use of memory barriers/fences). There has been
more recent work [SFW+05] on compiler analyses to reduce or
eliminate the overhead of implementing SC. At this point we can-
not definitively conclude that the overhead can be eliminated for
a large class of programs. Therefore the need to define memory
models is real.

1.1 Race-free programs
An important observation underlies nearly all research in this area.
Consider again the program P′ | Q above. Let us say that steps ex-
ecuted by a program are related with a transtive, irreflexive partial
order, the happens-before (hb) order [Lam79].

An order is a binary relation, say, ≤. It is transitive if
a ≤ b and b ≤ c implies a ≤ c. It is irreflexive if it is not the
case for any a that a ≤ a. It is partial if it is not necessarily
the case that for any two elements a and b either a ≤ b or
b ≤ a. If one views such an order as a directed graph with
elements as nodes and an edge from a to b if a≤ b, then the
graph will satisfy the property that it is a forest of dags.

One should interpret p hb q as saying that the step p must
happen “before” the step q in any execution; i.e. q must observe
the store in a state in which p has been performed. For instance, it
is reasonable to require that all the steps taken by a single thread
are totally ordered by hb, and synchronization operations (e.g.
lock/unlock) must be used to (dynamically) introduce hb edges
between steps of one thread and steps of another. Now since P′ | Q
does not contain any synchronization operation, it has a data race:
a thread (Q) has a step s (r0=x) that reads a variable (x) that
another thread (P′) writes in a step t (x=1) without there being
an hb-edge from t to s.1 If a program has no races then a thread T1
does not read the value of a variable written into by another thread
T2 (without using a synchronization operation). Therefore T1 will
be insensitive to code reordering in T2. Hence one can have one’s

1 Two steps are in a race if both read or write the same variable x, at least
one of them writes to x and the steps are not ordered by hb.
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cake (SC semantics) and eat it too (good performance). Therefore
it seems reasonable to require that programs whose SC executions
have no races must have only SC executions. We shall call this
property the Fundamental Property.

This raises the question: Who is responsible for ensuring that a
program is race free . . . the implementation2 or the user?

It is plausible that the implementation should have this responsi-
bility. Race analysis is a difficult technical problem . Much as lan-
guages have been designed that do not suffer from aliasing prob-
lems, it may be possible to design languages without race condi-
tions. In some cases it may be permissible to incur the overhead of
runtime detection of races. This approach is being pursued by some
researchers. The general drawback is that it is hard to design static
conditions that are general enough to recognize that arbitrary clever
programs are race-free.

Indeed, it is often the case that a programmer – aware of the
designed control flow of the program – can establish that a par-
ticular program is race-free based on global analysis. The use of
finish/foreach operations often results in such programs in
X10 [SJ05,CDG+05].3

EXAMPLE 1 (Red-black iteration) Consider a canonical dense-
array computation, red-black iteration:

for (point p: [1:NUM_ITERS]) {
finish foreach (point i : r)

red[i] = average(black, i, stencil[i]);
finish foreach (point i : r)

black[i] = average(red, i, stencil[i]);

Here the programmer has arranged for red and black to refer-
ence different (non-overlapped) arrays, and r is a potentially large
region (e.g. millions of elements). For every point i in the region
stencil[i] specifies a region relative to i. It is desired that this
program result in the parallel evaluation of the average value over
the given region, for every point in r, with the resulting value being
written into the corresponding point in red. Notice that the logic
of the program ensures there are no concurrent reads/writes to the
same location. (The finish operation introduces a global barrier
which enforces the desired sequencing between reads and writes to
the same location.) Once all activities have finished the result of
the writes are available to all activities spawned subsequently by
the main thread.

To execute the X10 program efficiently, the implementation
must not be forced to perform fine-grained synchronization actions
(e.g. memory fences) at each red/black read/write. Coarse-level
synchronization mechanisms to ensure race-freedom have already
been put in place by the programmer.

1.2 Requirements for Relaxed Memory Models
Therefore it seems plausible that the programmer should shoul-
der the responsibility of establishing the global property that
synchronization-free access to shared variables will not lead to race
conditions. In return, the implementation should guarantee perfor-
mance: it should be able to perform all single thread optimizations
as long as they are consistent with explicit synchronization opera-
tions introduced by the programmer (if any). That is, the language
should specify – and the implementation should realize – as weak
semantics as possible for concurrent, unsynchronized read/writes

2 Throughout this paper, when we say “implementation” we mean the
compiler/run-time system/architecture/hardware – that is, all elements of
the language implementation.
3 We emphasize that the ideas in this paper are applicable to all shared
memory concurrent languages. We use X10 simply for illustration.

to the same location (performing as many code reorderings as pos-
sible). Memory barriers should be introduced only as required by
the semantics of synchronization operations in the language.

How weak is “weak”?

Fundamental Property. For programs without races, the Funda-
mental Property places a lower bound for programs without races.
This property appears to be a reasonable “firewall”: most program-
mers may program in a world in which they write complete, race-
free programs and only worry about SC executions.

We shall require this property for all relaxed memory models.
However stronger versions of this property may be more relevant to
practice, e.g. versions which permit libraries with races in them but
permit the programmer to firewall these races in a way that cannot
interfere with clients of the library. We leave the topic of stronger
versions of the Fundamental Property to future work.

No Thin Air Reads?? For programs with races, different answers
are possible. Consider a language such as C++ in which programs
with races are considered to be erroneous and their behavior is
undefined. In such a case all transformations should be permitted
as long as only programs with races can distinguish between them.
For instance, it should be possible to replace any write x=y with
the i/o equivalent x=42;x=y. Only a program with a race would
be able to see the “out of thin air” write 42.

Such a transformation is not as unreasonable as it may appear.
For instance a vectorizing compiler may wish to pack multiple vari-
ables x,y,z,u into two long words and use vector instructions to
optimize execution. The code x=1;y=1;z=1;u=0may be imple-
mented with the two-instruction sequence x,y,z,u=1,1,1,1;u=0.
Now the implementation has introduced a Thin Air Write u=1
which can be detected by a program with races.

On the other extreme, in a language such as Java, which satisfy
the property that certain data types, such as object references,
behave like capabilities. A piece of code can obtain a reference r to
an object only if it creates the object or it reads a memory location
containing that reference. The integrity of large applications written
in such languages relies on the property that references to objects
can be “closely held”, i.e. held only by a certain collection of
programmer-specified objects. A semantics which permits Thin Air
Reads would permit an attacker to introduce code into the system
(e.g. with an applet) which may gain access to such a closely held
object via some sequence of seemingly innocuous transformations.

A litmus test for “No Thin Air Reads” is the following test
case from [Pug04]. (For the convenience of the reader we indicate
with each example the corresponding test number in [Pug04] using
the (TC xx) notation. For now, we use an informal notation for
programs. We formalize the syntax in Section 3.)

EXAMPLE 2 (TC 4) See also [MPA05, Fig 2]. Consider the pro-
gram

x=0;y=0;( r1=x; y=r1 | r2=y; x=r2)

Such a program may not exhibit the behavior r1==r2==1; values
are not allowed to materialize out of thin air.

A related case is exemplified by the following variant of TC 2.

EXAMPLE 3 Consider the program

x=0;y=0;(r1=x; r2=x; y=(r1==r2)?1; | r3=y;x=r3)

Such a program should not exhibit the observation r1=0,r2=1,r3=1,
since the only justification for r3=1 appears to require r1==r2.

Note though that it is not difficult for a compiler to transform
the program above so that the behavior is possible. For instance,
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it replaces the first thread with the i/o equivalent code sequence
y=1;r1=x;r2=x. An SC execution yields this result, e.g. via:

x=0;y=0;y=1;r1=x;r3=y;x=r3;r2=x;x=1

In summary, we shall require that a framework for memory
models must be flexible enough to permit the formulation of mem-
ory models that answer these test cases differently. Such a frame-
work permits programming language designers to choose a varia-
tion appropriate for their language.

Inlinability. The Red-Black interation example above illustrates
another important requirement for the memory model for X10[SJ05,
CDG+05] like languages that encourage the use of asynchrony.
Any particular X10 implementation is likely to have fewer hard-
ware threads than the number of activities spawned by the com-
putation. Therefore it is necessary for the X10 implementation to
ensure that activities are aggregated. For instance, the X10 com-
piler should be free to chunk the red-black iterations above with
arbitrary granularity, depending on the number of hardware threads
available. Such chunking should not impose any additional runtime
cost because of extra synchronization. Therefore we require that the
memory model support the ability to “inline” activities, wherever
this does not cause deadlock; e.g. typically activities executing a
potentially blocking when operation, or a clock next, will not be
inlined.

Usability. Programmers need to use the memory model to under-
stand all possible behaviors of their programs. Therefore memory
models should be developed using concepts and terminology famil-
iar to programmers. Programmers understand programs: hence, as
far as possible, a memory model should be presented in terms of
a few simple permitted transformations of programs that generate
permitted behaviors. A programmer should be able to calculate all
possible behaviors of a program by systematically applying these
transformations.

Requirements summary. We may now summarize the memory
model requirements for X10 like languages. These requirements
are based on the fundamental assumption that the responsibility
for ensuring that a program is correctly synchronized lies with the
programmer. The nemory model framework must:

1. Ensure that for every model satisfies the Fundamental Property.

2. Be flexible enough to permit different formulations of the “No
Thin Air Reads” principle.

3. Permit unrestricted use of single-thread optimizations (e.g. code
reordering), subject to the two previous conditions.

4. Require the introduction of explicit memory synchronization
operations, such as fences, only as necessary to implement ex-
plicit synchronization operations in the language (e.g. atomic,
when, clocks).

5. Permit the compiler to perform whole program analysis and
replace an arbitrary single-thread code fragment C with another
fragment that is equivalent to it under constraints on the value
of data variables that are true at (the beginning of) C in all SC
executions of the program.

6. Specify a few rules that can be used by the programmer to
systematically enumerate all possible execution sequences for
a given program (even if it has races).

It is desirable that the following programming methodology be
supported by the memory model:

• Most programmers should use explicit synchronization oper-
ations (atomic, when) to reliably communicate values be-
tween activities via shared variables.

• For better performance, programmers may use unsynchronized
access to variables provided they ensure the global property that
there are no data races involving these variables. They may then
reason about their program using sequential consistency.

• If the program contains data races, the memory model must
specify a small set of rules that may be used by the program-
mer/compiler to reason about programs.

1.3 The basic model
We briefly present the central ideas underlying the memory model,
deferring formal details to the main body of the paper.

The central idea behind the models presented in this paper is
to formalize sequential execution through the notion of a step.
Intuitively, a step is a kind of sequential function which reads and
writes variables in a store, and performs computations on them.
Each programming language will come equipped with its own
notion of primitive, indivisible (atomic) steps (e.g. read or write
a 32-bit variable), and with a translation function which maps
programs in the language to sequences of such primitive steps.
Steps should be closed under sequential composition – if s1, . . . ,sn
are steps, then s1; . . . ;sn should also be a (composite) step – since
sequential programs will execute sequences of such steps.

These intuitions may be developed precisely as follows. Let us
say that a partial store is an assignment of values to variables; such
a store is total if it specifies values for all variables. A crucial move
is to consider a step to be a partial write function. For a sequence
of statements s, pw(s) is the partial function from partial stores to
partial stores which is defined on an input store d only if d specifies
values for all the variables that are read by s, and it maps such a d
to the set of writes produced by running s. Thus a step carries more
information than just the i/o function – intuitively, it records the
set of variables read as well as the set of variables actually written
by the program. For instance the behavior of the program skip;
x=x; is different from skip (even though both have the same i/o
function), since the former can cause a race whereas the latter can
not. Similarly the program x=y;x=z is different from the program
x=z (even though both have the same i/o function) since the former
may be involved in a race with y but the latter can not. Partial write
functions make these extra distinctions while being able to recover
the i/o function, if needed.

With such a view of sequential execution in hand, the notion of
concurrent execution is easy to define: it is a collection (multiset)
of steps with two bits of additional structure. First there must be a
partial order on steps arising from sequentiality of steps executed
by the same thread (the “happens before” order). Second, there
must be a way to reflect links that record which step f was used
to answer the read of a variable x by a step g. The links must satisfy
a consistency condition with the happens before relation, namely,
if a link connects a step f to a step g on a variable x, then either
f and g are unordered or there is no other step between f and g
(in the hb-order) which writes on x. (This condition is called the
hb-consistency condition.)

Transformations. A process is taken to be a set of pomsets
(with links), closed under a certain set of simple transformations.
All models in the RAO (Relaxed Atomic + Ordering) family are
equipped with the transformations improvement (IM), composition
(CO), link(LI), propagation (PR), and augmentation (AU). Ad-
ditionally, each model has a decomposition transformation, DX,
which refines the “weakest” decomposition transformation, DL.

IM permits a step f to be replaced by a step g if io( f ) = io(g),
and g reads and writes fewer variables than f , while respecting all
incoming and outgoing links. IM permits extra reads and writes to
be dropped (e.g. x,y=x,2 to be replaced by y=2). CO permits
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two successive steps g;h to be replaced by f = g ◦ h, as long as
incoming and outgoing links and hb edges are respected.

DL permits a step f to be replaced by a pair of atomic steps
g;h as long as f = g ◦ h and incoming and outgoing links are
respected. While this restriction is strong enough to guarantee that
no new races are introduced, it permits the replacement of x=y
by x=42;x=y and hence invalidates Examples 2 and 3. Stronger
decomposition rules are also permitted, however they must all
strengthen DL (i.e. impose extra conditions). For instance, DR
requires additionally that g and h must write any variable at most
once (but may read a variable more than once). Similarly DW
requires that g and h read any variable at most once (but may
write a variable multiple times). DO imposes both conditions. DW
validates 2 and 3; DR validates 3 but not 2; DO validates both.
Other decomposition rules are also possible.

The decomposition rule for a programming language specifies
the intermediate reads and writes that can be performed when de-
composing a composite step. The requirement that decomposition
rules strengthen DL ensures that they cannot introduce new races.

AU is the only transformation that changes the hb relation be-
tween existing steps. An hb-edge can be added between two steps
provided that the result of the transformation is a valid process.
This transformation is not supported by the Java Memory Model
described in [MPA05].

PR is a generic “whole program” transformation. It permits a
step f to be replaced by a step g provided that f and g are equivalent
in all stores that satisfy a condition c, and it is the case that all SC
executions of the program force the condition c to be true before f
is executed. PR permits whole program analysis to be factored into
the model.

LI is a restricted form of composition that permits a step to
“read” the information in another hb-unordered steps by introduc-
ing a link. Let f and g be two hb-unordered steps. LI is parame-
terized by a non-empty set of variables W . It links f and g so that
information produced by f on W is used to update the input store
into g. Thus g “sees” the writes on W performed by f . The infor-
mation produced by f is not communicated by g to the output. Note
that LI and AU interact: AU may not add an edge that violates the
conditions of any existing link.

CO, DX, IM, AUand PRare compatible with a totally-ordered
notion of memory — memory is a global set of locations from
which every read fetches the current value and every write modifies
the current value. However, LI permits the same thread to see
two different writes if it performs two different reads of the same
variable in sequence, even if no other thread has taken any action in
the meantime. Thus, LI, when it links a read to an unordered write,
is not compatible with such a “Totally Ordered Memory” principle.

These six transformation rules provide for a rich range of behav-
iors. They can be used to obtain the effect of interleaving “execu-
tion” (e.g. DX,LI) with “compilation” (application of PR, requiring
whole program analysis). Therefore this framework is particularly
appropriate for JITted languages which permit such interleaving of
compilation and execution.

The RAO model does not support the notion of “a central store”
shared by all threads. Therefore the notion of execution must now
explicitly take the partial order into account. But this is easy. Say
that a step s is completed if all its reads have been answered and
so it is “fully-defined.” (We formalize this in Section 2.) Say that a
process is completed if all its steps are completed. An execution of
an AO process P is just any completed process P′ obtained by P by
repeated application of the RAO transformations. (The introduc-
tion of synchronization operations may introduce additional condi-
tions on an execution, for instance, all acquire and release steps on
the same lock are totally ordered.)

The RAO transformations preserve the fundamental property –
programs without race conditions in SC executions have only SC
executions – and also possess a “Thin Air Read” property”. By de-
sign, they permit a large class of transformations typically imple-
mented by modern day language implementations. In particular, we
show that they provide a satisfactory account of all the test cases in
[Pug04].

On this basis various synchronization operations can be defined.
We introduce the idea of raw and volatile variables. Raw variables
do not possess any special synchronization properties. Multiple
threads may read and write raw variables simultaneously, and a
write is visible to read if it is hb-consistent (as discussed above).
Thus raw variables correspond to the variables we have discussed
above. Volatile variables introduce synchronization conditions. In
this paper, we consider three variants of volatility, one introduced in
JLS 2 (the weakest), DX-restricted volatility, and JLS 3 volatility.
Other notions of volatility, and other synchronization operations
such as atomics, locks etc may be defined on top of RAO. They
will be dealt with in subsequent papers.

2. RAO Model
2.1 Preliminaries
First some simple preliminaries to fix intuitions.

Stores. By a partial function from a domain D to a range R
we shall mean a function that is defined from some subset of D,
dom( f ), into R. The restriction of a partial function f to a set V ,
f ↓V , is f restricted to the domain dom(s)∩V .

We fix an infinite set of variables V and a set of values L. A
partial store d is a partial map from V to L, a total store is one
whose domain is V . We designate the set of all partial stores by
Store, and the set of all total stores by TStore. We treat a store
isomorphically as a set of bindings, {x0 = v0,x1 = v1, . . .}.

The union d0 ∪ d1 of two stores d0 and d1 (with disjoint do-
mains) is their union when viewed as a set of bindings. Since two
stores may have conflicting information, their asymmetric union
c[d] (read as: c updated by d) is quite important and is defined as
the set of bindings in d together with the bindings from c for those
variables not bound by d.

We define a binary relation on stores c ≤ d (read as: d extends
c) to hold iff d[c] = d. It is easy to see that ≤ is a partial order. Note
that for distinct stores d,d′, d ≤ d′ implies that dom(d) is strictly
contained in dom(d′).4

Functions on stores. Define a partial order on partial functions
over stores by: f ≤ g if dom( f ) ⊆ dom(g) and f (c) ≤ g(c) for all
c ∈ dom( f ). The notion of monotonicity of such functions is stan-
dard. f is monotone if d ∈ dom( f ),e ≥ d implies e ∈ dom( f ) and
f (e) ≥ f (d). For any function f on stores, we define its transi-
tion function f ] by: f ](c) = c[ f (c)]. Unlike f , f ] “flows” the input
through to the output.

A function f is complete if it is defined for every total store.

2.2 Modelling single-threaded code
The fundamental intuition underlying the models is that a piece of
sequential code should be modelled as a step, i.e. a function from
stores to stores. The fundamental attraction of a function in the
current context is that two pieces of code that have the same single
thread behavior specify the same function. Thus functions offer a
convenient abstraction that respects single thread optimizations.

4 That is, the only way to rise “strictly higher” in the ≤ ordering is to be
defined for more variables. This is a characteristic of “concrete domains”,
domains in which there is no partial order on values, hence no notion of
improving values.
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What kind of functions? The simplest idea would be to consider
functions over total stores (stores that assign a value to every vari-
able). The function maps an input store to the (ordered) output store
that results from running the given sequential program s. Let us call
such a function an i/o function for s, io(s). io(s) corresponds to a
sequentially consistent execution of s: computation is initiated in a
store in which every variable has a value, the execution of the state-
ment reads the value of the variable from the store whenever it is
required, and updates the store immediately, indivisibly and atom-
ically whenever it executes an assignment. The result of execution
is a total store.

The use of io(s) for relaxed memory models has two main
drawbacks. First, we wish to distinguish between the piece of code
skip; and skip;x=x since the latter may cause a race condition
on x while the former will not. However, both yield the same i/o
function. We say that the i/o function is oblivious to extra writes.
So we must use some other kind of function.

One way to distinguish them is to use functions that record for
each total input store d the actual writes w produced by running the
sequential program s. Let us call such a function the write function,
w(s) for s. Thus w(skip) maps each input store to {}, whereas
w(skip;x = x) maps each input store d to {x = d(x)}. Note that
io(s) is just w(s)].

Second, we wish to record which variables in the input store
need to be read by the program s in order to produce a write. For
instance w(x = z;x = y) = w(x = y) (both denote the function that
maps each store d to {x = d(y)}). That is, w is oblivious to extra
reads. . However we would like to distinguish the two for the first is
potentially in a race with a thread writing to z whereas the second
is not.

We use partial functions that record for each partial store d
the writes produced by executing s on d. On an input store d, the
output store [[s]](d) is defined at variable x only if x is written by s.
If d does not define a value for a variable read by s, the output will
not be defined, thus the function may itself be partial. We also have
a simple technique to find out which variables must be read by the
function to produce an output. Dually, if [[s]](d) is not defined on
a given (partial) store d, then it must mean that s must read some
variable that does not have a binding in d.

Let us call such a function for a sequential program s the partial
write function for s, pw(s). Note that pw(x = z;x = y) is defined
only for those stores d s.t. {z,y} ⊆ dom(d), whereas pw(x = y)
is defined for more stores, namely those stores d for which {y} ⊆
dom(d). Thus pw(x = z;x = y) is not the same as pw(x = y).

Recall TStore is {d | dom(d) = V}. Note that w(s) = pw(s) ↓
TStore, and, by composition, io(s) = pw(s)] ↓ TStore. Therefore
we feel justified in defining (for a partial function f on finite stores)
w( f ) to be f ↓ TStore, and io( f ) to be f ] ↓ TStore.

Sequential functions. This section may be skipped on a first
reading. To prepare for LI, it defines n( f ,d), the set of variables
the step f must read in an input store d on which it is not defined.
LI will be required to introduce a link labeled with a variable
x into a step f only if x ∈ n( f , in( f )), where in( f ) is the store
obtained by examining incoming links. The definition of n( f ,d)
takes advantage of the development in denotational semantics of
the notion of a sequential (or stable) function [Vui74,Cur93].

Intuitively sequential functions correspond to the execution of
single-threaded code. Such code must perform its basic operations
(e.g. reads and writes) in sequence, one after the other. (It may
not perform operations such as a “parallel or”, which reads reads
two variables in parallel, without specifying the order.) Therefore
such functions f have the property that any store d is either in
f ’s domain, or there is a non-empty set of variables, n( f ,d), all

variables in which must be read next by the function, as we now
discuss.

How can we determine whether a particular function f on partial
stores corresponds to sequential code? We must formalize the idea
“one step at a time, in sequence.” [Vui74,Cur93]. The set of stores
on which f is not defined provides us with the structure we need.
If f is not defined on d it must be because f wishes to read a
variable which is not defined in d. In fact we can look at the
variables dom(d′)\dom(d) for some d′ ≥ d on which f is defined
as an indication of the set of variables f may need to read. (For
instance, if f is the step corresponding to the program r0=x;
if (r0==1) r1=y, then f may need to read y in the empty
store – whether it actually does or not depends on the value it
reads for x.) Now let n( f ,d) be the intersection of such sets of
variables for every d′ ≥ d on which f is defined. This is the set of
variables that f must necessarily read. (For instance, for f defined
as above, n( f ,{}) = {x}. Similarly, n( f ,{x = 1}) = {y}. We are
not interested in n( f ,{x = 0}) since f is defined for {x=0}.) The
sequential functions should be those for which this set is non-
empty, that is, for every d 6∈ dom( f ) there is a single, determinate
way to move forward – read the variables in n( f ,d).

DEFINITION 1 (SEQUENTIAL FUNCTION). A partial function f
over stores is sequential if for every store d 6∈ dom( f )

n( f ,d)
de f
=
\
{dom(d′)\dom(d) | d′ ≥ d,d′ ∈ dom( f )}

is non-empty.

Here are some more examples of the computation of n.

EXAMPLE 4 (Sequential functions) Consider the function f
generated by x=x.

This function is not defined for {}. It is defined for {x = 1}, so
this is an indication that the function may need to read x. It is not
hard to see that any store on which f is defined must define a value
for x. Indeed, a direct calculation establishes n( f ,d) = {x} for any
d on which f is not defined.

Next, consider the function f generated by:

r=x; r1=(r!=42)?y;x=(r!=42)?r1;

dom( f ) contains all those stores d such that x ∈ dom(d), and
y ∈ dom(d) if d(x) 6= 42. An easy calculation establishes that
for d 6∈ dom( f ), n( f ,d) equals {x} if x 6∈ dom(d), and {y} if
x ∈ dom(d),d(x) 6= 42.

The last example establishes that n( f ,d) is indeed a function of
d, and not just f . If one were to think of n( f ,d) as providing “type
information” for f , then the type of f has to be a dependent type: it
depends on the argument to f .

An example of a function f that is not sequential is one which
is defined on an input store d iff either x ∈ dom(d) or y ∈ dom(d),
for two distinct variables x and y. For such a function n( f ,{}) is
empty!

Note that since n( f ,d)= {} for any total store d (since dom(d)=
V ), all sequential functions are complete.

Step. We now come to the main definition of this section.

DEFINITION 2 (STEP). A step is a monotone, sequential, partial
function from finite stores to finite stores.

2.3 Modeling concurrent programs
A concurrent program can now be thought of as a partially ordered
multiset (pomset) of steps. The partial order is called the happens
before order and indicates those steps that are known to occur
before other steps. Formally, an AO process is a initialized pomset
of steps, with a possibly empty set of links:
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DEFINITION 3 (SEQUENTIAL COMPOSITION). Given two steps f
and g, their sequential composition g ◦ f is the partial function
defined only on those d s.t. d ∈ dom( f ) and f ](d) ∈ dom(g) and
which maps d to f (d)[g( f ](d))].5

While the definition of a step captures only the actual output
of the step, the use of a step in a sequential composition permits
inputs to traverse untouched to the output of the first step, if they
are needed by the second step. However, the output produced by the
composite is only the (combination of) output produced by each
step – flow through from the input is not counted as output. It
is not hard to see that ( f ◦ g)] = f ] ◦ g]. Examples of sequential
composition are provided in Section 3.3.

DEFINITION 4 (LINK). Given a pomset of steps P, a link is a
quadruple (s, t,x,v) where s, t ∈ P, x is a variable and v is a value.

DEFINITION 5 (INPUT STORE, LINK-COMPLETED STEP). Given
a set L of links ( ,s,x,v) entering s, in(s) is the store {x =
v | ( ,s,x,v) ∈ L}. When used as a function, in(s) stands for the
function that maps input d to d[{x = v | ( ,s,x,v) ∈ L}].

We say that a step s is complete if in(s) ∈ dom(s).
We define s† (read: link-completed s) as the function s◦ in(s).

DEFINITION 6 (WRITE-BEFORE). Let P be a pomset of steps. For
steps f ,g ∈ P and a variable x, define f wbx g (read: g can read x
from f ) if (i) f writes x, i.e. x ∈ dom( f ({})), and (ii) f and g are
unordered, or f hb g and (iii) there is no other step f ′ between f
and g (in the hb-order) s.t. x ∈ dom( f ′(d)) for any store d.

DEFINITION 7 (AO PROCESS). An AO process (P,Ls) is a par-
tially ordered multiset of steps P, together with a set Ls of links
satisfying:

Link Uniqueness (s, t,x,v),(s′, t,x,v′) ∈ Ls implies s = s′ and t =
t ′.

Link Well-definedness (s, t,x,v) ∈ Ls implies s is complete and
s†(in(s))(x) = v. (Thus s unconditionally produces v for x, given
its input links.)

Link Acyclicity The graph with steps as nodes and edges s → t if
(s, t, , ) ∈ Ls is acyclic.

HB Consistency (s, t,x,v) ∈ Ls implies s wbX t.
Initialization Condition: If a step in P touches a variable x ∈ V

then there is a unique step in P that writes into x, does not read
from x, and hb any other step in P that touches x.

It is useful to visualize an AO process as a directed graph with
nodes labeled with steps and edges representing the hb relation.

DEFINITION 8 (COMPLETED AO PROCESS). An AO process A is
said to be a completed execution if every step of A is complete.

DEFINITION 9 (SC (EXECUTIONS OF ) AO PROCESS). An AO
process A is said to be sequentially consistent (SC) if its hb or-
der is total. An SC execution of an AO process A is any SC AO
process A′ with the same set of steps and link-set as A.

DEFINITION 10 (WELL-BEHAVED AO PROCESS). An AO process
P is well-behaved if all its SC executions are race-free.

5 Note: We have defined ◦ to use application order, f ◦ g = λd.( f (g(x))),
rather than textual order, f ◦g = λd.(g( f (x))).

Process combinators
AO processes are composed using “;” (sequential composition)
and “|” (parallel composition). ; binds more tightly than |.

P ; Q has the steps of P and Q with the hb order of P and Q
extended to ensure that every step of P hb every step of Q.

P | Q has the steps of P and Q with the hb order of P and Q.
Note that ; is associative, whereas | is commutative and as-

sociative (but not idempotent – the resulting pomset has twice as
many steps). If we use skip to denote the unique process with no
steps, then skip | P = P | skip = P, and skip;P = P;skip = P.

2.4 Transformations of AO processes
In the RAO model, the following transformation rules can be used
to transform an AO process. The transformation is applicable only
if the resulting structure is an AO process.

The transformations IM, AU, CO, DL and LI are local, i.e.
the applicability of the transformation does not depend on whole
program analysis or on the absence or presence of other steps than
the ones named in the transformation.

Below, for a process (P,Ls) with steps p ∈ P, p′ when we say
replace p by p′ while preserving all edges and links we mean that a
new process (P′,Ls′) is created in which P′ is the same as P with p
replaced by p′, every edge (h, p) ∈ hb is replaced by (h, p′), every
edge (p,h) ∈ hb is replaced by (p,h′), every link (q, p,x,v) ∈ Ls
is replaced by (q, p′,x,v), and every link (p,q,x,v)∈ Ls is replaced
by (p′,q,x,v).

2.4.1 Improvement
We say that a step g improves a step f if io(g) = io( f ), dom(g) ⊆
dom( f ), and f ≥ g. The first condition ensures that the behavior
of f and g under sequential (sequentially consistent) execution is
identical. The second condition ensures that extra reads – reads of
variables that do not affect the final result – can be dropped. The
third condition ensures that extra writes – writes of the form x=x
– can be dropped. Let us write [[s]] for the step corresponding to a
piece of sequential code s. Then [[x = y]] improves [[x = z;x = y]]
and [[x = y;z = z]].

DEFINITION 11 (IM). Given an AO process (P,Ls), replace f ∈ P
with a step g while preserving all edges and links, if g improves f ,
and g writes on every variable x for which ( f , ,x, ) ∈ Ls.

2.4.2 Augmentation
DEFINITION 12 (AU). Add an hb-edge between two steps in P
provided that the resulting set is an AO-process.

AU permits the implementation to schedule two otherwise uncon-
strained steps (belonging to separate threads) in a particular order.
As above the application of this transformation does not depend on
whole program analysis or on the absence or presence of steps in P
other than f and g.

2.4.3 Composition
Consider two steps f ;g. We would like to replace them with e =
g ◦ f and move the incoming and outgoing links of f and g to e.
That is, we would like to replace h′ = g† ◦ f † by h = (g◦ f )†.

The following conditions are sufficient. If f and g have incom-
ing links for x, those links must arise from the same step (so they
read the same value and have the same hb relationship with the
link source). This implies in( f )[in(g)] = in(g)[in( f )], or (in terms
of functions) in( f ) ◦ in(g) = in(g) ◦ in( f ). Further, f should pass
through, without modification, any variable for which there is a link
into g. Symmetrically, if f has an outgoing link for x, then g should
pass through the value produced by f on x without modification.
This motivates the following definition.
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DEFINITION 13 (CO). Let (P,Ls) be an AO process. Let the im-
mediate hb successor of f in P be g (and only g), and the im-
mediate hb predecessor of g be f (and only f ). Let h = g ◦ f ◦
in(g) ◦ in( f ) and h′ = g ◦ in(g) ◦ f ◦ in( f ). Let f and g satisfy
the property that (i) (s, f ,x,v),(s′,g,x,v′) ∈ Ls implies s = s′ (and
therefore v = v′), (ii) h = h′, (iii) for every x s.t. ( f , ,x,v) ∈ Ls,
h(in( f )[in(g)])(x) = f (in( f )[in(g)])(x).

Replace f and g by e = g ◦ f , replacing each link/edge enter-
ing/exiting f or g by the same link/edge entering/exiting e.

CO permits the implementation to schedule two successive steps in
the hb-order together, treating them as part of the same sequential
step. In the new process e† is the same function as g† ◦ f † in the
old process. Further, the conditions are always satisfied if g has no
incoming links and f has no outgoing links.

Note that this is a local transformation. Its applicability does not
depend on whole program analysis or on the absence or presence
of other steps in P than the ones named in the transformation.

2.4.4 Decomposition
DEFINITION 14 (DL). Let (P,Ls) be an AO process, f ∈ P s.t.
f = h ◦ g, and for every incoming (outgoing) x-link for f it is the
case that precisely one of f or g reads (writes) x. (Call that step ix.)

Replace f with g;h. Every edge (e, f )∈ hb is replaced by (e,g)
and every edge ( f ,e) ∈ hb by (h,e). Every link (e, f ,x,v) and
( f ,e,x,v) in Ls is replaced by (e, ix,x,v) and (ix,e,x,v) respectively.

Intuitively, the implementation decides to break up a single step
f into two steps g and h since the behavior of a thread executing f
is indistinguishable (in any race-free context) from the behavior of
the thread executing first g and then h.

DR adds to DL the condition that for any variable x and input
store d, x is in the domain of at most one of the stores g†(d) and
(g† ◦ h†)(d). DW adds to DL the condition that for any variable x
and input store d, x is in at most one of n(g†,d) and n(g† ◦ h†,d).
DO adds both these conditions to DL. We let DX stand for any of
these four decomposition rules.

Like CO, DX is local. In combination with CO, DX may
change the hb order of the original program. For instance con-
sider the program fragment x=1;y=2 (continuing with our use
of an informal notation). Using CO this may be converted to
x,y=1,2 and then using DX to y=2;x=1. Thus the original hb
order is inverted. Some synchronization constructs (e.g. volatiles)
are designed to ensure that such reordering cannot occur (see Sec-
tion 5.3); hence their semantics places restrictions on the applica-
tion of DX.

DX is also useful in conjunction with LI: sometimes it is possi-
ble to break a function f which performs some reads into f0 and f1
in such a way that f0 does not perform any reads. Now f0 can be
used as a source for a link.

2.4.5 Link
LI is an “inter thread” version of CO.

DEFINITION 15 (LI). Let A = (P,Ls) be a process. Let s, t ∈ P
and x be a variable s.t. (i) s wbX t in P, (ii) s is completed,
(iii) s(in(s))(x) = v, and (iv) x ∈ n(t, in(t)).

Transform A to (P,Ls∪{(s, t,x,v)}).

LI is the only way of introducing links. Note that Condition (iv)
above is strong enough to ensure Link Acyclicity for any AO
process.

2.4.6 Propagation
By a constraint q on stores we mean a (possibly infinite) set of
stores. A store d satisfies q if d ∈ q. Two functions f0 and f1

on stores are q-equivalent if for Q = q∩ dom( f0), we have Q =
q∩dom( f1), and f0 ↓ Q = f1 ↓ Q.

DEFINITION 16 (PR). Let A = (P,Ls) be a process. Let f ∈ P and
f ′ be a step that is q-equivalent to f , where in all SC-executions of
P, q is true at (before) f .

Replace f by f ′, preserving all edges and links.

(Recall the notion of SC-execution of P is specified in Definition 9.)
PR permits an implementation to perform any global optimization
based on data-flow analyses as long as the analyses consider only
SC executions. Since this transformation effects a global analysis,
it is sensitive to the presence steps in P other than s. One of its uses
is to replace conditional execution with unconditional execution.

We shall see below that typically an application of CO enables
applications of DL. Applications of PR and AU enable applications
of CO. Applications of DL enable applications of AU, etc.

2.4.7 RAO process
DEFINITION 17 (RAO PROCESS). An RAO process is a set of AO
processes closed under CO, DL, IM, LI, PR and AU. For any AO
process P, the smallest (qua set) RAO process containing P is
denoted by RAO(P).

DEFINITION 18 (EXECUTION). An execution of an AO process P
is any complete process P′ ∈ RAO(P).

2.5 Main theorem

Let P,Q be AO processes. Say that P X−→ Q if Q is obtained
from P by the application of a transform X in the set of RAO
transformations. The SC i/o functions of P, sc(P) is the set of
functions io(s0 ◦ . . .◦sn−1) where {s0, . . . ,sn−1} is a totally ordered
extension of P (with steps enumerated in hb -order).

Let clo(P) represent the set of AO processes obtained from P by
zero or more applications of the given transformation. We take the
observations of a process P to be the set of i/o functions of P, io(P)
defined as the set { f | f ∈ sc(Q),Q ∈ clo(P),Qcomplete}. We say
that O ∈ io(P) has a proof of size n if there is an X−→ sequence of
length n from P to a completed process Q such that O ∈ sc(Q).

The proofs of the following lemmas and theorems is in Appen-
dix A.

LEMMA 19 (GOOD BEHAVIOR IS
X−→-INVARIANT.). For all AO

processes P,Q if P is well-behaved and P X−→ Q then Q is well-
behaved.

LEMMA 20 (PRESERVATION OF SC BEHAVIOR). Let P,Q be AO
processes such that P X−→Q, and P is well-behaved. Then sc(Q)⊆
sc(P).

LEMMA 21 (MAIN LEMMA). For all AO processes P,Q if P is
well-behaved and P X−→ Q then io(Q)⊆ sc(P).

LEMMA 22. For all AO processes P,Q if P is well-behaved and
P X−→ Q then:

Good behavior is X−→-invariant. Q is well-behaved.

SC behavior is X−→-invariant. sc(Q)⊆ sc(P).

IO behavior is X−→-invariant. io(Q)⊆ sc(P).

THEOREM 23 (FUNDAMENTAL PROPERTY). Let P be a well-
behaved AO process. Then io(P)⊆ sc(P).
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3. The RAO calculus
We now introduce a syntax for steps and show how to associate
with a syntactic step s its denotation, [[s]]. Further we provide a
rule (Proposition 24) that shows how to calculate the sequential
composition s1;s2 of two syntactic steps, and eliminate the “;”.
The formal treatment of the causality test cases is based on this
proposition.

The syntax is intended to be illustrative; it may be extended rou-
tinely with concepts such as function definitions. It is not intended
to be a full-fledged programming language. Rather it is intended
to have a core set of constructs into which a concrete programming
language can be translated so that its memory model can be defined.

(Variables) x ::= x | . . .
(Condition) c ::= true | false | e==e | c&&c | !c
(Expression) e ::= k | x | c?e :e | c?e | (e)
(Step) s ::= x̄=ē

The language is simple. It permits one-sided and two-sided condi-
tional definition of terms. We will write skip for the step ε = ε.

3.1 defined and value.
To define the function that is denoted by a step, we need two central
notions, the definedness of a step in a given store, and the value of
an expression in a given store. We shall define these using structural
induction. The definitions are standard. For convenience, we use the
language of definite clauses (Prolog) to state these definitions.

defined((x1,...,xn=e1,... en),d) if
defined(e1,d),..., defined(en,d).

defined(k,d). defined(x,d) if x in dom(d).
defined(c?e1:e2,d) if
defined(c, d), (value(c,true,d), defined(e1,d) ;

value(c,false,d), defined(e2,d)).
defined(c?e,d) if defined(c,d),

(value(c,true,d), defined(e,d);
value(c,false,d)).

defined(t1==t2,d) if defined(t1,d), defined(t2,d)
defined(c1&&c2,d) if defined(c1,d), defined(c2,d)
defined(!c, d) if defined(c,d).

value(k,k,d).
value(x,v,d) if d(x)=v.
value(c?e1:e2,v,d)

if (value(c,true,d),value(e1,v,d);
value(c,false,d),value(e2,v,d)).

value(c?e1,v,d) if value(c,true,d), value(e1,v,d).

Intuitively, a step is defined in a store d if the store is defined
for all variables that will be read by the step. Some care must be
taken to ensure that this definition is precise – the variables to be
read must not be under- or over-approximated. For instance, if the
conditional c of an expression c?e1 : e2 evaluates to true in the
given input store, then e2 will not be evaluated. Thus the variables
to be read in the store may depend on the values of other variables in
the store – as indicated by the dependence of defined on value.

Note that value is partially defined, that is, value(e,v,d) may
fail to be provable for a given e and d. This is the case if e = c?e1
for instance, and the store evaluates c to false.

3.2 Denotation of a step.
We can now define the function [[ ]], which maps a syntactic step
s ≡ x̄ = ē to its denotation [[s]], thus: its domain consists of those
input stores d for which each e ∈ ē is defined. It maps such a d
to d′ = {x = v | value(e,v,d), i < n,x = e ∈ s}. That is, the store
d′ contains all the writes actually produced by the step – possibly
none – given the input store d.

EXAMPLE 5 [[x = (false?0)]] is the unique function that is de-
fined on every input (i.e. it does not perform a read) and maps it
to {}. In no store can the assignment to x happen since its pre-
condition, false, can never be satisfied. Formally, for any v and
d, value(false?0,v,d) is undefined (fails), .

[[x = 1]] is the function that is defined on every input and maps
it to {x = 1}.

Let us now consider some examples with conditionals. On any
input store d, f = [[x = (y == 1?1)]] is a function that must def-
initely read y, hence d must define a value for y. The function
produces a write on x, x=1, iff d(y) = 1. Formally, d ∈ dom( f )
iff y ∈ dom(d). f maps such a d to {x = 1} if d(y) = 1 and to {}
otherwise.

[[x = (y == 1?0 : (y == 0?1))]] is defined on input stores d iff
y ∈ dom(d). Such a d is mapped to {x= 0} if d(y) = 1, to {x= 1}
if d(y) = 0 and to {} otherwise.

f = [[x,r = (x! = 42?42),42]] is defined on input stores d iff
x ∈ dom(d). Such a d is mapped to {x= 42,r= 42} if d(x)! = 42
and to {r = 42} if d(x) = 42. Note that for all d ∈ dom( f ) we
have {x = 42} ≤ f ](d) – in some cases because of the write in
f (d) and in some cases because of the flow-through from the input.
Our treatment of steps as partial functions enables us to model this
distinction.

Definition of n. We can now given an explicit definition of n on
syntactic steps in a way that is consistent with their denotation. That
is, for any syntactic step p, n(p,d) = n([[p]],d), for all stores d.

n(x = k,d) = /0

n(x = y,d) = {y}
n(x = (e),d) = n(x = e,d)

n(x = c?e0 : e1,d) =


n(x = e0,d)

if value(c,true,d)
n(x = e1,d)

if value(c,false,d)
var(c)\dom(d), o.w.

n(x = c?e0,d) = n(x = c?e0 : 0,d)
n(x0, . . . ,xn−1 = e0, . . . ,en−1,d) = n(x0 = e0,d)∪ . . .∪n(xn−1 = en−1,d)

3.3 Calculating sequential composition of syntactic steps.
We now consider examples of sequential compositions of steps.

EXAMPLE 6 Consider f = [[x = 1]]; [[y = 1]]. It is not difficult
to see that f = [[x,y = 1,1]]. Formally, one uses the definition of
denotation of a step given above, and the definition of composition
of steps (Definition 3) to establish this.

Let us consider a step that reads a variable after conditionally
writing into it: f = [[x = (x == 1?0 : 1)]]; [[y = x]]. Clearly this
should be the same function as [[x,y= (x== 1?0 : 1),(x== 1?0 :
1)]]. Again, this can be established formally.

In general, [[x =c?z]]; [[y= x]] is the same as [[x,y =c?z,c?z : x]].
One reasons as follows. Note that both expressions are defined for
stores d iff c is defined in d and x,z ∈ dom(d). Now there are
two cases. If value(c,true,d), then x =c?z produces the output
{x = z} and this overrides the value of x in d. Hence the value of
y in the resultant store will be z. If value(c,false,d), x =c?z
produces the output {}, and the value of x read by y will be d(x).

Specifically [[x= (x! = k?k);y= x]] is the same as [[x,y= (x! =
k?k),x! = k?k : x]], and this is the same as [[x,y = (x! = k?k),k]].

We can formalize a rule for calculation of sequential composi-
tion of steps as follows. Let the term s{t} be defined to be the term
s except that every single-armed conditional c?e in s is mapped to
c?e : t. Formally:
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k{t} = k
x{t} = x

(e){t} = e{t}
c?e0 : e1{t} = c{t}?e0{t} : e1{t}

c?e{t} = c{t}?e{t} : t
t0==t1{t} = t0{t}==t1{t}

!c{t} = !(c{t})
(c0&&c1){t} = c0{t}&&c1{t}

The following proposition shows how to simply a sequential
composition of steps s1;s2 by eliminating “;” and justifies our use
of the term “memory model calculus.”

PROPOSITION 24 (ELIMINATING SEQUENTIAL COMPOSITION).
[[x̄, ȳ, z̄ = s̄,(ūθ){t̄}, v̄θ]] (where θ is the substitution [s̄{x̄}/x̄, t̄{ȳ}/ȳ])
is an improvement on [[x̄, ȳ = s̄, t̄]]◦ [[ȳ, z̄ = ū, v̄]], given that x̄, ȳ and
z̄ are pairwise disjoint.

Above, we take ū{t̄} to be shorthand for u0{t0}, . . . ,un−1{tn−1}, if
u = u0, . . . ,un−1 and t = t0, . . . , tn−1.

The semantic step [[x̄, ȳ, z̄ = s̄,(ūθ){t̄}, v̄θ]] is an improvement
only because it may perform fewer reads. For instance, the syntactic
step s given by x = y;x = 2 can be simplified, by applying the
proposition, to s′ given by x = 2.6 It is possible to formulate a
precise rule for eliminating sequential composition at the cost of
introducing new local variables that are assigned terms that perform
the missing extra reads. There is no practical reason for doing so
since all the models we consider admit the transformation IM which
permits a step to be improved.

EXAMPLE 7 The answers in Example 6 can be calculated using
this proposition.

3.4 Calculating DX

In terms of concrete syntax, a step x̄, ȳ = ū, v̄ can be decomposed
via DL into x̄ = ū and ȳ = v̄. DR requires that x̄ and ȳ are disjoint.
DW requires that the variables in u and v are disjoint. DO requires
both conditions.

3.4.1 Calculating IM

A step x, ȳ = x, ū may be replaced by ȳ = ū. That is, extra writes can
be dropped. The rule for sequential composition already already
drops extra reads.

3.5 Calculating LI

We now consider examples of merging.

EXAMPLE 8 Below we assume that f ,g are two steps in an AO
process (P,Ls) and the only link entering g is from f and labeled
with x.
Let f be x=1 and g r=x. Then g† is r=1. f can be used to answer
the read on x in g, but f ’s outputs are not propagated.
Let f be x,y=1,1 and g r=x. Then g† is r=1. Irrelevant infor-
mation in f is ignored.
Let f be x=42 and g r,x=x,(x!=42)?42. Then g† is r=42.
Information in f may force a write of g to be dropped.
Let f be x=(x!=42)?42 and g r=x. Then r=42 is an improve-
ment of g† (since it does not read x. A conditional write in f may
result in an unconditional write by g.

6 In detail, the result is x=2[y{x}/x] {y}. Now note that y{x}= y, and
2[y/x] = 2. Finally 2{y}= 2. s′ is an improvement of s because it does not
read y.

PROPOSITION 25 (ELIMINATING MERGE). Let f be the step [[x̄, ȳ =
s̄, t̄]], and g the step [[ȳ, z̄ = ū, v̄]] where x̄, ȳ and z̄ are pairwise dis-
joint, and for each variable in ȳ there is a link from f to g (and
these are the only links). Then [[ȳ, z̄ = (ūθ){t̄}, v̄θ]] improves on g†,
where θ is the substitution [s̄{x̄}/x̄, t̄{ȳ}/ȳ].

Note that a step [[x̄, ȳ = s̄, t̄]] can be the source of a link only if for
each term s∈ s̄, t̄, defined(s,{}). This is the syntactic rendition
of the semantic condition that for f to be the source of a link it must
be complete.

4. Examples
We consider some examples. Note: In analyzing the test cases
below we shall usually omit the initial step in the AO process.
Further, we shall not be combining (through CO) two steps both of
which have incoming links. In such cases it is possible to replace t
with t† whenever a new link (s, t,x,v) is added to the link-set.

4.1 Single-thread reordering
EXAMPLE 9 (TC 7) We illustrate the use of CO, DE and AU to
obtain single-thread reordering. Consider the program:

x,y,z=0,0,0;(r1=z; r2=x; y=r2 | r3=y; z=r3; x=1)

Is behavior r1=r2=r3=1 exhibited? Single-thread optimiza-
tion could permit r1=z to be moved to the end of the thread, and
x=1 to the beginning of the thread. The result would then follow
by an SC execution.

Formally this can be analyzed as follows. We show a chain
of AO processes each obtained from the previous by applying
the noted transformation. The last process exhibits the desired
behavior.

Consider the steps r1=z; r2=x; y=r2. These may be col-
lapsed into a single step using CO to yield r1,r2,y=z,x,x.
But this step can be decomposed into r1=z | r2,y=x,x – this
is the code motion discussed above. Similarly r3=y;z=r3;x=1
yields through CO and DE r3,z=y,y | x=1. Now we can in-
terleave the steps in the appropriate order using AU to accomplish
the desired result.

In detail, the derivation is as follows. In all examples we use
Proposition 24 to eliminate sequential composition when applying
CO. In each step we specify only the links added at that step. By
convention the links associated with a step are the union of all the
links associated with previous steps, together with the links added
at that step.

x,y,z=0,0,0; (r1=z; s1: r2=x; y=r2
| r3=y; z=r3; s5: x=1)

x,y,z=0,0,0;(r1=z; s1: r2=1; y=r2
| r3=y;z=r3;s5: x=1) (LI, (s5,s1))

x,y,z=0,0,0;(r1=z; s1: r2,y=1,1
| r3=y;z=r3;s5: x=1) (CO)

x,y,z=0,0,0;(r1=z; s1: r2,y=1,1
| s2: r3=1;z=r3;s5: x=1) (LI, (s1,s2))

x,y,z=0,0,0;(r1=z; s1: r2,y=1,1
| s2: r3,z=1,1;s5: x=1) (LI, (s1,s2))

x,y,z=0,0,0;(s0: r1=1; s1: r2,y=1,1
| s2: r3,z=1,1; s5: x=1) (LI, (s2,s0))

Each of these processes is in RAO(P0). The last is a completed
execution, and establishes the desired result.

EXAMPLE 10 (TC 2) See also Fig 5 in [MPA05]. This example
illustrates that CO, DE and AU can simulate the effect of redundant
read elimination. Consider the program:

x,y=0,0; (r1=x;r2=x; y=(r1==r2)?1 | r3=y;x=r3)
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This should exhibit r1==r2==r3==1 since redundant read elimi-
nation could result in simplifying r1==r2 to true. Subsequently
y=1 could be moved early.

This reasoning is readily formalized as follows. In each step we
specify only the links added at that step. By convention the links
associated with a step are the union of all the links associated with
previous steps, together with the links added at that step.

x,y=0,0; (r1,r2=x,x;y=(r1==r2)?1 | r3=y;x=r3) (CO)
x,y=0,0; (r1,r2,y=x,x,1 | r3=y;x=r3) (CO)
x,y=0,0; (s0: r1,r2,y=x,x,1 | s1: r3=1;x=r3)

(LI,(s0,s1))
x,y=0,0; (r1,r2,y=x,x,1 | r3,x=1,1) (CO)

This example shows that the RAO model permits two reads to
be answered by the same write without determining what that
write is. This is just a consequence of CO – by composing all the
steps of Thread 1, we ensure that the reads into r1 and r2 will
be answered from the input store (for the composite step). Hence
they must have the same value. Thus the steps of the first thread are
equivalent (as functions) to the single step r1,r2,y=x,x,1.

EXAMPLE 11 (TC 3) This example illustrates that the applica-
tion of CO, DE and AU is not affected by the presence of additional
threads. Consider the program:

x,y=0,0;
(r1=x; r2=x; y=(r1 == r2)?1 | r3=y; x=r3; | x=2

The behavior r1 == r2 == r3 == 1 can be exhibited, using
the same reasoning as in Test 10. The additional thread does not
interfere with the application of CO and LI.

EXAMPLE 12 (TC 17) Consider the AO process:

x,y=0,0; (r3=x; x=(r3!=42)?42; r1=x;y=r1 | r2=y;x=r2)

It should be able to exhibit r1==r2==r3==42 since r3=x;
x=(r3 != 42)?42; r1=x and r3=x; x=(r3 != 42)?42;
r1=42 have identical i/o functions. But the second program can
permit the propagation of r1=42 to the beginning of the program,
resulting in the desired behavior. The RAO analysis mirrors this
reasoning:

r3=x; x=(r3!=42)?42; r1=x;y=r1 | r2=y;x=r2
r3,x=x,(x!=42)?42; r1=x;y=r1 | r2=y;x=r2 (CO)
r3,x,r1=x,(x!=42)?42,42; y=r1 | r2=y;x=r2 (CO#)
r3,x,r1,y=x,(x!=42)?42,42,42 | r2=y;x=r2 (CO)
r3,x=x,(x!=42)?42; s0: r1,y=42,42 | s1: r2=y;x=r2(DL)
r3,x=x,(x!=42)?42; s0: r1,y=42,42 | s1: r2=42;x=r2

(LI, s0->s1)
r3,x=x,(x!=42)?42; so: r1,y=42,42 | s1: r2,x=42,42(CO)
s3: r3=42; s0: r1,y=42,42 | s1: r2,x=42,42

(LI, s1->s3)

(#) In the above example, r3,x,r1=x,x!=42?42,x!=42?42:x
and r3,x,r1=x,x!=42?42,42 – denote the same step. In the
last line the write to x will never be performed by the first step, and
hence the write is dropped.

4.1.1 Inter-thread reasoning – the use of PR

We now consider some examples that illustrate the use of PR.

EXAMPLE 13 (TC 1) This example shows inter-thread reason-
ing – the use of CO,DE,AU,PR. Consider the RAO process gen-
erated from P0: x,y=0,0; (r1=x;y=(r1>=0)?1 | r2=y;
x=r2)

Arguably, RAO(P0) should be able to exhibit r1==r2==1.
The compiler may determine that x and y are always non-negative,
and hence simplify r1 >=0 to true. This allows y=1 to be
moved early. We can formalize this in RAO thus:

r1,y=x,r1>=0?1 | r2=y; x=r2 (CO)
r1,y=x,1 | r2=y; x=r2 (PR#)
r1=x; s1: y=1 | s2: r2=y; x=r2 (DL)
r1=x; s1: y=1 | s2: r2=1; x=r2 (LI, s1->s2)
s0: r1=x; s1: y=1 | s2: r2,x=1,1 (CO)
s0: r1=1; s1: y=1 | s2: r2,x=1,1 (LI, s2->s0)

(PR#) Replace r1,y=x,(x>=0?1) with the x>=0-equivalent
step r1,y=x,1.

As the example above illustrates, RAO permits sophisticated pat-
terns of interaction between PR, CO, SE, AU.

EXAMPLE 14 (TC 18) See also [MPA05, Fig 12]. The program:

x,y=0,0; (r3=x; x=(r3==0)?1;r1=x;y=r1 | r2=y;x=r2)

should permit the behavior r1==r2==r3==1. A compiler may
determine through whole program analysis that the only possible
values for x are 0 and 1. Hence if r3 !=0 it must be the case
that r3==1. Hence transforming r1=x into r1=1 is legal from
the viewpoint of a single thread. But this write can be propagated
earlier and SC execution will yield the desired result. The RAO
analysis permits this, following the reasoning above.

r3,x=x,(x==0)?1;r1=x;y=r1|r2=y;x=r2 (CO)
r3,x,r1=x,(x==0)?1,(x==0)?1:x;y=r1|r2=y;x=r2 (CO)
r3,x,r1=x,(x==0)?1,1; y=r1|r2=y;x=r2

(PR;x in {0,1}
r3,x,r1,y=x,(x==0)?1,1,1|r2=y;x=r2 (CO)
r3,x=x,(x==0)?1;s0: r1,y=1,1|s1: r2=y;x=r2 (DL)
r3,x=x,(x==0)?1;s0: r1,y=1,1|s1: r2=1;x=r2

(LI, s0->s1)
s2: r3,x=x,(x==0)?1;s0: r1,y=1,1|s1: r2,x=1,1(CO)
s2: r3=1;s0: r1,y=1,1|s1: r2,x=1,1

(LI, s1->s2)

EXAMPLE 15 (Fig 11 of [MPA05]) This test case is not permit-
ted by the Java Memory Model described in [MPA05], but is per-
mitted by RAO. Consider the program:

x,y=0,0; (r3=x; x=(r3==0)?1 | r1=x;y=r1 | r2=y;x=r2)

Test Case 18 can be obtained from this program by inlining Thread
2 after Thread 1.

x,y=0,0; (r3=x; x=(r3==0)?1 | r1=x;y=r1 | r2=y;x=r2)
x,y=0,0; (r3=x; x=(r3==0)?1 ; r1=x;y=r1 | r2=y;x=r2) (AU)

The rest of the derivation follows Case 18.

4.2 Cross-coupling behaviors
We now consider examples that illustrate cross-over.

DEFINITION 26 (CROSS-OVER). Let A be an AO process. A
cross-over is a set of steps in A that forms a loop in the graph
whose nodes are steps and whose edges are links (directed from
source to target) or hb-edges.

Naturally, the presence of races, and the use of LI, is critical in es-
tablishing a cross-over. The other transformations (CO, DX, IM,
AUand PR) are compatible with a totally-ordered notion of mem-
ory — memory is a global set of locations from which every read
fetches the current value and every write modifies the current value.
In our model, such a totally-ordered notion of memory is modelled
by the extra condition that n particular, these other transformations
are closed on the subset of AO processes satisfying the condition
that the linkset is a subset of the happens-before relation. LI does
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not preserve this additional condition, whereas the other transfor-
mations (CO, DX, IM, AUand PR) do.

EXAMPLE 16 (TC 16) See also Fig 1 in [MPA05]. The program:

x,y=0,0; (r1=x; x=1 | r2=x; x=2)

should be able to exhibit the behavior r1==2; r2==1. RAO
permits it thus:

x,y=0,0; (s0: r1=x; s1: x=1 | s2: r2=x; s3: x=2)
x,y=0,0; (s0: r1=x; s1: x=1 | s2: r2=1; s3: x=2)

(LI, s1->s2)
x,y=0,0; (s0: r1=2; s1: x=1 | s2: r2=1; s3: x=2)

(LI, s3->s0)

The final process illustrates the crossover {s0,s1,s2,s3}.

We now consider an example that shows the interleaving of LI and
PR is critical.

EXAMPLE 17 (Fig 11a) This is a variation on Test Case 15.

x,y,z=0,0,0;
(r1=x; x=(r1==0)?1; a=r1; r11=x1; x1=(r11==0)?1
| r2=x; y=r2; r21=x1; y1=r21
| r3=y; x=r3; r31=y1; x1=r31
| r4=x; r5=y; x1=(r4+r5<2)?25)

The behavior in question is: r1==r2==r3==r11==r21==r31==1.
The code in TC 15 is considered to be part of “Phase 1.” A

copy of the code is made (on a parallel set of variables) to get a
“Phase 2.” The results of the first phase are detected and used to
determine whether a particular write is allowed in Phase 2 (the code
for Thread 4).

If the first phase yields r1=r2=r3=1, then there is enough
information to rule out the write of 25 into x1. Now it can be
established that the only permissible values for x1 are 0 and 1 and
the same reasoning used to establish r1=r2=r3=1 (namely a use
of CO and PR) can be used to establish that r11=r21=r31=1,
thus getting the desired answer.

4.3 No Thin Air Reads behaviors
The following examples involving no thin air reads discuss alterna-
tive definitions of the decomposition rule and their consequences.
This analysis supports the claim that RAO provides a flexible
framework for a programming language designer.

EXAMPLE 18 (TC 4) See also Fig 2 in [MPA05]. Consider the
AO process:

x,y=0,0; (r1=x;y=r1 | r2=y;x=r2)

This process should not exhibit r1==r2==1 even though there is
a race. The value 1 cannot be read from thin air.

LI, PR and AU cannot produce the desired result, as can be
established by systematically applying them.

Now let us consider various decomposition rules. DO (and
hence DL) can establish r1==r2==1 by:

x=0;y=0;(r1=x;y=r1 | r2=y;x=r2)
x=0;y=0;(r1=x;y=1;y=r1 | r2=y;x=r2) (DW)
x=0;y=0;(y=1;r1=x;y=r1 | r2=y;x=r2) (DO)
x=0;y=0;y=1;r2=y;x=r2;r1=x;y=r1 (AU*)
y=1;r2=1;r1=1;x=1 (DO*)

However, DR and DO cannot; there is no way of creating the
phantom write.

EXAMPLE 19 (TC 5) Consider the program:

x,y,z=0,0,0;
(r1=x; y=r1 | r2=y; x=r2 | z=1 | r3=z; x=r3)

The behavior r1==r2==1, r3==0 should be forbidden.
RAO Analysis: As in Test Case 18. The only use of LI will

replace r3=z with r3=1 – and this will not give the desired
result. An exhaustive case analysis shows that none of the other
transformations can produce the desired behavior.

EXAMPLE 20 (TC 10) Consider the AO program P:

x=0;y=0;z=0;
( r1=x;y=(r1==1)?1 | r2=y; x=(r2==1)?1
| z=1 | r3=z;x=(r3==1)?1 )

The behavior r1==r2==1, r3==0 should not be possible.
This is indeed the case. PR cannot be used to discharge any

of the conditionals. CO/DE cannot be used to perform any of the
steps of a thread in parallel since there is a read/write dependency.
AU can be used to totally order these steps (as would be done in an
sc execution). But no sc execution will give the desired result. LI
can be used to replace r3=z with r3=1, but this will not give the
desired result.

EXAMPLE 21 (TC 13) See also [MPA05, Fig 4]. Consider the
program:

x=0;y=0; (r1=x; y=(r1==1)?1 | r2=y;x=(r2==1)?1)

r1==r2==1 should not be observed since no writes occur to x
and y in any SC execution, and the program has no races. RAO
disallows this, with the reasoning closely following TestCase 20.

EXAMPLE 22 (Fig 10, [MPA05]) Consider the program:

x=0;y=0;z=0;
(z=1 | r1=z;x=(r1==0)?1 | r2=x;y=r2 | r3=y;x=r3)

It should not be possible to observe r1==r2==r3==1, since in
any “execution” which could exhibit this behavior only Threads 3
and 4 write to x and y, and hence they cannot manufacture the
value 1 out of thin air.

The RAO model validates this reasoning. It is not possible to
use PR to reduce x=(r1==0)?1 to x=1 (except by using AU to
place z=1 after the conditional assignment to x – but in that case
r1=z hb z=1 hence r1 can never see the value 1). Without that,
the only way r2 can be 1 is for r1=0 to have been executed before
it, but then r1 !=1.

LI can be used to transfer z=1 into r1=z; to obtain r1=1.
However, this will disable the conditional write to x. The resulting
process cannot produce 1 for r2 or r3 since the only writes
available produce 0.

EXAMPLE 23 (Example 3 revisited) Consider the program

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1 | r3=y;x=r3)

Such a program should not exhibit r1==0,r2==1,r3==1, since
the only justification for r3=1 appears to require r1==r2.

The use of DR (and hence DL) permits r1==0;r2==1,r3==1.

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1 | r3=y;x=r3)
x=0;y=0;(r1=x;r2=x;y=1 | r3=y;x=r3) (DR)
x=0;y=0;(r1=x;y=1;r2=x; | r3=y;x=r3) (CO*;DO)
x=0;y=0;r1=x;y=1;r3=y;x=r3;r2=x (AU*)
r1=0;y=1;r3=1;x=1;r2=1 (CO*;DO)

DW also permits the observation:

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1 | r3=y;x=r3)
x=0;y=0;(r1=x;r2=x;y=1;y=(r1==r2)?1 | r3=y;x=r3) (DW)
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x=0;y=0;(r1=x;y=1;r2=x;y=(r1==r2)?1 | r3=y;x=r3) (CO*;DO)
x=0;y=0;r1=x;y=1;r3=y;x=r3;r2=x;y=(r1==r2)?1 (AU*)
r1=0;y=1;r3=1;x=1;r2=1 (CO*;DO)

However, DO alone cannot exhibit this behavior.

EXAMPLE 24 (Strength reduction) Consider the program:

x=1; (r=x;s=x;x=2*r | x=3); u=x

Can it yield u=4? Here is a derivation:

x=1;(r=x;s=x;x=2*r | x=3);u=x
x=1;(r=x;s=x;x=r+r | x=3);u=x (DO, x=2*r->x=r=r)
x=1;(r=x;s=x;x=r+s | x=3);u=x (DR)
x=1;(r=x;s=x;x=r+s | x=3);u=x (SE, SE)
x=1;r=x;x=3;s=x;x=r+s;u=x (AU*)
r=1;s=3;x=4;u=4 (CO*;DO*)

The use of DR replaces r=x;s=x;x=r+rwith r=x;s=x;x=r+s;
DW and hence DO cannot accomplish this.

5. Synchronization constructs
Synchronization constructs are defined in the RAO model by in-
troducing extra structure to the model, and, if necessary, adding re-
strictions on the application of various transformations. The basic
idea behind synchronization constructs is to introduce mechanisms
by which the programmer may reliably communicate values from
one thread to another without introducing races, i.e. the possibil-
ity of cross-overs. We illustrate by considering different flavors of
volatile variables. The central idea of volatile variables is to provide
a way by which values can be communicated from one thread to an-
other in a “wait-free” manner (without introducing the possibility
of deadlock). In Section 5.2 we treat the definition of volatiles as
given by JLS2 [GJSB00]. In practice this definition has not proved
to provide strong enough guarantees to be used reliably by applica-
tion programmers. The central issue is the visibility of writes to raw
(non-volatile) variables “through” a cross-thread volatile write/read
access chain. This leads to stronger definitions of volatile discussed
in subsequent sections.

5.1 Raw variables
Raw variables correspond to the “usual” (unsychronized) variables
of Java. These are not associated with any special semantics for
concurrent reads and writes. In particular, multiple reads and writes
may be performed on the variable at the same time and a read
is permitted to read the value of any hb-consistent write. (Thus
links are permitted for such variables.) Thus raw variables can be
involved in cross-overs.

5.2 JLS 2 volatiles
The informal requirement for JLS 2 volatiles is that the read of a
variable x by a step s must be answered by a step t ordered before
s. This can be formalized in RAO as follows. First, we distinguish
between raw variables and volatile variables in the model: the
underlying set V of variables is partitioned into Vr (the subset of raw
variables) and Vv (the subset of volatile variables). An additional
restriction is introduced on the applicability of transformations to
volatile variables:

JLS 2 Volatility Condition: LI may not be used to link
volatile variables.

Therefore the only way to connect a write by a step s to a read
by a different, unordered step t is to use AU to hb-order s before t,
and use CO to compose the steps.

EXAMPLE 25 (Fig 21) Consider the AO process:

v=0; (v = 1 | r1=v; r2=v)

If v is not volatile this process may exhibit the behavior r1==1,r2==0:

s0: v=0; (s1: v=1 | s2: r1=v; s3: r2=v)
s0: v=0; (s1: v=1 | s2: r1=v; s3: r2=1)(LI, s1->s3)
s0: v=0; (s1: v=1 | s2: r1=0; s3: r2=1) (LI, s0->s2)

However, if v is volatile the application of LI is not permitted. For
r1 to read 1, s1 must be ordered before r2. And it must lie after
s0. But then it will force r2=1.

However, JLS 2 volatiles do not guarantee reliable visibility of
writes to raw variables through a volatile write/read pair.

EXAMPLE 26 (Fig 8) Consider the AO process, with v volatile:

x=0; v=false; (x=1; v=true | r1=v; r2=r1?x )

It is desired that if the write to r2 executes, it writes 1. That is,
a write on a raw variable x can be communicated reliably through
the synchronization offered by the write to the volatile variable v.

Unfortunately, this behavior is not guaranteed. For instance:

x=0; v=false; (x,v=1,true | r1=v; r2=r1?x) (CO)
x=0; v=false; (v=true; x=1 | r1=v; r2=r1?x)(SE)
x=0; v=false; (v=true; r1=v; r2=r1?x; x=1) (AU, AU)
x=0; v=false; (v,r1,r2=true,true,x; x=1) (CO,CO,CO)
x,v,r1,r2=0,true,true,0; x=1 (CO,CO)
x,v,r1,r2=1,true,true,0 (CO)

Examples also demonstrate that JLS 2 volatiles do not satisfy
the Fundamental Property, as this example illustrates.

EXAMPLE 27 (Fig 8) Consider the AO process, with v0,v1
volatile:

v0,v1=0,0; (v0=(v0==0)?1 |
v1=(v0==1)?2 | r2=v1;r1=v0)

By reordering the two steps of the last thread it is possible to obtain
an execution in which r1=0 and r2=2. However this behavior is
not an SC behavior of the original program. Since all steps involve
volatile variables (or variables private to a thread) there are no
races. Hence FP is not satisfied.

5.3 DX-restricted Volatiles
The root cause of this problem is that writes to raw variables are
permitted to be reordered with writes to volatile variables. This can
be prevented in RAO by requiring in addition to the condition in
the previous section:

DX Restriction: DX may not be used to decompose f
if f reads or writes a volatile variable.

EXAMPLE 28 (Fig 8, revisited) Consider the AO process, with
v volatile:

x=0; v=false; (x=1; v=true | r1=v; r2=r1?x )

Now the desired behavior (if the write to r2 executes, it writes
1) can be guaranteed. The only way for r1=v to see v=true
is through an AU (preceded optionally by a CO of x=1 and
v=true), followed by a CO. But then it must be the case that
x=1 hb r2=r1?x (or x,v=1,true hb r2=r1?x), and the de-
sired behavior is guaranteed.
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Therefore the DX restriction does what it was intended to do. We
note in passing that this restriction may be considered too strict.

EXAMPLE 29 Consider the AO process, with v volatile:

x=0;y=0;v=0;
(r1=x;r2=x;v=(r1==r2)?1; y=(r1==r2)?1
|s=y; x=s)

Informally, this test should permit r1=r2=1 since v is being
written to and never read. Therefore if we are not interested in the
value of v, the program should have the same behavior as

x=0;y=0;(r1=x; r2=x; y=(r1==r2)?1 | s=y; x=s )

which definitely permits r1=r2=1 (see Example 10).

We remark that this problem can be addressed by moving to a
slightly richer variation of RAO that we shall call RAOS. (RAO
with sequencing). In RAOS, a step (such as r1,r2,v,y=x,x,1,1)
is thought of as producing an ordered sequence of writes (in-
stead of just a set of writes). Now there is enough extra struc-
ture to provide a more fine-grained treatment of sequencing. In
RAOS no restriction is placed on DX: f can be decomposed into
g;h provided that for any input store f produces the same se-
quence of writes that g;h does (and g and h write disjoint vari-
ables). A new transformation, RE (reordering) is introduced:
two successive steps g;h may be transformed into h;g only if
h◦g = g◦h and h does not write a volatile variable. In RAOS the
above example works: r1,r2,v,y=x,x,1,1 may be reduced
to r1,r2,v=x,x,1;y=1 through DX.

5.4 JLS 3 volatiles
EXAMPLE 30 (Fig 22) Consider the process:

x=0; y=0; v=0;
(r1=x;v=0;r2=v;y=1 | r3=y;v=0;r4=v;x=1)

where only the variable v is volatile. The model permits the behav-
ior r1=r3=1 per the following derivation:

x=0; y=0; v=0; (r1=1;v=0;r2=v;y=1 | r3=1;v=0;r4=v;x=1)
(LI,LI)

x=0;y=0;v=0; (r1,v,r2,y=1,0,0,1|r3,v,r4,x=1,0,0,1)
(CO*)

The resulting process is a completed execution, with a cross-over.
Note that all the reads of the volatile variable v have not been totally
ordered in the above example. The JLS 3[GJSB05] design for
volatiles solves this problem by requiring a a total synchronization
order (SO) on all reads and writes of volatile variable x. Further,
there is required to be an hb-edge between a write of a volatile
variable x and all SO-subsequent reads of x.

Formally, this requirement is implemented in RAO exactly as
stated above. In addition to the requirements of the previous two
sections, we redefine the notion of completed execution as follows:

JLS 3 Volatility Condition: An AO process is a com-
pleted execution iff all its steps are completed and there ex-
ists a total order on all steps that read or write volatile vari-
ables (the synchronization order, SO) and there is an hb-
edge between a write of a volatile variable x and all SO-
subsequent reads of x.

Modulo this change, the notion of SC execution is unchanged from
Definition 9. To satisfy this requirement hb-edges may need to be

added, using AU. 7 With these conditions all three Test Cases – (25,
26 and 30) – are satisfied.

EXAMPLE 31 (Fig 22, revisited) Consider the process:

x=0; y=0; v=0; (r1=x;v=0;r2=v;y=1 | r3=y;v=0;r4=v;x=1)

where only v is volatile. Consider:

x=0;y=0;v=0;
(s0: r1=x; v1: v=0; v2: r2=v; s1: y=1
| s2: r3=y; v3: v=0; v4: r4=v; s3: x=1)

x=0;y=0;v=0;
(s0: r1=1; v1: v=0; v2: r2=v; s1: y=1
| s2: r3=1; v3: v=0; v4: r4=v; s3: x=1)

(LI s3->s0,s1->s2)

The resulting process is not a completed execution. There must be a
total synchronization order on the steps v1,v2,v3,v4 satisfying
the desired condition. Either v2 must lie after v3 or v4 must lie
after v1. Any attempts to add hb-edges to satisfy the condition
above will result in the conditions for one of the links to be violated:
the target of a link will be hb its source. Therefore it is not possible
to complete this process.

We remark in passing that the JLS 3 notion of volatiles can be
strengthened by requiring that a completed execution must satisfy
the condition that there is an hb edge between a write of any volatile
variable and SO-subsequent reads of any volatile variable. The
definition of this variant – call it JLS3-ALL – on top of RAO is
straightforward.

5.5 Totally ordered volatiles (TOV)
The above design strengthens the connection between a volatile
write and subsequent reads. It does not totally order the writes.
Thus cross-overs involving volatile reads and writes are still pos-
sible.

EXAMPLE 32 (Fig 22a) Consider the process obtained by re-
moving the second volatile read r4=v:

x=0; y=0; v=0;
(r1=x;v=0;r2=v;y=1 | r3=y;v=0;x=1)

Again, only the variable v is JLS 3 volatile. This program has the
behavior r1=r3=1:

x=0;y=0;v=0;
(s0: r1=x; v1: v=0; v2: r2=v; s1: y=1
| s2: r3=y; v3: v=0; s3: x=1)

x=0;y=0;v=0;
(s0: r1=1; v1: v=0; v2: r2=v; s1: y=1
| s2: r3=1; v3: v=0; s3: x=1) (LI s3->s0,s1->s2)

The resulting process is a completed execution – with the synchro-
nization order v3,v1,v2. It has a cross-over
{s0,v1,v2,s1,s2,v3,s3} involving steps of two threads,
with actions on the same volatile variable from each of those
threads. By removing the second volatile read, the additional re-
striction of the previous section was taken out of play.

If to the previous three volatility condition we add:

Volatility Total Order Condition: An AO process is a
completed execution if all steps are completed and all steps

7 The addition of AU edges may not be possible because of the presence
of links. Thus it is possible that starting with an AO process P, there is a
sequence of linkings resulting in a process which cannot be completed into
an execution. A safe strategy is to first introduce AU edges as needed to
satisfy the condition above, and then add LI links.
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that read and write a volatile variable x are totally ordered
by hb.

then Fig 22a would no longer have a valid execution. In a completed
execution, we must have either v3 hb v1 or v1 hb v3. But AU
cannot be used to estabish these edges for the last process in the
example above because in either case the wbX condition associated
with one of the links will not be satisfied.

More generally, with this condition, there cannot be a cross-over
c which contains a volatile action on the same variable v for each
thread that has steps in c. We illustrate the case for a set of actions
belonging to two threads. Consider an execution. Let s be the first
volatile step in c in that execution. Say it belongs to thread t0. Let t
be the first step in the c after s in the execution and belonging to the
other thread, t1. For s, t to be in a cross-over, there must be a link
from a step after t to a step before s. However, every step in t1 after
t happens after every step in t0 before s (because of the Volatility
Total Order Condition) and so cannot be used as a source for a link
into a step in t0.

As with JLS3-ALL we remark that a variant TOV-ALL can be
defined on top of RAO. It requires that a completed execution must
totally order all read and write steps on all volatile variables.

5.6 Main theorem
We now consider the formal properties of the RAO model, ex-
tended with the definitions of volatile variables discussed above.
Let V l range over the definitions of volatiles (excluding JLS 2,
which does not satisfy the Fundamental Property, as discussed
above). Let the notion of an RAO(Vl) (AO(Vl)) model stand for the
notion of an RAO (AO) model on top of a set of variables which are
partitioned into raw and volatile variables, and for which the appli-
cation of transformations on volatile variables is restricted per V l,
and the definition of completed execution is changed (if necessary)
as per V l. The following results carry over from AO.

LEMMA 27 (GOOD BEHAVIOR IS
X−→-INVARIANT.). For all AO(Vl)

processes P,Q if P is well-behaved and P X−→ Q then Q is well-
behaved.

The proof rests on the proof of the corresponding theorem for AO,
and the simple observation that volatile variables cannot introduce
races (for each definition of volatile).

LEMMA 28 (PRESERVATION OF SC BEHAVIOR). Let P,Q be AO(Vl)
processes such that P X−→Q, and P is well-behaved. Then sc(Q)⊆
sc(P).

Because of interactions with links, Q may no longer have an SC
execution. The lemma then follows vacuously. Otherwise, the proof
rests on transforming the total order underlying an SC execution of
P into a total order on the steps of Q. The cases are straightforward.

The proofs of the main properties rest on the corresponding ones
for AO.

LEMMA 29 (MAIN LEMMA). For all AO(Vl) processes P,Q if P is
well-behaved and P X−→ Q then io(Q)⊆ sc(P).

THEOREM 30 (FUNDAMENTAL PROPERTY). Let P be a well-
behaved AO(Vl) process. Then io(P)⊆ sc(P).

THEOREM 31 (FUNDAMENTAL PROPERTY). Let P be a well-
behaved AO(Vl) process. Then io(P)⊆ sc(P).

6. Related work
Location consistency model. Location consistency (LC) [GS00]
is probably the weakest memory model described in the literature.
The distinguishing property of LC is that it does not rely on co-
herence, thus dispensing the need for cache snooping and directo-
ries in a multiprocessor implementation. Gao and Sarkar argue that
the model is equivalent to release consistency (RC) [GLL+90] for
programs that are data race free. However, unlike RAO the spec-
ification of LC is not suited as a basis for a memory model of a
high-level programming language as it does not explicitly define
which re-orderings of access and synchronization statements are
permitted [WTA02]. Like LC, RAO does not rely on the coherence
assumption.

OpenMP and UPC memory models. The memory models of
OpenMP [HdS05] and UPC [YBW04] have been specified after
the original specification of these language extensions. The fun-
damental difference with RAO is as follows: Both OpenMP and
UPC are founded on programming languages with unsafe typing
and pointer arithmetic and thus the requirements that their mem-
ory models impose on programs that are not data race free can be
looser. RAO, in contrast, is designed for type safe-languages like
X10 or Java with the strong memory safety in mind. The focus of
the specification of the UPC and OpenMP memory model is on the
effect and ordering guarantees provided by certain accesses with
synchronization semantics and explicit synchronization constructs
– not on guarantees that are given in the absences of such synchro-
nization. Both models allow the introduction of spurious writes,
and reads may observe “out of thin air” values in programs with
data races [Boe05].

Java memory model. The RAO model can be thought of as a
“happens before” model, discussed in [MPA05, Section3]. RAO
is generative, given a source program it generates all possible se-
quences of executions. In contrast, the methodological stance of
[MPA05] is that a trace must be given beforehand; the memory
model is then specified in terms of which traces are correct. We
feel that valuable information is lost when one moves from a gen-
erative model to an oracle; in particular, the task of specifying the
semantics is made harder.

ASIAN 2004 paper. This paper generalizes and simplifies [Sar04].
The core concept of linking is derived from the action sets of
[Sar04]. The “unique valuation” condition has been replaced by
the simpler well-foundedness condition. Conditional linkings have
been done away with in favor of (partial) steps. The formulation of
the model in terms of a set of permitted transformations is new to
this paper.

7. Conclusion and future work
We believe this paper is a first step towards establishing a system-
atic understanding of weak memory models.

Important foundational questions remain. Is RAO the “weakest”
relaxed memory model satisfying the requirements laid out in Sec-
tion 1? This hinges on formalizing the “No Thin Air Reads” condi-
tion. What compositionality properties – and hence reasoning prin-
ciples – are satisfied by RAO? We believe deeper results may be ob-
tained, particularly by connecting with ideas from separation logic
[Bro04]. An efficient implementation of the calculus presented in
this paper would be valuable. Further, we believe that it is valuable
to develop (and mechanize) the ideas of RAO for concurrent data
structures, that offer richer semantic functions than reads/write op-
erations on memory locations, in the spirit of [BAM06].

On this foundation several synchronization constructs can be
defined. In particular, a systematic account can be given of locks,
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and isolated and atomic execution, in the context of transactional
memory. These ideas will be developed in subsequent work.
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A. Mathematical details
PROPOSITION 32. c[c[d]] = c[d], and c[d[e]] = c[d][e], for any
stores c,d,e.

PROPOSITION 33. c[d]≥ d, for any stores c,d.

PROPOSITION 34. d ≥ e implies c[d]≥ c[e], for any stores c,d,e.

In fact, Propositions 32–34 establish that for all c, c[ ] is a
closure operator.

Let P,Q be AO processes. Say that P X−→ Q if Q is obtained
from P by the application of one of the RAO transformations. The
SC i/o functions of P, sc(P) is the set of functions io(s0 ◦ . . .◦ sn−1)
where {s0, . . . ,sn−1} is a totally ordered extension of P (with steps
enumerated in hb-order). (Note that sc(P) may be empty because
no totally ordered extension of P may exist, because of volatility
conditions.)

Let clo(P) represent the set of AO processes obtained from P
by zero or more applications of the given transformations. Say that
P is complete if for every step p ∈ P, ∈ (p) ∈ dom(p). We take the
observations of a process P to be the set of i/o functions of P, io(P)
defined as the set { f ∈ sc(Q) | Q ∈ clo(P),Q complete}. We say
that O ∈ io(P) has a proof of size n if there is an X−→ sequence of
length n from P to Q such that O ∈ sc(Q).

Say that an AO process P is well-behaved if all its SC executions
are race-free.

LEMMA 35 (GOOD BEHAVIOR IS
X−→-INVARIANT.). For all AO

processes P,Q if P is well-behaved and P X−→ Q then Q is well-
behaved.
Proof. By inspection of the proof rules.

Let X = IM, with f ∈P replaced by its improvement g∈Q. Note
that if g has a race with some step e then in the same sequence (with
g replaced by f ) of the steps of P there is a race between f and e.
Therefore no total order of the steps of Q has a race.

If X = CO, with f and g being replaced by h, then any total
order of the steps of Q corresponds to the same total order on the
steps of P with h being replaced by f and g in succession. The
sequence for Q has a race iff the sequence for P does.

Let X = DL, and f ∈ P be replaced by g,h ∈Q. Consider a total
ordering Z of the steps of Q. We need to consider two cases. First,
suppose there is a race between g and a step e. From Z form a total
order Z′ of the steps of P with g replaced by f , and h by nothing.
Then there will be a race between f and e in Z′. But there cannot
be. Now consider the second case: there is a race in Z between two
steps that lie after g in Z. If not, find the first step e after g in Z
whose input store (confined to the variables it reads) is different
from that for e in Z′. Then e and f are in a race in Z′. But this
cannot be. Hence Z has no races.

Let X = LI with g∈P replaced by f →V g. Since P has no races,
and f and g are unordered in P, it follows that f →V g = g. (If not,
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then one can find a total order of the steps of P in which f precedes
g and now g will read some write of f , thereby exhibiting a race.)
Therefore every total order of the steps of Q is in fact a total order
of the steps of P. Since no total order of the steps of P has a race,
neither does any total order of the steps of Q.

Let X = PR, with f replaced by a Z-equivalent step q. Every
total order of Q corresponds to an identical total order of the steps
of P, with g replaced by f . There is a race in the total order of Q iff
there is a race in the corresponding total order of P.

Let X = AU. The total orders of the steps of Q are a subset of
those of P. Since the total orders of the steps of P have no races,
we are done.

LEMMA 36 (PRESERVATION OF SC BEHAVIOR). Let P,Q be AO
processes such that P X−→Q, and P is well-behaved. Then sc(Q)⊆
sc(P).

Proof. X = IM. A step f in g is replaced by a step g which improves
f . But io(g) = io( f ) (precondition for IM), and we know that
io( f ;g) = io( f ); io(g). Therefore the total order of the steps in Q
that witnesses the given observation can be modified (by replacing
g by f ) to obtain the total order of the steps in P that exhibit the
same observation.

X = CO. Let f ,g ∈ P be changed to h = f ◦ g in Q. Let
{s0, . . . ,sn−1} be the total order of the steps in Q that yields the
desired observation. Replace h in this order by f followed by g to
get a total order of P which has the same observation.

X = DL. Let f ∈ P be replaced by g,h in Q. Since P is well-
behaved, by the previous lemma Q is well-behaved. Now any SC
execution Z of Q corresponds to an SC execution Z′ of P in which
the steps g and h have been removed and g has been replaced by f .
(The next step after g in Z that is sensitive to the output of g has to
be h or some successor step, since no SC execution of Q has races.)

X = LI( f ,g,x,v). There are two cases. A step f ∈ P is used to
replace an unordered step g∈ P by h = f :{x} g to get the procss P′.
But note that since there are no races in P it must be the case that f
cannot produce any information that g can read, i.e. h = g. Hence
the total order on Q that witnesses the given observation is also the
total order of steps of P. Alternatively, f hb g. Then it follows that
there is no other step g′ such that f hb g′ hb g. Let Z be a total order
on the steps of P′. Let Z′ be Z with h replaced by g. Then Z′ is a
total order of the steps of P and the input store ig before g in Z is
the same as the input store ih before h in Z′. Note that g(ig) = h(ih).
Therefore the input store before every step in Z is the same as the
input store before the corresponding step in Z′. Therefore the io
function of Z and Z′ are the same.

X = PR. A step f ∈ P is replaced with a step g ∈ Q such that
f and g are Z-equivalent, where Z is a constraint that holds in all
SC executions of P before f . Consider a total order of the steps of
Q that witnesses the given observation. Let g be the ith element in
the sequence. Then all the steps before i are in common with P. It
must be the case that Z is true. Since f and g are Z-equivalent we
can replace g by f and keep the rest of the sequence unchanged to
get a sequence that is a total ordering of the steps of P and has the
same io function.

X = AU. An extra hb -edge is added to get Q. Now any total
order of Q is a total order of P, so we are done.

LEMMA 37 (MAIN LEMMA). For all AO processes P,Q if P is
well-behaved and P X−→ Q then io(Q)⊆ sc(P).

Proof. By induction on the size of the proof of an observation
O ∈ io(Q),

The inductive hypothesis is:

For all AO processes P and Q and observations O, if
P X−→Q, P is well-behaved, O ∈ io(Q) has a proof of size n
then O ∈ sc(P).

Base case (n = 0): In this case P = Q, O ∈ sc(Q). So O ∈ sc(P).
Inductive case (n > 0). Assume the inductive hypothesis for n.

We will establish it for n+1. Assume P is well-behaved, P X−→ Q,
O ∈ io(Q) has a proof of size n+1. We have to show O ∈ sc(P).

If O has a proof of size n + 1, then for some Q′, Q Y−→ Q′ and
O∈ io(Q′) with a proof of size n. By Lemma 35, Q is well-behaved.
So by I.H. O ∈ sc(Q). By Lemma 36, O ∈ sc(P).

THEOREM 38 (FUNDAMENTAL PROPERTY). Let P be a well-
behaved AO process. Then io(P)⊆ sc(P).
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