Effects of Prototype and Exemplar Fit on Brand Extension Evaluations: A Two-Process Contingency Model

HUIFANG MAO
H. SHANKER KRISHNAN*

The brand extension literature suggests that consumers will favorably evaluate a brand extension when (a) it has high fit with the brand and (b) the brand has positive evaluations. We suggest that when a brand operates in multiple product domains, extension evaluations are more complex than have been conceptualized, and favorable consumer responses may result even in the absence of the above two conditions. Our two-process contingency model proposes two dimensions of fit (brand prototype fit and product exemplar fit) and two evaluative processes (top-down and parallel attitude transfer) that drive extension evaluations in different ways, depending on the level of cognitive resources. Three empirical studies found consistent support for the model.

 RAND EXTENSION LITERATURE

Extension Fit

Research has identified extension fit as a critical antecedent of extension evaluations (Aaker and Keller 1990). Prior research has examined the types of features involved in fit judgments (Keller 2002). For example, Aaker and Keller (1990) suggest that consumers evaluate fit based on the extension’s complementarity (i.e., complementing the existing product), substitutability (i.e., substituting the existing product).
istig product), and transferability (i.e., sharing manufacturing resources with the existing product). Park, Milberg, and Lawson (1991) propose that extension fit is perceived on both concrete functional features and abstract symbolic features (e.g., prestige). Similarly, in the work of Broniatczyk and Alba (1994), fit is not only the extension’s functional similarity to the brand category but also its relevance to abstract brand benefits. Zhang and Sood (2002) find that consumers may judge extension fit on “deep” features (i.e., attribute similarity) or “surface” features (i.e., rhyming names). Whereas the literature has advanced our understanding regarding the features used to assess extension fit, it does not specify the sources involved in fit perceptions in a broad brand context. In other words, it is unclear from the literature which existing product(s) are the basis for fit perceptions.

Extensions of Multiproduct Brands

Despite its importance, research on multiproduct brands is relatively limited. Boush and Loken (1991) suggest that a brand affiliated with many products (vs. one product) is more likely to succeed with distant extensions. This view leads to our expectation that extension fit may be perceived differently for broad brands. According to Dacin and Smith (1994), consumer responses to an extension are dependent on the differences in quality of all existing products, implying that consumers may consider many (if not all) products of a brand when judging an extension. However, Dawar (1996) finds that consumers perceive greater fit of an extension when a similar existing product of the brand is salient. This suggests that consumers may sometimes focus on one specific product in evaluating an extension. Altogether, previous research on broad brands is suggestive that consumers may evaluate brand extensions with varying approaches involving alternative referent points.

THEORY AND HYPOTHESES

A brand operating in different product categories can be viewed as a group and each of its products as a group member (Boush and Loken 1991; Dawar 1996). Building on this view, we begin by exploring how this brand group is represented in consumer knowledge structure. Then discussion is developed around two questions. First, how is fit perceived between an extension and a brand group? Second, how are attitudes transferred from a brand group to an extension?

Categorization Approaches and Knowledge Structures of Multiproduct Brands

How is a group of different products in one brand line mentally represented? Two classic categorization views—the prototype and exemplar approaches—can cast light on this perspective (Malt 1989). The prototype view suggests that a category is stored in memory in the form of an abstracted image (Sherman 2001). As noted by Posner and Keele (1968, 354), “prototype represents a kind of average or central tendency” of the category members. A broad brand may develop a prototype to represent its various product categories (Dacin and Smith 1994). For example, Nike may form a prototype of high-quality sportswear in consumer memory. Such prototype imagery is generalized on the basis of some or all Nike products. Once developed, a prototype exists at the brand level and is separate from information of specific product instances.

The exemplar view, however, proposes that a category is represented by each of its instances (Higgins 1989). For a broad brand, each product type may be stored as an exemplar in consumer memory. For instance, consumers may have a Nike sports audio exemplar in the Nike category. Unlike brand prototypes capturing common features of many products under the brand, product exemplars register each individual product’s unique features (Loken and Ward 1990).

Research has shown support for a hybrid model wherein individuals represent a category with both prototypes and exemplars (Posner and Keele 1968; Sherman 2001). According to this view, consumers’ mental representation of a multiproduct brand may entail a two-level structure: higher-order prototypes represent group or brand-level information and lower-order exemplars incorporate individual or product-level information (John, Loken, and Joiner 1998).

Prototype Fit and Exemplar Fit

How do consumers assess an extension’s fit using knowledge structure of a brand group? In a human group context, it is suggested that people judge whether a person belongs to a group by a normative or comparative principle (Turner et al. 1994). The normative principle assesses whether the person matches the group norm, and the comparative principle examines whether the person is similar to some existing group members. Analogically, we propose that whether a brand extension fits the brand can be perceived by calibrating it to a brand prototype (i.e., the normative principle) or a product exemplar (i.e., the comparative principle). That is, extension fit is not unidimensional but can be perceived at either level of a brand group structure. We define prototype fit as the level of consistency between a brand extension and the generalized imagery of the brand (i.e., a brand prototype), and exemplar fit as the level of consistency between an extension and an existing product of the brand (i.e., a product exemplar).

Assume that Nike is introducing two extensions: kneepads and car audio systems. While kneepads do not closely resemble any existing product of Nike, the kneepad extension fits with the brand’s “athletic” prototype. The car audio extension is inconsistent with the prototype, but it shares many features with a specific Nike exemplar (i.e., sports audio). Thus, the Nike kneepad extension has a high prototype fit but a low exemplar fit, and the Nike car audio extension has a high exemplar fit but a low prototype fit.
Top-Down and Parallel Attitude-Transfer Processes

In a social context, a person may be evaluated via a top-down process and/or a parallel process (Beike and Sherman 1994; Kardes, Posavac, and Cronley 2004). In a top-down process, a person is judged based on the group she belongs to (e.g., we like a person because she is a teacher). With a parallel process, a person is evaluated according to a similar other person (e.g., we like a person because she is similar to a celebrity). We expect that these two processes also apply in a brand extension context. That is, corresponding to the two fits are two evaluation processes, in which attitudes to an extension may be transferred in a top-down fashion from brand prototypes and/or in a parallel fashion from product exemplars. The two processes are not mutually exclusive, and consumers may use both in extension evaluations (Malt 1989).

When a top-down evaluation process is adopted, a brand prototype is used to evaluate an extension. Consumers retrieve the brand prototype to employ an extension, but no memory of a specific product exemplar is accessed (Higgins 1989). Attitudes are transferred from brand prototypes to a new product, dependent on the level of prototype fit (Hamilton and Sherman 1996). An extension low in prototype fit is stored as a subtype of the brand category, and prototype attitudes will not be transferred (Gurhan-Canli and Maheswaran 1998).

In a parallel evaluation process, a product exemplar is activated and used to judge a brand extension. Attitudes are transferred from an existing exemplar to a new product (Gregan-Paxton and John 1997), dependent on the level of exemplar fit. When multiple products exist as the basis for comparison, the one most similar to the extension (i.e., of the highest exemplar fit) has the best chance to be employed as the attitude-transfer source. In this process, higher-order brand prototypes are not retrieved, and brand attitudes do not affect extension evaluations.

In sum, the top-down process is driven by prototype fit, and attitudes are transferred from a brand. Favorable extension evaluations will result from high prototype fit plus positive brand attitudes. Conversely, the parallel process is driven by exemplar fit and attitudes are drawn from a product. Favorable evaluations will follow high exemplar fit plus positive product attitudes.

Role of Cognitive Resources

We expect that the parallel process requires fewer cognitive resources than the top-down process. First, it has been empirically shown that identifying an object with another object is easier than identifying it with an object group (Malt 1989). Second, parallel processing transfers attitudes within one level of the brand hierarchy (i.e., from an old exemplar to a new exemplar), yet the top-down evaluation transfers attitudes across two levels (i.e., from a prototype to an exemplar). It should take more resources to access two hierarchical levels than one.

Though the parallel processing is less effortful, a top-down process assesses an extension in a more comprehensive and precise fashion and will be adopted if resources permit (Beike and Sherman 1994). Compared with basing one’s judgment on a single product in the brand group, evaluating an extension on the basis of the abstraction of the brand group should introduce less bias and thus be more reliable. Consumers with sufficient resources are motivated to employ the top-down evaluation so as to increase judgment confidence (Maheswaran and Chaiken 1991).

A Two-Process Contingency Model of Extension Evaluations

As a summary, parallel processing is contingent on exemplar fit and does not depend on cognitive resources. Thus, regardless of the level of resources, a parallel process will be adopted if exemplar fit is high, and attitudes will be transferred from a product exemplar. The top-down process is contingent upon prototype fit, and attitudes are transferred from a brand prototype. The process is magnified by the availability of cognitive resources. Assuming positive prototypes and exemplars, exemplar fit (in parallel processing) and prototype fit (in top-down processing) can both contribute to favorable extension evaluations. Since parallel processing is not resource-dependent but top-down processing is, we expect that the effect of exemplar fit is not affected by resources, but that of prototype fit increases with higher resources. Hence:

H1a: The positive effect of exemplar fit on extension evaluations is not moderated by the level of cognitive resources.

H1b: The positive effect of prototype fit on extension evaluations is moderated by the level of cognitive resources: as the level of cognitive resources increases, the positive effect of prototype fit on extension evaluations tends to increase.

EXPERIMENT 1

Method

Pretest 1. The Johnson & Johnson brand is used to test hypothesis 1. Pretest 1 assesses whether the brand meets three criteria: (1) the brand has multiple product types, (2) the brand has established prototypes and exemplars, and (3) the prototypes and exemplars are positively evaluated. Thirty-eight undergraduate students from a large university participated in the pretest. They first listed features associated with the Johnson & Johnson brand as well as with each of its products (i.e., shampoo, oil, bath wash, lotion, and adhesive bandages). Participants then rated their level of agreement that the brand’s general product domain is hygiene/beauty aids ($M = 5.21$ on a seven-point scale) and reported their familiarity with each product ($M = 3.74–5.66$ on seven-point scales). Results from the above
questions reflect that participants have at least moderate knowledge of the brand and its products. Finally, participants rated their attitudes of the brand and its products. Results suggest that participants hold positive attitudes toward the brand \((M = 5.24\) on a seven-point scale) as well as its individual products \((M = 4.16–5.66\) on seven-point scales). Thus, it is confirmed that Johnson & Johnson is an appropriate brand for experiment 1.

Based on the features associated with the brand and the products as reported by the participants in the pretest, eight extension products are identified to represent four combinations of prototype and exemplar fit (see table 1). The high prototype fit extensions (e.g., purifying mask) possess features captured by the brand prototype. The high exemplar fit extensions (e.g., hair dryer) share similar features with an existing product exemplar. For simplicity, we use PF to denote prototype fit and EF to denote exemplar fit, and PF\(_{H}\)EF\(_{H}\) (i.e., high PF and high EF), PF\(_{H}\)EF\(_{L}\), PF\(_{L}\)EF\(_{H}\), and PF\(_{L}\)EF\(_{L}\) to denote the four experimental conditions of extension fit.

Pretest 2. To check the fit manipulation, 15 students rated each extension’s similarity to the brand as well as to each existing product of the brand on a three-item scale (the types of needs satisfied, situations in which the products are used, and physical features; Dacin and Smith 1994). As intended, the four types of brand extensions differ in their PF \((F(3, 12) = 24.84; p < .001)\) and EF perceptions \((F = 36.84; p < .001)\). Participants reported extensions of high (vs. low) PF as more similar to the brand \((M = 4.05 \text{ vs. } 2.3, F(1, 14) = 30.39, p < .001)\), and those of high (vs. low) EF as more similar to an existing product \((M = 3.8 \text{ vs. } 2.5, F = 38.75, p < .001)\).

Procedures. Experiment 1 had a \(2 \times 2 \times 2\) (PF \(\times\) EF \(\times\) resources) between-subjects factorial design with 223 student participants. Following Jacoby’s (1991) cognitive load manipulation, participants listened to a tape recording of numbers while evaluating two brand extensions. In the low-resource conditions, participants were told to pay close attention to the tape and try to detect the last sequence of three consecutive odd numbers. Those in the high-resource conditions were told to ignore the numbers and focus on the extensions. All participants reported their attitudes of the two extensions on a three-item scale developed by Park et al. (1991) (very bad/very good; not likeable/very likeable; not pleased/very pleased). A trial evaluation task was given to familiarize participants with the procedure. Data from six participants who failed to follow the procedure were deleted.

After the evaluation task, the tape ended and participants completed questions related to three other variables at their own pace. Need for cognition was measured as a covariate by eight items (e.g., “I only think as hard as I have to”) selected from the scale developed by Cacioppo, Petty, and Kao (1984). Brand attitude was another covariate (not favorable/very favorable). Participants also reported their attitudes toward the product category of each brand extension (not favorable/very favorable). Finally, before they left, all participants wrote down the last sequence of the three consecutive odd numbers they captured from the tape recording.

To address the concern that an individual’s attitude of an extension may be swayed by her attitude toward the particular product category of the extension, we adjust participants’ extension attitude score by subtracting their product category attitude. The new variable (denoted as extension evaluation) represents how a new product of Johnson & Johnson is liked relative to an average brand in the same product category.

Results

Manipulation Checks. Participants in low-resource conditions were expected to devote more resources to the tape and thus be more successful in capturing the three digits. As predicted, low-resource (vs. high-resource) participants captured a higher proportion of accurate digits \((M = .45 \text{ vs. } .18; F(1, 209) = 36.07, p < .001)\). No other effects are significant.

Testing Hypothesis 1. A \(2 \times 2 \times 2\) (PF \(\times\) EF \(\times\) resources) ANCOVA model is employed to assess the effects on evaluations, with brand attitude and need for cog-
nition as covariates.1 The covariates have no impact (both \(p > .17 \)). Both PF (\(M = .74 \) vs. \(-.36\); \(F(1, 207) = 28.10, p < .001 \)) and EF (\(M = .41 \) vs. \(.01\); \(F = 4.40, p = .004 \)) show main effects on extension evaluations. Their interaction is also significant (\(F = 17.67, p < .001 \)). Planned contrasts reveal that one-fit extensions receive equally favorable evaluations as two-fit extensions (\(PF_1EF_1 = .95, PF_2EF_1 = .30, \) vs. \(PF_1EF_H = .52; \) both \(p > .13 \)) but more favorable evaluations than neither-fit extensions (\(PF_1EF_L = .95, PF_2EF_H = .30, \) vs. \(PF_2EF_L = -.94; \) both \(p < .001 \)). Thus, an extension needs to possess at least one type of fit to succeed, but having both fits may not be necessary.

Supporting hypothesis 1b, cognitive resources moderate the effect of PF (\(F = 3.83, p = .05 \)). Increasing PF has greater impact on evaluations in the high-resource (vs. low-resource) condition (\(L = .75; F = 3.46, p = .006 \)). Consistent with hypothesis 1a, resources do not interact with EF (\(F = .03, p = .86 \)). That is, the effect of increasing EF does not differ between the low- and high-resource conditions.

Further analysis compares two extensions of particular interest—extensions having only one fit. Results show that \(PF_2EF_L \) and \(PF_2EF_H \) receive similar evaluations when resources are limited (\(M = .82 \) vs. \(.51\); \(F = .63, p = .43 \)). However, with high resources, having PF is more favorably evaluated than having EF (\(M = 1.10 \) vs. \(.04\); \(F = 6.08, p = .01 \)). This is consistent with the joint prediction of hypotheses 1a and 1b that the relative importance of PF compared to EF increases with more cognitive resources. In addition, we also performed contrasts focusing on low-resource conditions. Results show that, compared with neither-fit extensions, having either PF (\(M = .82 \) vs. \(-.59\); \(F = 15.41, p < .001 \)) or EF (\(M = .51 \) vs. \(-.59\); \(F = 8.73, p = .003 \)) in low-resource conditions leads to more favorable evaluations. The means are reported in table 2.

Discussion

Experiment 1 shows that extensions of low PF may yet receive favorable responses, if the new products possess high EF. Further, the results suggest that PF has a stronger influence when resources are high (vs. low), but EF has the same effect regardless of resources.

While the findings show evidence for the theoretical model by supporting hypothesis 1a, two concerns need to be addressed. First, results show that increasing either PF or EF leads to favorable evaluations in low-resource conditions, suggesting that top-down processing is used even when resources are low. Speculating that this finding may be due to the specific load manipulation used in experiment 1 (i.e., asking participants to recognize three digits), we employ a more stringent manipulation in experiment 2 (i.e., asking participants to memorize eight digits) to sufficiently decrease resources and impair top-down processing.

1 Based on repeated-measures ANCOVA, the two extension replicates have no main effect on evaluations, nor do they interact with any variable in the model (all \(p > .17 \)). Thus, data of the two replicates are collapsed.
the brand has more accessible prototypes than exemplars, increasing resources will enhance the effect of EF compared to PF.

Method

Hypotheses 2a and 2b are competing hypotheses. Support for hypothesis 2b would indicate that accessibility moderates the role of fit in different resource conditions, whereas support for hypothesis 2a would indicate that the role of PF (compared to EF) is always greater when resources increase. To test hypotheses 2a and 2b, experiment 2 manipulates the focal brand as either high in prototype accessibility but low in exemplar accessibility (denoted as “accessible prototype”) or high in exemplar accessibility but low in prototype accessibility (denoted as “accessible exemplar”). In both accessibility conditions, we explore the effects of PF versus EF with varying level of resources. To simplify the experiment, only one-fit extensions (i.e., PF, EF, and PF EF) are studied. Thus, the design is a 2 (accessibility: accessible prototype vs. accessible exemplar) × 2 (fit: PF vs. EF) × 2 (resources: high vs. low) between-subjects factorial.

A total of 191 students filled out a booklet containing three parts. The first part provides an introduction to a fictitious hygiene/beauty aid brand Yelian as well as its five products—shampoo, oil, lotion, bath wash, and adhesive bandages. Whereas information of the brand and the products is the same across all conditions, accessibilities are manipulated by highlighting relevant parts of the information. That is, prototype information is highlighted in the “accessible prototype” conditions (e.g., “Yelian manufactures various kinds of hygiene/beauty aid products”) and exemplar information in the “accessible exemplar” conditions (e.g., “Yelian shampoo nourishes hair with a special formula”). Participants were instructed to pay close attention to the highlighted information and write down the information in their own words.

The second part of the booklet contains a load manipulation with participants asked to memorize either an eight- or a two-digit number (Gilbert and Hixon 1991). This manipulation is expected to induce greater load in the low-resource conditions compared with experiment 1. In the third part, participants reported their attitudes toward two extensions. Extension products are the same in experiment 1. Participants then recalled the number they memorized in part 2. Next, they provided true/false recognition judgments for six statements regarding either brand prototypes or product exemplars, to check the accessibility manipulation. Finally, data were collected regarding participants’ attitudes toward the product category of each brand extension as well as need for cognition. The measures are the same as in experiment 1.

Results

Manipulation Checks. First, recall of the eight digits in the low-resource conditions is used to check the resource manipulation. Most participants correctly recalled all the digits (88.6%). Following Gilbert and Hixon (1991), three participants (3.13%) who failed to recall at least four digits are believed to have allocated insufficient resources to the memorization task and are thus not included in further analyses.

Second, participants’ performance on the recognition tasks is analyzed to check the accessibility manipulations. As expected, recognition of information regarding prototypes versus exemplars varies with the accessibility condition (F(1,179) = 24.94, p < .001). Participants in the accessible prototype (vs. exemplar) conditions correctly recognized a higher portion of prototype related statements (M = .93 vs. .88; F = 3.80, p = .05) but a lower portion of exemplar related ones (M = .69 vs. .84; F = 24.51, p < .001). No other effects are significant.

Testing Hypothesis 2. A 2 × 2 × 2 between-subjects ANCOVA model (accessibility × fit × resources) is used to assess the effects on evaluations,2 with need for cognition included as covariate. The covariate has no impact on evaluations (F(1,179) = 1.59, p = .21).

The three-way interaction predicted by hypothesis 2b is nonsignificant (F = .05, p = .83). In support of hypothesis 2a, the fit × resources interaction is significant (F = 4.99, p = .03). In low-resource conditions EF-based extensions lead to more favorable evaluations than PF-based extensions (M = .154 vs. .70; F = 9.37, p = .002), but the two generate equivalent evaluations when resources are high (M = 1.00 vs. .97; F = .01, p = .91). The absence of the three-way interaction suggests that the above pattern is robust regardless of accessibility. That is, the effect of EF (vs. PF) requires fewer resources, no matter whether the prototype or exemplar is more accessible. Thus, data show support in favor of hypothesis 2a rather than 2b.

The accessibility × resources interaction is also significant (F = 10.40, p = .001). When resources are low, having accessible exemplars (vs. prototypes) increases favorable evaluations (M = 1.43 vs. .75; F = 6.14, p = .01). When resources are high, the opposite occurs (M = .71 vs. 1.24; F = 3.78, p = .05). Thus, although accessibility does not change the fact that the top-down process is more resource-dependent than parallel processing, it affects evaluations by magnifying the effect of parallel processing in low-resource conditions (with accessible exemplars) or the effect of top-down processing in high-resource conditions (with accessible prototypes). The accessibility × fit interaction is not significant (F = .22, p = .64). See table 3 for the means.

Discussion

Experiment 2 reveals that, regardless of whether prototypes or exemplars are more accessible, top-down (vs. parallel) processing is more resource dependent, and the relative

2Based on repeated-measures ANCOVA, the two extension replicates have no main effect on evaluations, nor do they interact with any variable in the model (all p > .1). Thus, data of the two replicates are collapsed.
effect of PF (compared with EF) is higher in high-resource (vs. low-resource) conditions. Thus, the alternative hypothesis regarding accessibility as a moderator is ruled out. Further, results reveal that although accessibility does not affect the resource dependency of the two processes, it does influence evaluations within each level of resources. Specifically, exemplar accessibility results in more favorable evaluations with low resources, and prototype accessibility increases favorable evaluations with high resources. Finally, with a more stringent load manipulation, experiment 2 finds that in low-resource conditions it is more important for a brand extension to have EF (vs. PF), but the two fits lead to equivalently favorable evaluations in high-resource conditions.

Both experiments 1 and 2 test brands that have positive prototypes and exemplars. To differentiate the two sources of attitude transfer in extension evaluations, brands with negatively evaluated prototypes or exemplars need to be explored. Experiment 3 is designed to show that an extension can succeed despite negative brand evaluations, because product exemplars can also serve as an attitude-transfer source.

EXPERIMENT 3

Hypotheses

Experiments 1 and 2 parse fit into a two-dimensional construct and investigate the specific roles of prototype and exemplar fit. Experiment 3 identifies how alternative attitude-transfer sources interact with fit to affect extension evaluations. Our model suggests that in a top-down evaluation process attitudes toward a brand extension are transferred from a brand prototype, whereas in a parallel process attitude transfer originates from a product exemplar. In conditions where consumers hold inconsistent evaluations toward a brand prototype and product exemplar, extension judgment may vary depending on the underlying evaluative process.

Therefore we focus on two multiproduct brand conditions: one of a positive brand prototype but a negative product exemplar (denoted as “positive brand”), and the other of a positive product exemplar but a negative brand prototype (denoted as “positive product”). This manipulated variable is labeled “attitude-transfer source.” Experiment 3 focuses on one-fit brand extensions and adopts a 2 (fit: PF vs. EF) × 2 (attitude transfer sources: positive brand vs. positive product) between-subjects factorial design. We expect that high PF will drive attitudes to transfer from a brand, and high EF will lead attitudes to transfer from a product. Therefore, we anticipate more favorable evaluations for a PF-based extension in positive brand scenarios but for an EF-based extension in positive product conditions. Hence,

H3a: Evaluations for a PF-based extension are more favorable in positive brand (vs. positive product) conditions.

H3b: Evaluations for an EF-based extension are more favorable in positive product (vs. positive brand) conditions.

Method

Seventy-five undergraduate students participated in the experiment. The study involves a different product domain than experiments 1 and 2—athletic goods, for the purpose of generalizability. Participants read an introduction of a fictitious athletic brand Legend and its four main products—sports shoes, sports apparel, sports watch, and sports audio. In the positive brand condition, the brand is presented in a positive light. Unfavorable information is provided about the sports audio product, which is the exemplar for the PF L EF extension of interest. In the positive product condition, the brand information is unfavorable but the information regarding the sports audio product is positive. After reading the introduction, participants reported their attitudes toward the brand and each product.

Subsequently, participants evaluated a brand extension. Extension fit is manipulated with varying levels of consistency with prototypes or exemplars, based on the information provided in the booklet. Half of the participants evaluated kneepads (a PF L EF extension) and the other half evaluated car audio (a PF L EF extension). Finally, participants rated the perceived consistency of the extension with the brand as well as the products (not consistent/very consistent), as fit manipulation checks. Finally, need for cognition was measured on an eight-item scale.

Results

Manipulation Checks. Participants’ attitudes toward prototypes and exemplars vary with the attitude-transfer source manipulation ($F(1,70) = 144.27, p < .001$). Those in the positive brand (vs. positive product) conditions report more positive attitudes for the Legend brand ($M = 4.62$ vs. 2.71; $F = 35.71, p < .001$) but less positive attitudes for the sports audio product ($M = 2.05$ vs. 5.83; $F = 139.86, p < .001$). No other effects are significant.

Regarding the fit manipulation, the two brand extensions differ in fit perceptions ($F = 98.79; p < .001$). No other effects are significant. The kneepad extension (vs. car audio) is perceived as more consistent with the brand ($M = 5.00$ vs. 2.63; $F = 19.19, p < .001$). The car audio extension (vs. kneepad) is more consistent with the product sports audio.

<table>
<thead>
<tr>
<th>Low cognitive resource</th>
<th>High cognitive resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF, EF</td>
<td>PF, EF</td>
</tr>
<tr>
<td>(1.06)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>(1.81)</td>
<td>(1.40)</td>
</tr>
<tr>
<td>(1.06)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>(1.69)</td>
<td>(0.80)</td>
</tr>
</tbody>
</table>

Table 3

EXPERIMENT 2 MEANS (SDS) OF EXTENSION EVALUATIONS

<table>
<thead>
<tr>
<th>Low cognitive resource</th>
<th>High cognitive resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF, EF</td>
<td>PF, EF</td>
</tr>
<tr>
<td>(1.06)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>(1.03)</td>
<td>(1.40)</td>
</tr>
<tr>
<td>(1.50)</td>
<td>(0.97)</td>
</tr>
<tr>
<td>(1.69)</td>
<td>(0.80)</td>
</tr>
</tbody>
</table>
Testing Hypothesis 3. A 2 × 2 ANCOVA model (attitude-transfer source × fit) is used. The covariate, need for cognition, has no impact ($F(1, 70) = .06$, $p = .80$). Fit shows a significant main effect ($M = 3.89$ vs. 2.96; $F = 7.77$, $p = .007$); the PF-based extension of kneepad is rated as more favorable than the EF-based car audio. This is consistent with experiment 1, which finds that individuals with high resources give more favorable evaluations toward PF,EF than toward PF,EF.

As expected, the interaction of extension fit and attitude-transfer source is significant ($F = 18.64$, $p < .001$). Supporting hypothesis 3a, the PF-based extension is more favorably evaluated in the positive brand (vs. positive product) conditions ($M = 4.57$ vs. 3.20; $F = 8.42$, $p = .005$). In support of hypothesis 3b, the EF-based extension is better evaluated in the positive product (vs. positive brand) condition ($M = 3.70$ vs. 2.22; $F = 10.22$, $p = .002$). These results indicate that attitudes can be transferred to a brand extension from different sources. Having a positive brand (product) is important for an extension with only PF (EF) (see fig. 1).

Discussion

Experiment 3 provides further evidence for our theoretical framework by showing that attitudes can be transferred to an extension from different sources. Extensions of high PF draw attitudes from a brand, but those of high EF derive attitudes from a specific product. Thus, a positive brand and high PF are not necessary; a positive existing product and high EF can also induce favorable responses toward an extension.

GENERAL DISCUSSION

This article focuses on extensions of multiproduct brands, a context that has not received adequate attention in the literature. Existing theories draw on the attitude-transfer model and assume a favorable brand and fit with the brand as two necessary conditions for successful extensions. However, for a multiproduct brand, multiple referent points exist to judge a brand extension, resulting in more complex evaluative processes. This article proposes a new framework that can account for extension evaluations of multiproduct brands and suggests that neither positive brand image nor fit with the brand is necessary for an extension to succeed.

Differing from existing unidimensional conceptualizations of extension fit, our framework suggests a two-dimensional fit construct—fit with the parent brand prototype (i.e., PF) and fit with a product of the brand (i.e., EF). Consistent support for this framework is found across the three experiments. Experiments 1 and 2 demonstrate that PF and EF both lead to favorable extension evaluations.

Further, the relative effect of PF (vs. EF) increases with higher cognitive resources, regardless of whether prototypes or exemplars are more accessible. Experiment 3 finds that attitudes are transferred from different sources to brand extensions. PF (EF) drives favorable evaluations when the brand prototype (product exemplar) is positive.

Future investigations are necessary to further advance our understanding of the area. First, existing research suggests that consumers can base their fit assessment on various features, such as functional or symbolic associations (Broniarczyk and Alba 1994; Park et al. 1991). For simplicity, our studies have focused mainly on functional similarities of brand extensions to prototypes and exemplars. Future research is called on to test the theoretical framework by exploring brand extensions’ PF and EF on symbolic consistency.

A second research question to examine is the interrelationship between PF and EF perceptions. In conditions where consumers lack prototype or exemplar knowledge to judge PF or EF, it is possible that they may infer one fit based on the other. Investigations on when and how such inferences occur will further facilitate our knowledge in this domain.

Finally, our two-process contingency model focuses on consumer evaluations without detailed information of the extension product. Research has shown that providing detailed information interacts with the effect of extension fit (Klink and Smith 2001). Future research may explore whether PF and EF influences the piecemeal processing of extension product features as well as whether such effects are symmetric for the two types of fit.

REFERENCES

