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Abstract

A two-stage logarithmic goal programming (TLGP) method is proposed to generate weights from interval compar-
ison matrices, which can be either consistent or inconsistent. The first stage is devised to minimize the inconsistency
of interval comparison matrices and the second stage is developed to generate priorities under the condition of min-
imal inconsistency. The weights are assumed to be multiplicative rather than additive. In the case of hierarchical
structures, a nonlinear programming method is used to aggregate local interval weights into global interval weights.
A simple yet practical preference ranking method is investigated to compare the interval weights of criteria or rank
alternatives in a multiplicative aggregation process. The proposed TLGP is also applicable to fuzzy comparison
matrices when they are transformed into interval comparison matrices using�-levelsets and the extension principle.
Six numerical examples including a group decision analysis problem with a group of comparison matrices, a hier-
archical decision problem and a fuzzy decision problem using fuzzy comparison matrix are examined to show the
applications of the proposed methods. Comparisons with other existing procedures are made whenever possible.
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1. Introduction

Most real-world decision problems involve multiple criteria that are often in conflict in general and it
is sometimes necessary to conduct trade-off analysis in multiple criteria decision analysis (MCDA). As
such, the estimation of the relative weights of criteria plays an important role in a MCDA process. Among
many frameworks developed for weight estimation, pairwise comparison matrices provide a natural
framework to elicit preferences from decision makers and have been used in several weight generation
methods. However, due to the complexity and uncertainty involved in real-world decision problems and
the inherent subjective nature of human judgments, it is sometimes unrealistic and infeasible to acquire
exact judgments. It is more natural or easier to provide fuzzy or interval judgments for parts or all of the
judgments in a pairwise comparison matrix. A number of techniques have been developed to use such a
fuzzy or interval comparison matrix to generate weights.

For instance, Van Laarhoven and Pedryce[37] considered treating elements in a comparison ma-
trix as fuzzy numbers having triangular membership functions and employed the logarithmic least-
squares method to generate fuzzy weights. Buckley[10] extended the method to trapezoidal membership
functions and hierarchical analysis. Boender et al.[6] found a fallacy in the normalization procedure
of Van Laarhoven and Pedryce’s method for generating fuzzy weights and subsequently modified the
method. Xu and Zhai[43] discussed the problem of extracting fuzzy weights from a fuzzy judgment
matrix also using the logarithmic least-squares method based on a distance definition in a fuzzy judgment
space. Xu[42] used the same distance definition to develop a fuzzy least-squares priority method. Leung
and Cao[24] proposed a fuzzy consistency definition by considering a tolerance deviation and deter-
mined fuzzy local and global weights using the extension principle. Buckley et al.[11] directly fuzzified
Saaty’s original procedure of computing weights in hierarchical analysis to get fuzzy weights in fuzzy
hierarchical analysis. Csutora and Buckley[13] presented a Lambda–Max method, which is the direct
fuzzification of the�max method, to find fuzzy weights.

Saaty and Vargas[32] proposed interval judgments for the AHP method as a way to model subjec-
tive uncertainty and used a Monte Carlo simulation approach to find out weight intervals from interval
comparison matrices. They also pointed out difficulties in using this approach. Arbel[1,2] interpreted
interval judgments as linear constraints on local priorities and formulated the prioritization process as
a linear programming (LP) model. Kress[22] found that Arbel’s method is ineffective for inconsistent
interval comparison matrices because no feasible region exists in such circumstances. Salo and Hämäläi-
nen[33,34]extended Arbel’s approach to hierarchical structures. Their method found the maximum and
minimum feasible values for all interval priorities and incorporated the resulting intervals into further
synthesis of global interval priorities. Arbel and Vargas[3,4] formulated the hierarchical problem as a
nonlinear programming model in which all local priorities in a hierarchy are included as decision variables
and also established a connection between Monte Carlo simulation and Arbel’s LP approach. Moreno-
Jiménez[29] studied the probability distribution of possible rankings of the alternatives in an interval
comparison matrix of sizen = 2 or 3. Islame et al.[20] used a Lexicographic Goal Programming (LGP)
to find out weights from inconsistent pairwise interval comparison matrices and explored its properties
and advantages as a weight estimation technique. Haines[18] proposed a statistical approach to extract
preferences from interval comparison matrices. Two specific distributions on a feasible region were ex-
amined and the mean of the distributions was used as a basis for assessment and ranking. Mikhailov
[26–28]developed a fuzzy preference programming (FPP) method to derive crisp priorities from interval
or fuzzy comparison matrices and extended the method to the case of group decision making.
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Our literature review shows that only Monte Carlo simulation, LGP and FPP methods could be used
to generate weights from both consistent and inconsistent interval comparison matrices. All the other
existing methods mentioned above are only applicable to consistent interval comparison matrices. As
pointed out by Saaty and Vargas[32], Monte Carlo simulation is rather complicated and time consuming
in computation. Since the number of simulations is always limited, the accuracy of the resultant priority
intervals may not be satisfactory. In general, weight intervals generated by Monte Carlo simulations are
narrower than the real priority intervals. Although Islame et al’s LGP and Mikhailov’s FPP methods
can both be used to generate weights from inconsistent interval comparison matrices, the former is
defective in theory because using the upper or lower triangular judgments of an interval comparison
matrix could always lead to different priority rankings, the latter requires the decision maker (DM)
to predetermine the values of all tolerance parameters, and both methods can only generate a crisp
set of priorities in the presence of inconsistency. Since judgments in an interval comparison matrix
are imprecise, it is more natural and logical that an interval weight vector should be generated than
an exact priority vector that is only a point estimate. However, how to generate a valid estimate for
weighs in the presence of inconsistent interval comparison matrices and how to develop an effective
method that is applicable to both consistent and inconsistent interval comparison matrices still remains
unsolved.

This paper is devoted to investigating the above issues. A simple yet pragmatic two-stage logarithmic
goal programming method is proposed to generate weights from both consistent and inconsistent interval
comparison matrices. The first stage is devised to minimize the inconsistency that may exist in interval
comparison matrices and the second stage is developed to generate interval priorities under the condition
of minimal inconsistency. In the case of hierarchical structures, a nonlinear programming method is pro-
posed to aggregate local interval weights into global interval weights. A simple yet practical preference
ranking method is extended to compare the interval weights of criteria or rank alternatives in a multiplica-
tive aggregation process. Since fuzzy comparison matrices can be transformed into interval comparison
matrices using�-level sets and the extension principle, fuzzy comparison matrices will be handled as
interval comparison matrices. Six numerical examples including a group decision analysis problem with
a group of comparison matrices, a hierarchical (AHP) decision problem and a fuzzy comparison matrix
are provided to show the applications of the proposed methods.

The paper is organized as follows. Section 2 addresses the method of two-stage logarithmic goal
programming (TLGP) for generating priorities from interval comparison matrices and explores some of its
properties. Section 3 discusses the aggregation problem of interval weights and a nonlinear programming
method is proposed. Section 4 focuses on the problem of comparing or ranking interval weights and a
simple and practical preference ranking method is investigated. Section 5 presents five numerical studies
to show the applications of the proposed methods. Section 6 discusses the extension of TLGP to fuzzy
comparison matrices, which are transformed into interval comparison matrices using�-levelsets and the
extension principle. The paper is concluded in Section 7.

2. A two-stage logarithmic goal programming method for generating interval weights

Suppose the decision maker provides interval judgments instead of precise judgments for a pairwise
comparison. For example, it could be judged that criterioni is betweenlij anduij times as important as
criterion j with lij anduij being nonnegative real numbers andlij �uij . Then, an interval comparison
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matrix can be represented by

A =




1 [l12, u12] · · · [l1n, u1n]
[l21, u21] 1 · · · [l2n, u2n]

...
...

...
...

[ln1, un1] [ln2, un2] · · · 1


 , (1)

wherelij = 1/uji anduij = 1/lji . About the above interval comparison matrix, we have the following
definitions:

Definition 1. Given an interval comparison matrixA = (aij )n×n with lij �aij �uij andaii = lii = uii =
1 for i, j = 1, . . . , n, if the following convex feasible regionSw = {w = (w1, . . . , wn) | lij �wi/wj �
uij ,

∑n
i=1 wi = 1, wi > 0} is nonempty, thenA is said to be a consistent interval comparison matrix;

otherwise,A is said to be inconsistent.
Let W = (w1, . . . , wn) be weight vector, on which two different types of constraints may be imposed.

One is the additive constraint, namely,
∑n

i=1 wi = 1. The other is the multiplicative constraint, i.e.∏n
i=1 wi = 1, which is equivalent to

n∑
i=1

ln wi = 0. (2)

Such a multiplicative constraint is widely used in multiplicative AHP[5,35] and is also used throughout
the paper. Since interval judgments may be interpreted as constraints on weights, accordingly, (1) may
be expressed as

lij �wi/wj �uij , i, j = 1, . . . , n, (3)

which can be equivalently expressed as

ln lij � ln wi − ln wj � ln uij , i, j = 1, . . . , n. (4)

Inequality (4) holds only for consistent judgments and does not hold for inconsistent judgments. To
generate a set of unified inequality constraints holding for both consistent and inconsistent judgments,
deviation variablespij andqij are introduced into (4)

ln lij − pij � ln wi − ln wj � ln uij + qij , i, j = 1, . . . , n, (5)

wherepij andqij are both nonnegative real numbers, but only one of them can be positive, i.e.pijqij = 0.
For consistent judgments, bothpij andqij are set to be zero. In the presence of inconsistent judgments, only
one ofpij andqij may be unequal to zero. So, (5) holds for both consistent and inconsistent judgments.
It is desirable that the deviation variablespij andqij are kept to be as small as possible, which means
to minimize the inconsistency of interval comparison matrices, thus leading to the following objective
function and goal programming (GP) model:

Min J = 1

2

n∑
i=1

n∑
j=1

(pij + qij ) (6)
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s.t. ln wi − ln wj + pij � ln lij , i, j = 1, . . . , n, (7)
ln wi − ln wj − qij � ln uij , i, j = 1, . . . , n, (8)
n∑

i=1

ln wi = 0, (9)

pij , qij �0 and pijqij = 0, i, j = 1, . . . , n. (10)

Note that Bryson[8] ever developed a goal programming (GP) method for generating priority vector
from crisp comparison matrix. But here we use logarithms instead of original judgments. Since the value
of ln wi is nonnegative whenwi �1 and negative whenwi < 1, the following nonnegative variables are
introduced:

xi = ln wi + | ln wi |
2

, i = 1, . . . , n, (11)

yi = − ln wi + | ln wi |
2

, i = 1, . . . , n. (12)

Based onxi andyi , ln wi can be expressed as

ln wi = xi − yi, i = 1, . . . , n, (13)

wherexiyi = 0. Thus, the above GP model (6)–(10) can be further expressed and simplified as

Min J =
n−1∑
i=1

n∑
j=i+1

(pij + qij ) (14)

s.t. xi − yi − xj + yj + pij � ln lij , i = 1, . . . , n − 1, j = i + 1, . . . , n, (15)
xi − yi − xj + yj − qij � ln uij , i = 1, . . . , n − 1, j = i + 1, . . . , n, (16)
n∑

i=1

(xi − yi) = 0, (17)

xi, yi �0, xiyi = 0, i = 1, . . . , n, (18)
pij , qij �0, pij qij = 0, i = 1, . . . , n − 1, j = i + 1, . . . , n (19)

or

Min J =
n∑

i=2

i−1∑
j=1

(pij + qij ) (20)

s.t. xi − yi − xj + yj + pij � ln lij , i = 2, . . . , n, j = 1, . . . , i − 1, (21)
xi − yi − xj + yj − qij � ln uij , i = 2, . . . , n, j = 1, . . . , i − 1, (22)
n∑

i=1

(xi − yi) = 0, (23)

xi, yi �0, xiyi = 0, i = 1, . . . , n, (24)
pij , qij �0, pij qij = 0, i = 2, . . . , n, j = 1, . . . , i − 1. (25)

About the above GP models, there exist the following theorems.
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Theorem 1. A = (aij )n×n is a consistent interval comparison matrix if and only ifJ ∗ = 0, whereJ ∗ is
the optimal value of objective function(14) or (20).

Proof. If A is a consistent interval comparison matrix, then the convex feasible regionSw is nonempty,
which means thatlij �wi/wj �uij holds for all the judgments, equivalently, lnlij � ln wi − ln wj � ln uij

for i, j = 1, . . . , n. Sopij = 0, qij = 0 for all the judgments, which is equivalent toJ ∗ = 0.
If J ∗ = 0, thenpij = 0 andqij = 0 hold for all i, j = 1, . . . , n. Accordingly, inequality (4) holds

for all the judgments. This means that (3) holds for all i, j = 1, . . . , n. In other words, there is no
contradiction among all the judgments. So, the convex feasible regionSw cannot be empty whenJ ∗ = 0.
By Definition 1,A is a consistent interval comparison matrix.�

Theorem 2. GP models(14)–(19) and(20)–(25) are equivalent.

Proof. Consider a reciprocal pair of interval judgments, say,lij �aij �uij and 1/uij �aji �1/lij . With
the introduction of deviation variables, the above reciprocal pair of interval judgments can be transformed
to the following pair of inequality constraints:

ln lij − pij � ln wi − ln wj � ln uij + qij , (26)

− ln uij − pji � ln wj − ln wi � − ln lij + qji . (27)

Inequality (27) may be further written as

ln lij − qji � ln wi − ln wj � ln uij + pji. (28)

Let pij = qji andqij = pji . Then, inequality constraints (26) and (28) are indeed equivalent. Besides,
sincepij +qij = pji +qji , the contributions of deviation variablespij , qij andpji, qji to their respective
objective functions are also equivalent. Since the above discussion applies to all the reciprocal pairs of
interval judgments, it can be concluded that models (14)–(19) and (20)–(25) are in fact equivalent.

Note that Theorem 1 shows how to check if an interval comparison matrix is consistent or not. Theorem
2 ensures that using the upper or lower triangular judgments of an interval comparison matrix will always
lead to the same results, which is the very difference of our method from Islame et al’s LGP method.

Since Models (14)–(19) and (20)–(25) are equivalent in nature, we will consider only GP model (14)–
(19) in the rest of this paper. Generally speaking, there may be multiple solutions to the GP model, which
leads to intervals of weights. In order to find a feasible interval for each weightwi(i = 1, . . . , n), we
keep the optimal objective function value unchanged and use it as a constraint to construct the following
pairs of GP models:

Min/Max lnwi = xi − yi (29)
s.t. xi − yi − xj + yj + pij � ln lij , i = 1, . . . , n − 1, j = i + 1, . . . , n, (30)

xi − yi − xj + yj − qij � ln uij , i = 1, . . . , n − 1, j = i + 1, . . . , n, (31)
n∑

i=1

(xi − yi) = 0, (32)

n−1∑
i=1

n∑
j=i+1

(pij + qij ) = J ∗, (33)
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xi, yi �0, xiyi = 0, i = 1, . . . , n, (34)
pij , qij �0, pij qij = 0, i = 1, . . . , n − 1, j = i + 1, . . . , n, (35)

whereJ ∗ is the optimal value of the objective function of GP model (14)–(19). Note that the comple-
mentarity constraintsxiyi = 0 (pij qij = 0) can always be satisfied withoutxi andyi (pij andqij )
being simultaneously selected as basic variables in a simplex method. The optimal objective values
of the above pairs of GP models (29)–(35) consist of the possible intervals of the logarithmic weights
ln wi(i = 1, . . . , n), which are denoted by the logarithmic weight intervals[ln wL

i , ln wU
i ] (i = 1, . . . , n).

Accordingly, the weight intervals[wL
i , wU

i ] can be obtained from logarithmic weight intervals, where
wL

i = exp(ln wL
i ) andwU

i = exp(ln wU
i ). Since the whole solution process for generating weights in-

cludes two stages, the method is thus referred to as the two-stage logarithmic goal programming (TLGP)
method. �

Theorem 3. If J ∗ = 0, then TLGP degenerates to solving the following pairs of GP models:

Min/Max lnwi = xi − yi (36)
s.t. xi − yi − xj + yj � ln lij , i = 1, . . . , n − 1, j = i + 1, . . . , n, (37)

xi − yi − xj + yj � ln uij , i = 1, . . . , n − 1, j = i + 1, . . . , n, (38)
n∑

i=1

(xi − yi) = 0, (39)

xi, yi �0, xiyi = 0, i = 1, . . . , n. (40)

The proof of Theorem 3 is straightforward. This theorem shows that if an interval comparison matrixA

has already been known to be consistent, then only the GP model of the second stage will need to be
solved.

3. Synthesis of interval weights

Suppose interval weights for upper-level criteria and lower-level alternatives have all been obtained,
as shown in Table1, where[wL

j , wU
j ] is the interval weight of criterionj (j = 1, . . . , m) and[wL

ij , w
U
ij ]

is the interval weight of alternativeAi with respect to the criterionj (i = 1, . . . , n; j = 1, . . . , m).
Salo and Hämäläinen[34] showed by an example that interval arithmetic was unsuitable for the synthe-

sis of interval weights and had to be rejected. They thus proposed a hierarchical decomposition method
that decomposes a hierarchical composition problem into a series of linear programming problems over
feasible regions. Their method does not provide information on the interval weights shown in Table1
and therefore is not adopted in this paper.

Bryson and Mobolurin[9] suggested a linear programming method to aggregate additively the weights
of each alternative with respect to different criteria, in which the weights of the criteria were treated as
decision variables and a pair of LP models was constructed to capture, respectively, the lower and upper
bounds of the composite weight of each alternative.

Much earlier, Dubois and Prade[14] had investigated at length the problem of additive aggregation of
interactive fuzzy weights and developed effective computational formulas for the additions of interactive
LL fuzzy weights without the need of solving any linear programming.
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Table 1
Synthesis of interval weights

Alternative Criterion 1 Criterion 2 … Criterionm Composite weight

[wL
1 , wU

1 ] [wL
2 , wU

2 ] … [wL
m, wU

m]
A1 [wL

11, w
U
11] [wL

12, w
U
12] . . . [wL

1m
, wU

1m
] [wL

A1
, wU

A1
]

A2 [wL
21, w

U
21] [wL

22, w
U
22] . . . [wL

2m
, wU

2m
] [wL

A2
, wU

A2
]

...
...

... . . .
...

...

An [wL
n1, wU

n1] [wL
n2, wU

n2] … [wL
nm, wU

nm] [wL
An

, wU
An

]

Since the interval weights in Table1 satisfy the multiplicative constraint (2) rather than additive
constraint, the following pairs of nonlinear programming (NLP) models are therefore suggested for the
synthesis of interval weights:

Min wL
Ai

=
m∏

j=1

(wL
ij )

wj (41)

s.t. W ∈ �W, (42)

Max wU
Ai

=
m∏

j=1

(wU
ij )

wj (43)

s.t. W ∈ �W, (44)

whereW = (w1, . . . , wm), �w = �w = {W = (w1, . . . , wm)|wL
j �wj �wU

j ,
m∏

i=1
wj = 1}, andwL

Ai

andwU
Ai

are, respectively, the lower and upper bounds of the composite weightwAi
, which constitute an

interval denoted bywAi
= [wL

Ai
, wU

Ai
] (i = 1, . . . , n). The global interval weight for each alternative can

be generated by repeating the above synthesis processes until reaching the top level, which represents the
goal of decision analysis.

4. Comparisons and ranks of interval weights

In the case of interval comparison matrices, since judgments are partly or completely imprecise, it is
more logical and acceptable to use interval weights to represent imprecision than an exact priority vector
that is only a point estimate. However, interval weights can lead to greater complexity and difficulty in
comparison and ranking. In order to compare or rank global interval weights, Salo and Hämäläinen[34]
required the decision maker (DM) to provide information on the revision of interval comparison matrices
until one interval weight absolutely dominates all other weights or a pairwise dominance relation is found.
However, it is not always feasible to require DM to provide extra information especially when DM fails
or is unwilling to do so. Ishibuchi and Tanaka[19] used the comparison rule for interval numbers to
define order relations. Their approach is probably the most prominent in the analysis and comparison
of interval numbers. But it fails when one interval number is nested in another one. Moreover, due to
the existence of uncertainty, preference relationships among interval numbers are not likely to be 100
percent certain. So, it would be more desirable to provide the degrees of preference along with preference
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relations among interval weights. This section is devoted to dealing with this problem and a simple and
practical preference ranking approach[41] is further extended to compare the weights of criteria or rank
alternatives in a multiplicative aggregation process.

Let a = [a1, a2] and b = [b1, b2] be two interval weights, whose relationships are as shown in
Fig. 1. We refer to the degree of one interval weight being greater than another one asthe degree of
preference.

Definition 2. The degree of preference ofa overb (or a > b) is defined as

P(a > b) = max(0, a2 − b1) − max(0, a1 − b2)

(a2 − a1) + (b2 − b1)
. (45)

The degree of preference ofb overa (or b > a) can be defined in the same way. That is

P(b > a) = max(0, b2 − a1) − max(0, b1 − a2)

(a2 − a1) + (b2 − b1)
. (46)

Due to the fact thata2 − b1 anda1 − b2 are the maximum and the minimum ofa − b, respectively, the
degrees of preference can also be equivalently defined as

P(a > b) = max(0, max(a − b)) − max(0, min(a − b))

max(a − b) − min(a − b)
, (47)

P(b > a) = max(0, max(b − a)) − max(0, min(b − a))

max(a − b) − min(a − b)
. (48)

It is obvious thatP(a > b) + P(b > a) = 1 andP(a > b) = P(b > a) ≡ 0.5 whena = b, i.e.
a1 = b1 anda2 = b2. If a = [a1, a2] andb = [b1, b2] are two interval weights with certain constraint
such asa > b or a < b, then (47) and (48) should be used to calculate the degrees of preference. For
example,w1 = [0.558, 0.750] andw2 = [0.391, 0.585] are two possible interval weights of alternatives
E05 and S10 (see[30] for details). Although they have an intersection, the relationship between the
alternatives considered in the problem does not allow for the preference S10� E05 to appear, which
means thatw1 andw2 have to satisfy the constraint ofw1�w2. In this situation, i.e.w1�w2, we have
min(w1 − w2) = 0 and max(w1 − w2) = 0.750− 0.391= 0.359. Accordingly, from (47) and (48) we
getP(w1 > w2) = 1 andP(w2 > w1) = 0.

As can be seen from (45)–(48), the degrees of preference are defined to be directly proportional to the
maximum nonnegative distance between two interval weights. This in fact involves an implied assumption
that the interval weights are uniformly distributed within their intervals. Based on the above definition of
degree of preference, we have the following definition and properties about interval weights.

Definition 3. If P(a > b) > P(b > a), thena is said to be superior tob to the degree ofP(a > b),

denoted bya
P(a>b)� b; if P(a > b) = P(b > a) = 0.5, thena is said to be indifferent tob, denoted by

a ∼ b; If P(b > a) > P(a > b), thena is said to be inferior tob to the degree ofP(b > a), denoted by

a
P(b>a)≺ b.

Property 1. P(a > b) = 1 if and only ifa1�b2.
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a < b a > b a < b a > b

a1-b2 a2-b1 a1-b2 a2-b2 a1-b2 a2-b1a-1 a-ba-b0 0 0

(a) (b) (c)

Fig. 1. Relationships between two interval weightsa andb.

pij
i j

Fig. 2. Preference representation for interval weightswi andwj .

Property 2. If a1�b1 anda2�b2, thenP(a > b)�0.5 andP(b > a)�0.5.

Property 3. If b is nested ina, i.e. a1�b1 anda2�b2, thenP(a > b)�0.5 if and only if a1+a2
2 � b1+b2

2 .

Property 4. If P(a > b)�0.5 andP(b > c)�0.5, thenP(a > c)�0.5.

Property 1 shows that if two interval weights do not overlap, then the one on the upper end will 100
percent dominate the other one on the lower end. Property 2 is similar to the comparison rule for interval
numbers, but our ranking approach provides information on degrees of preference of one interval weight
being preferred to another one whilst the latter does not. Property 3 shows how to compare two interval
weights when one interval weight is included in the other. Property 4 shows that the preference relations
are transitive. With the help of the above properties, a complete ranking order for interval weights could
be achieved. The complete implement process is outlined below:

Step1: Calculate the matrix of degrees of preference

PD =
w1
w2
...

wn

w1


−
p21
...

pn1

w2
p12
−
...

pn2

· · ·
· · ·
· · ·
...

· · ·

wn

p1n

p2n

...

−


 ,

(49)

where

pij = P(wi > wj) = max(0, wU
i − wL

j ) − max(0, wL
i − wU

j )

(wU
i − wL

i ) + (wU
j − wL

j )
, i, j = 1, . . . n, i �= j. (50)

Step2: Draw a directed diagram
If pij �0.5, then draw an arrow from nodei to j . Such an arrow means that interval weightwi is

preferred to interval weightwj with a degree of preference ofpij , as shown in Fig.2 for an example.
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Step3: Find a complete preference ranking order for all interval weights from the directed diagram
using the property of transitivity.

Alternatively, the following simple row–column elimination method can be used to generate a complete
preference ranking order. In the matrix of degrees of preference given in (49), first find a row where all
elements (except for the diagonal element) are larger than 0.5. If this row corresponds towi , thenwi is
the most preferred interval weight. Eliminate theith row andith column (thuswi) in the matrix from
further consideration. In the reduced matrix, ifwj stands out as the most preferred interval weight among

the remaining intervals, thenwj should be ranked the second orwi

pij� wj if pij > 0.5, andwi should be
indifferent towj or wi ∼ wj if pij = pji = 0.5. Eliminate thej th row andj th column and repeat the
above process until all intervals are ranked.

5. Numerical examples

In this section, we offer five numerical examples that are examined using the proposed TLGP and
ranking approaches and show their potential applications. Comparisons with other existing procedures
will also be made whenever possible.

Example 1. Consider the following interval comparison matrix, which was examined by Arbel and
Vargas[3,4] and Haines[18].

A =




1 [2, 5] [2, 4] [1, 3][
1
5, 1

2

]
1 [1, 3] [1, 2]

[
1
4, 1

2

] [
1
3, 1

]
1

[
1
2, 1

]
[

1
3, 1

] [
1
2, 1

]
[1, 2] 1




.

It has been known thatA is a consistent interval comparison matrix, which can be further confirmed
using the GP model given in Eqs. (14)–(19) or (20)–(25). So, we can directly solve GP model (36)–
(40). Table2 shows the results and the corresponding weight intervals are recorded in Table3, from
which it is clear that criterion 1 is the most important because its minimum weight is greater than the
maximum weights of all the other criteria. Table4 gives the matrix of degrees of preference for the
interval weightsw1, w2, w3 and w4. It can be seen from Table4 that w1 is preferred overw2, w3
and w4 to a degree of 100%,w2 over w3 and w4 to a degree of 88.21% and 63.62%, respectively,
and w4 over w3 to a degree of 76.42%. To provide a complete ranking order for the four interval
weights, a directed diagram is depicted in Fig.3, from which it is quite clear that the ranking order

is w1
100%� w2

63.62%� w4
76.42%� w3, which is the same as the rankings given by Arbel and Vargas[3,4] us-

ing the average weights of all the vertices and by Haines[18] using the expected weights, but our ranking
order provides the information about the degrees of preference, which reflects the uncertain nature of the
ranking.
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Table 2
The logarithmic weight intervals generated from Example 1

ln W ln w1 ln w2 ln w3 ln w4

ln wL
i

= min lnwi 0.5198604 −0.2746531 −0.6931472 −0.3760194

ln wU
i

= max lnwi 0.8958797 0.1013663 −0.1732868 0

Table 3
The weight intervals in Example 1

W w1 w2 w3 w4

wL
i

= minwi 1.6818 0.7598 0.5000 0.6866

wU
i

= maxwi 2.4495 1.1067 0.8409 1.0000

Table 4
The matrix of degrees of preference in Example 1

pij w1 w2 w3 w4

w1 — 1.0000 1.0000 1.0000
w2 0 — 0.8821 0.6362
w3 0 0.1179 — 0.2358
w4 0 0.3638 0.7642 —

Example 2. Consider the following interval comparison matrix, which was investigated by Kress[22]
and Islam et al.[20].

A =




1 [1, 2] [1, 2] [2, 3][
1
2, 1

]
1 [3, 5] [4, 5]

[
1
2, 1

] [
1
5, 1

3

]
1 [6, 8]

[
1
3, 1

2

] [
1
5, 1

4

] [
1
8, 1

6

]
1




.

Kress[22] showed that this interval comparison matrix is inconsistent and hence cannot be solved
using Arbel’s preference programming method and its variants. This can be confirmed by solving GP
model (14)–(19) or (20)–(25), which leads toJ ∗ = 1.791759. Theorem 1 ensures thatA is an inconsistent
interval comparison matrix.

Islam et al.[20] used lexicographic goal programming (LGP) to get a point estimate for the priority
vector from the upper triangular judgments ofA, i.e.W = (0.3030, 0.4545, 0.1515, 0.0910), which shows
thatw2 � w1 � w3 � w4. However, if the lower triangular judgments ofA are used, which provide
completely the same information as the upper triangular part, then a different point estimate would be
obtained. That isW = (0.3636, 0.3636, 0.1818, 0.0909)T, which implies thatw2 = w1 � w3 � w4.
These two different ranking orders show that LGP method is defective in theory.
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1

100% 
100%

88.21%
2

100%
63.62% 76.42%

4

3

Fig. 3. Preference relations in Example 1.

Table 5
The logarithmic weight intervals generated from Example 2

ln W ln w1 ln w2 ln w3 ln w4

ln wL
i

= min lnwi 0.1469467 0.3465736 −0.3465736 −1.207078

ln wU
i

= max lnwi 0.575646 0.8047189 0.4023595 −0.7225929

Table 6
The weight intervals in Example 2

W w1 w2 w3 w4

wL
i

= minwi 1.1583 1.4142 0.7071 0.2991

wU
i

= maxwi 1.7783 2.2361 1.4953 0.4855

Table 7
The matrix of degrees of preference in Example 2

pij w1 w2 w3 w4

w1 — 0.2525 0.7607 1.0000
w2 0.7475 — 0.9496 1.0000
w3 0.2393 0.0504 — 1.0000
w4 0 0 0 —

The proposed two-stage logarithmic goal programming method can overcome the above-mentioned
drawbacks and estimate a valid set of weights. Table5 shows the algorithmic weights generated from
the inconsistent interval comparison matrixA, and the corresponding interval weights are shown in
Table6, from which it can be seen thatw1, w2 andw3 all absolutely dominatew4, sow4 should be ranked
the last. In order to yield a complete ranking order, the matrix of degrees of preference for the interval
weights is generated as shown in Table7. The corresponding directed diagram is depicted in Fig.4. It
is clear in Table7 thatw1 is preferred overw3 andw4 to a degree of 76.07% and 100%, respectively,
w2 over w1, w3 andw4 to a degree of 74.75%, 94.96% and 100%, respectively, andw3 is absolutely
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1

74.75% 76.07%

94.96%

2

100%

100% 100%

4

3

Fig. 4. Preference relations in Example 2.

Table 8
The logarithmic weight intervals generated from Example 3

ln W ln w1 ln w2 ln w3 ln w4

ln wL
i

= min lnwi 0.7225929 −0.3465736 −0.5756463 −0.7033527

ln wU
i

= max lnwi 1.151293 0.1732868 −0.1469467 −0.2746531

preferred tow4. The final ranking is thereforew2
74.75%� w1

76.07%� w3
100%� w4, which is the same as the

ranking given by Islam et al.[20]. But our ranking provides richer information about the uncertain nature
of the priorities.

Example 3. Consider the following interval comparison matrix, which was investigated by Saaty and
Vargas[32].

A =




1 [2, 4] [3, 5] [3, 5][
1
4, 1

2

]
1

[
1
2, 1

]
[2, 5]

[
1
5, 1

3

]
[1, 2] 1

[
1
3, 1

]
[

1
5, 1

3

] [
1
5, 1

2

]
[1, 3] 1




.

It can be confirmed using Theorem 1 thatA is an inconsistent interval comparison matrix because
J ∗ = 0.6931472. Tables8 and9 show the logarithmic weight intervals and the corresponding interval
weights generated from the above inconsistent interval comparison matrix using the two-stage logarithmic
goal programming method. It is clear in Table8 that interval weightw1 absolutely dominates all the other
weights, so criterion 1 is the most important and should be ranked the first. To produce a complete ranking
order for all the four interval weights, Table10 records the matrix of their degrees of preference. The

final ranking is thus generated to bew1
100%� w2

80.05%� w3
65.1%� w4.

Saaty and Vargas[32] used the Monte Carlo simulation approach to extract the interval weights from
the above inconsistent interval comparison matrix. Their findings are listed in Table 11 and lead to the

same ranking:w1
100%� w2

83.44%� w3
64.78%� w4, but with slightly different degrees of preference.
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Table 9
The weight intervals in Example 3

W w1 w2 w3 w4

wL
i

= minwi 2.0598 0.7071 0.5623 0.4949

wU
i

= maxwi 3.1623 1.1892 0.8633 0.7598

Table 10
The matrix of degrees of preference in Example 3

pij w1 w2 w3 w4

w1 — 1.0000 1.0000 1.0000
w2 0 — 0.8005 0.9295
w3 0 0.1995 — 0.6510
w4 0 0.0705 0.3490 —

Table 11
The intervals of priorities obtained by Saaty and Vargas[32] in Example 3

W w1 w2 w3 w4

wmin
i

0.4374 0.1654 0.1111 0.1011

wmax
i

0.5696 0.2708 0.1971 0.1633

Average(w̄i ) 0.5093 0.2131 0.1496 0.1280

Example 4. Consider a group decision analysis situation that was taken from Wang and Xu[40]. Suppose
six decision makers give the following comparison matrices with regard to the same decision problem,
respectively.

A1 =




1 3 5 4 7
1
3 1 3 2 5
1
5

1
3 1 1

2 3
1
4

1
2 2 1 3

1
7

1
5

1
3

1
3 1




, A2 =




1 4 3 5 8
1
4 1 4 3 6
1
3

1
4 1 1 5

1
5

1
3 1 1 7

1
8

1
6

1
5

1
7 1




, A3 =




1 1
2 3 2 5

2 1 5 1 2
1
3

1
5 1 2 1

2
1
2 1 1

2 1 5
1
5

1
2 2 1

5 1




,

A4 =




1 3 5 2 6
1
3 1 1 3 2
1
5 1 1 4 5
1
2

1
3

1
4 1 1

2
1
6

1
2

1
5 2 1




, A5 =




1 2 6 3 3
1
2 1 2 5 4
1
6

1
2 1 1

2 1
1
3

1
5 2 1 5

1
3

1
4 1 1

5 1




, A6 =




1 2 5 4 9
1
2 1 3 2 6
1
5

1
3 1 1 2

1
4

1
2 1 1 3

1
9

1
6

1
2

1
3 1




.
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Table 12
The logarithmic weight intervals generated from Example 4

ln W ln w1 ln w2 ln w3 ln w4 ln w5

ln wL
i

= min lnwi 0.4759092 −0.1386294 −0.9574984 −0.8481054 −1.318335
ln wU

i
= max lnwi 1.396943 1.104292 0.1021651 0.3008155 −0.1175573

Table 13
The weight intervals in Example 4

W w1 w2 w3 w4 w5

wL
i

= minwi 1.6095 0.8706 0.3839 0.4282 0.2676

wU
i

= maxwi 4.0428 3.0171 1.1076 1.3510 0.8891

Using the minimum and maximum values for the same element in the above six comparison matrices, an
interval comparison matrix can be constructed as follows:

A =




1
[

1
2, 4

]
[3, 6] [2, 5] [3, 9]

[
1
4, 2

]
1 [1, 5] [1, 5] [2, 6]

[
1
6, 1

3

] [
1
5, 1

]
1

[
1
2, 4

] [
1
2, 5

]
[

1
5, 1

2

] [
1
5, 1

] [
1
4, 2

]
1

[
1
2, 7

]
[

1
9, 1

3

] [
1
6, 1

2

] [
1
5, 2

] [
1
7, 2

]
1




.

Based on this interval comparison matrix, the interval weights of the group of decision makers can be
generated. It turns out thatA is a consistent interval comparison matrix, which can be confirmed by solving
GP model (14)–(19) or (20)–(25) in the first stage, leading toJ ∗ = 0. The logarithmic weight intervals
were derived by solving GP model (36)–(40). The results are presented in Table12. The corresponding
interval weights are recorded in Table13. Table14shows the matrix of degrees of preference for the five

interval weightsw1 to w5. The final ranking is thus given byw1
69.27%� w2

84.35%� w4
58.74%� w3

62.44%� w5.

Example 5. Consider a hierarchy of criteria, which is taken from Islam et al.[20] and shown in
Fig. 5. A person is interested in investing his money to any one of the four portfolios: bank deposit
(BD), debentures (DB), government bonds (GB), and shares (SH). Out of these portfolios he has to
choose only one based upon four criteria: return (Re), risk (Ri), tax benefits (Tb), and liquidity (Li).

The interval comparison matrices for the four criteria as well and for the four portfolios are summarized
in Tables15–19. The five interval comparison matrices all turn out to be inconsistent. The proposed two-
stage logarithmic goal programming method was used to generate both local and global priorities. The
results are reported in Table20, where the global interval weights are obtained by solving NLP model
(41)–(44). To yield a complete ranking to help the decision maker (DM) invest his money in the best
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Table 14
The matrix of degrees of preference in Example 4

pij w1 w2 w3 w4 w5

w1 — 0.6927 1.0000 1.0000 1.0000
w2 0.3073 — 0.9174 0.8435 0.9933
w3 0 0.0826 — 0.4126 0.6244
w4 0 0.1565 0.5874 — 0.7015
w5 0 0.0067 0.3756 0.2985 —

Return (Re)

Investment Choice

Risk (Ri) Tax Benefit (Tb) Liquidity (Li)

Bank Deposit

(BD)

Debentures

(DB)

Government 

Bonds (GB)

Shares

(SH)

Fig. 5. Hierarchy structure.

Table 15
Interval comparison matrix for the four criteria with respect to “investment choice (Ic)’’

Ic Re Ri Tb Li

Re 1 [3,4] [5,6] [6,7]
Ri 1 [4,5] [5,6]
Tb 1 [3,4]
Li 1

Table 16
Interval comparison matrix for all the alternatives with respect to “return (Re)”

Re BD DB GB SH

BD 1
[

1
4, 1

3

]
[3,4]

[
1
6, 1

5

]

DB 1 [6,7]
[

1
5, 1

4

]

GB 1
[

1
7, 1

6

]

SH 1
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Table 17
Interval comparison matrix for the four portfolios with respect to “risk (Ri)”

Ri BD DB GB SH

BD 1 [3,4] [4,5] [6,7]
DB 1 [3,4] [5,6]
GB 1 [4,5]
SH 1

Table 18
Interval comparison matrix for the four portfolios with respect to “tax benefits (Tb)”

Tb BD DB GB SH

BD 1 1
[

1
6, 1

5

] [
1
4, 1

3

]

DB 1
[

1
6, 1

5

] [
1
4, 1

3

]

GB 1 [4,5]
SH 1

Table 19
Interval comparison matrix for the four portfolios with respect to “liquidity (Li)”

Li BD DB GB SH

BD 1 [3,4] 6 [6,7]
DB 1 [3,4] [3,4]
GB 1 [3,4]
SH 1

Table 20
Local and global priority intervals in Example 5

Portfolio Re Ri Tb Li Global priority

[2.5718, 4.2426] [1.2910, 2.0933] [0.4777, 0.7746] [0.2357, 0.3888]

BD [0.5774, 0.7401] [2.4719, 4.0536] [0.4855, 0.4855] [3.0274, 3.8337] [0.2321, 10.3091]
DB [1.4142, 1.8841] [1.2209, 1.9168] [0.4855, 0.4855] [1.1892, 1.5651] [1.9283, 45.1463]
GB [0.2268, 0.3021] [0.5774, 0.9306] [2.9130, 2.9130] [0.5046, 0.6389] [0.0008, 0.0817]
SH [3.0214, 4.2426] [0.2193, 0.3618] [1.4565, 1.4565] [0.3195, 0.4495] [0.5508, 137.2216]

portfolio, Table21 records the matrix of degrees of preference for the four portfolios, from which it is
clear that investment in shares (SH) is the best choice for the decision maker because the four portfolios

are ranked as SH
75.21%� DB

84.27%� BD
100%� GB.
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Table 21
The matrix of degrees of preference in Example 5

pij BD DB GB SH

BD — 0.1573 1.0000 0.0665
DB 0.8427 — 1.0000 0.2479
GB 0 0 — 0
SH 0.9335 0.7521 1.0000 —

6. Extension of the TLGP method to fuzzy comparison matrices

Since uncertainties can also be well modeled by using fuzzy numbers, we deal with in this section fuzzy
comparison matrices using the proposed TLGP method. The ranking approach for intervals discussed in
Section 4 will also be extended to handle fuzzy rankings.

Let Ã be an upper triangular fuzzy comparison matrix expressed by

Ã = (ãij )n×n =




1 (l12, m12, u12) · · · (l1n, m1n, u1n)

1 · · · (l2n, m2n, u2n)
. . .

...

1


 , (51)

whereãij = (lij , mij , uij ) (i = 1, . . . , n − 1; j = i + 1, . . . , n) are triangular fuzzy numbers with their
membership functions defined by

�ãij
(x) =




x − lij

mij − lij
, x ∈ [lij , mij ],

uij − x

uij − mij

, x ∈ [mij , uij ],
0 otherwise.

(52)

According to Zadeh’s extension principle[45], the above fuzzy comparison elementsãij can be rep-
resented by using�-levelsets as

ãij =
⋃
�

� · (aij )�, 0 < ��1, (53)

where� is a real number and(aij )� is an interval defined by

(aij )� = {x|�ãij
(x)��} = [lij + �(mij − lij ), uij − �(uij − mij )]. (54)

Since inverse fuzzy numbers̃aji = 1/ãij (i = 2, . . . , n; j = 1, . . . , i − 1) are usually no longer
precise triangular fuzzy numbers, their�-level sets cannot be easily determined. So, we use(aij )� =
[1/(aji)

U
� , 1/(aji)

L
� ] (i = 2, . . . , n; j = 1, . . . , i−1) instead of them. Thus,A� = ((aij )�)n×n constitutes

an interval comparison matrix. By setting different levels of confidence, namely 1− �, fuzzy comparison
matrix, Ã is accordingly transformed into interval comparison matrixA� = ((aij )�)n×n with different
�-levelset comparison elements{(aij )� | 0 < ��1}. The proposed TLGP method can, therefore, be used
to derive the priorities from the interval comparison matrix,A� for different�-levels.
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� �

1 1

S(b>a) S(a>b)
a-b a-b

aL-bU am-bm aU-bL0 aL-bU am-bm aU-bL0
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(a) (b)

Fig. 6. The typical relationships between two triangular fuzzy numbers: (a)aU > bL andam �bm and (b)am > bm and
aL < bU.
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Fig. 7. Weights generated from the fuzzy comparison matrix.

Another possible way of transforming fuzzy comparison matrices into interval comparison matrices
is to use interval approximations of fuzzy numbers. The interested reader may refer to[12,17,21]for
details.

For different�-levelsets, different interval weights can be generated, which constitute a fuzzy weight
by the extension principle (see Fig.7 for an example). Therefore, a fuzzy ranking approach is required to
compare or rank fuzzy weights. A variety of approaches for comparing or ranking fuzzy numbers have
been proposed. Useful surveys of fuzzy rankings can be found in[7,15,25,38,39], and so on. However,
there has been no approach that can be universally accepted so far. Some approaches even contradict one
another. In what follows, the ranking approach for interval numbers will be further extended to deal with
fuzzy numbers.

Let a = (aL , am, aU) andb = (bL , bm, bU) be two triangular fuzzy numbers, whose possible rela-
tionships includeaL �bU, aU �bL, (aU > bL) ∩ (am�bm) and(am > bm) ∩ (aL < bU). The latter two
relationships are shown in Fig.6.

Accordingly, the degrees of preference can be defined in the form of area rather than distance as

P(a > b) = S(a > b)

S(a > b) + S(b > a)
, (55)
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P(b > a) = S(b > a)

S(a > b) + S(b > a)
, (56)

whereS(a > b) andS(b > a) are areas ofa > b andb > a, respectively (see Fig.6). Both (55) and
(56) can be precisely expressed as follows:

P(a > b)

=




1 if aL �bU,

0 if aU �bL ,

(aU − bL)2

(aU − bL + bm − am)(aU − aL + bU − bL)
if (aU > bL) ∩ (am�bm),

1 − (bU − aL)2

(bU − aL + am − bm)(aU − aL + bU − bL)
if (am > bm) ∩ (aL < bU),

(57)

P(b > a)

=




0 if aL �bU,

1 if aU �bL ,

1 − (aU − bL)2

(aU − bL + bm − am)(aU − aL + bU − bL)
if (aU > bL) ∩ (am�bm),

(bU − aL)2

(bU − aL + am − bm)(aU − aL + bU − bL)
if (am > bm) ∩ (aL < bU),

(58)

which are both extremely useful in comparing and ranking fuzzy numbers. The formulas for trapezoidal
fuzzy numbers can be derived in a very similar way.

Note that the use of areas for comparing fuzzy numbers is not new and has been investigated by some
researchers, the interested reader may refer to[16,23,31,36,44]for details. But it has not been reported
yet to define and calculate areas from the angle of fuzzy arithmetic. This offers a more intuitive way of
computing areas. Although our approach appears to be the same as the one proposed by Tseng and Klein
[36], our approach provides the analytical formulas for the computation of degrees of preference, which
makes it particularly useful when a large number of fuzzy numbers needs to be compared or ranked.
However, the derived analytical formulas (57) and (58) are not suitable for the comparisons of nonnormal
or irregular fuzzy numbers. This is the disadvantage of our ranking approach.

To illustrate the application of the proposed TLGP method to fuzzy comparison matrices, we examine
the following illustrative example:

Example 6. Consider the following fuzzy comparison matrix

Ã =




1 (1, 2, 3) (3, 4, 5) (7, 8, 9)

1 (1, 2, 3) (3, 4, 5)

1 (1, 2, 3)

1


 .
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Table 22
Interval weights generated by the TLGP method under different levels of alpha

� w1 w2 w3 w4

1.0 2.8284 1.4142 0.7071 0.3536
0.8 [2.7238, 2.9361] [1.3343, 1.4935] [0.6696, 0.7495] [0.3406, 0.3671]
0.6 [2.6219, 3.0474] [1.2535, 1.5724] [0.6360, 0.7978] [0.3282, 0.3814]
0.5 [2.5718, 3.1045] [1.2126, 1.6119] [0.6204, 0.8247] [0.3221, 0.3888]
0.4 [2.5223, 3.1628] [1.1712, 1.6513] [0.6056, 0.8538] [0.3162, 0.3965]
0.2 [2.4246, 3.2829] [1.0871, 1.7301] [0.5780, 0.9199] [0.3046, 0.4124]
0 [2.3286, 3.4087] [1.0000, 1.8092] [0.5537, 1.0000] [0.2934, 0.4295]

Using �-level sets and the extension principle, the above fuzzy comparison matrix can be transformed
into the following interval comparison matrix:

A� =




1 [1 + �, 3 − �] [3 + �, 5 − �] [7 + �, 9 − �]
1 [1 + �, 3 − �] [3 + �, 5 − �]

1 [1 + �, 3 − �]
1


 ,

where 0< ��1. For different�-levels, the interval weights generated from the above interval comparison
matrices are shown in Table22and plotted in Fig.7, where the seven sets of (interval) weights all produce

exactly the same rankingw1
100%� w2

100%� w3
100%� w4, which is also the final ranking. For other fuzzy

examples, they can be dealt with in the same way.

7. Concluding remarks

The use of pairwise comparisons to generate relative weights of criteria in multiple criteria decision
analysis requires human judgments. Because of the complexity of real-world decision problems and
the subjective nature of human judgments, interval comparison matrices can provide a more realistic
framework to account for such uncertainty. This is especially the case in a group decision situation.
However, how to derive weights from interval comparison matrices, especially from inconsistency interval
comparison matrices, is still subject to further investigation.

In this paper, a pragmatic two-stage logarithmic goal programming method was proposed to generate
weights from both consistent and inconsistent interval comparison matrices. The first stage was devoted
to minimizing the inconsistency of an interval comparison matrix and the second stage was developed
to generate priority intervals with the inconsistency being kept to be minimal. The proposed approach
provides a rational procedure for interval weight generation. In the case of hierarchical structures, a
nonlinear programming method was suggested to aggregate local interval weights into global interval
weights. A simple and practical preference ranking method was extended to compare the interval weights
of criteria or rank alternatives in a multiplicative aggregation process. Fuzzy comparison matrices were
transformed into interval comparison matrices so that the proposed methods are also applicable to them.
Six numerical examples including a group decision analysis problem with a group of comparison matrices,
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a hierarchical (AHP) decision problem and a fuzzy decision problem using fuzzy comparison matrix were
examined and showed the applications of the proposed methods.
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