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Alternative Measures of Competitive
Balance in Sports Leagues

BRAD R. HUMPHREYS
UMBC

The most commonly used measures of competitive balance in sports leagues do not cap-
ture season-to-season changes in relative standings. This article describes an alternative
measure of competitive balance, the Competitive Balance Ratio (CBR), that reflects team-
specific variation in winning percentage over time and league-specific variation. Based
on estimation of a model of the determination of annual attendance in professional base-
ball during the past 100 years, variation in the CBR explains more of the observed varia-
tion in attendance than other alternatives measures of competitive balance, suggesting
that CBR is a useful metric.

Competitive balance is thought to be an important determinant of demand for
sporting events. Competitive balance reflects uncertainty about the outcomes of
professional sporting events. The conventional wisdom holds that to induce fans to
purchase tickets to a game or tune in to a broadcast, there must be some uncertainty
regarding the outcome. Neale (1964) called this the League Standing Effect. If a
league lacks competitive balance, fan interest in the weaker teams will fall and,
eventually, fan interest in the stronger teams will also decline. Thus, greater com-
petitive balance should lead to greater demand, other things held equal. Quirk and
Fort (1997) attribute the demise of the All American Football Conference, which
started play in 1946 and merged with the National Football Conference in late 1949,
to a lack of competitive balance.

One commonly used measure of competitive balance is the dispersion of win-
ning percentage within sports leagues. This measure of competitive balance has
been used extensively by Scully (1989), Quirk and Fort (1997), and others to assess
the performance of teams in sports leagues. Formally, this measure of competitive
balance uses the standard deviation of winning percentage (WPCT), defined as the
ratio of wins to total games played, as a measure of competitive balance. Consider a
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league withN teams during a period ofT seasons. IfWPCTi,t is the winning percent-
age of team i in season t, and i = 1, . . ., N indexes teams and t = 1, . . ., T indexes sea-
sons, then the standard deviation of winning percentages for this league is
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σL has a convenient comparison value based on the dispersion of winning percent-
ages in an idealized league where each team is of equal strength; thus, the probabil-
ity of winning any particular game is 0.5. The standard deviation of winning per-
centages in an idealized league would be

σI
G

= 0 500.
,

where G is the number of games played by teams in the league. σI is decreasing in
the number of games played.

AlthoughσL is a reasonable measure of competitive balance in a single season, it
has some shortcomings when applied during a large number of seasons. In particu-
lar, the standard deviation of winning percentage cannot capture changes in the rel-
ative standings of teams within a sports league over time. To illustrate this point,
consider the records for teams in two hypothetical five-team leagues in Table 1,
which shows the won-loss record for each team in each of five seasons.

Each league has the same σL during this five-season period, 0.35, indicating that
these leagues have similar levels of competitive balance during this period, accord-
ing to this metric. These leagues have the same σI as well, 0.25. However, the rela-
tive standings over time in these two leagues are quite different. In League 1, the rel-
ative standings in each year are identical and Team A dominated the league,
winning the championship in each season; there is no variation in relative standings
over these 5 seasons in this league. League 2 has much more variation in relative
standings during the period. Each of the five championships were won by a differ-
ent team, and each team also finished last once during these 5 seasons. League 2 has
more competitive balance over time than League 1 because of the turnover in rela-
tive standings. Clearly, an alternative measure of competitive balance that could
distinguish between these two cases would be a useful complement to the standard
deviation of winning percentage.

Eckard (1998, 2001a, 2001b) proposed a variance decomposition to account for
season-to-season turnover in relative standings. Eckard’s variance decomposition
is

σ2
L = σ2

CUM + σ2
time. (1)
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The Eckard decomposition for the two leagues shown above isσ2
time = 0.0,σ2

CUM

= 0.35 for League 1, andσ2
time = 0.35,σ2

CUM = 0.00 for League 2. The decomposition
shows that only cross-sectional variation in won-loss percentages is important in
League 1 and only team-specific variation is important in League 2.

There are some problems with Eckard’s approach. The most important is that the
two terms on the right-hand side of Equation 1 only sum to the left-hand side (the
square of σL) under special conditions. A fundamental rule of variances is that

var(X + Y) = var(X) + var(Y) – 2cov(X, Y).

Eckard’s variance decomposition sums to the square of σ2
L only when the

covariance between σ2
time and σ2

CUM is zero, a situation that rarely occurs in actual
sports leagues. In many instances, the covariance accounts for 20% to 30% of the
overall variance. Because the two components rarely sum toσ2

L in practice, the two
terms in the decomposition are difficult to compare to the other commonly used
measure of competitive balance during any period of time.

Several other measures of competitive balance have been applied to sports
leagues. Hirfindahl-Hirschman Indexes (HHIs) of the concentration of champion-
ships and other outcomes are one example. These indexes reflect the concentration
of championships in a sports league over time in that they reflect the distribution of
the shares of championships. For League 2 in Table 1, each team captured one fifth
of the first-place finishes during the 5 seasons for an HHI of 0.2; the HHI for League
1 is 1.0, as one team captured all of the first-place finishes. The distributions of life-
time won-loss percentages, Lorenz Curves, and Gini Coefficients reflecting the dis-
tributions of championships and average spreads of won-loss percentages have also
been used as measures of competitive balance in sports leagues. Each of these mea-
sures has its strengths and weaknesses, but none of them directly addresses the
shortfall of σL discussed above.1 Buzzacchi, Szymanski, and Valletti (2001) develop
a dynamic measure of competitive balance based on the probability of equally
matched teams finishing in the top k positions in a league. This measure avoids the
problems associated with σL mentioned above and is designed for assessing com-
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TABLE 1: Won-Loss Records in Two Hypothetical Leagues

League 1 League 2

Team 1 2 3 4 5 Team 1 2 3 4 5

A 4-0 4-0 4-0 4-0 4-0 F 4-0 3-1 2-2 1-3 0-4
B 3-1 3-1 3-1 3-1 3-1 G 3-1 2-2 1-3 0-4 4-0
C 2-2 2-2 2-2 2-2 2-2 H 2-2 1-3 0-4 4-0 3-1
D 1-3 1-3 1-3 1-3 1-3 I 1-3 0-4 4-0 3-1 2-2
E 0-4 0-4 0-4 0-4 0-4 J 0-4 4-0 3-1 2-2 1-3
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petitive balance in open leagues with promotion and relegation systems commonly
found in European sports leagues.

AN ALTERNATIVE MEASURE OF COMPETITIVE BALANCE

The example above describes a dimension of competitive balance, the variation
in the relative standings of teams in a sports league over time, that σL does not
reflect. Variation in won-loss percentages in a sports league during a number of sea-
sons can be calculated in two different ways: within-team variation in won-loss per-
centages that capture team-specific variation during seasons, and within-league
variation in won-loss percentages that capture league-specific variation. The stan-
dard deviation of each team’s won-loss percentage across seasons is a measure of
within-team variation
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−∑
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(2)

where the second term in the numerator is each team’s average won-loss percentage
during the T seasons. In this case, there will be a vector of σT,i, one for each team in
the league. The smaller the value of σT,i, the less the variation in team i’s winning
percentage during the seasons being analyzed. For the hypothetical leagues shown
on Table 1, each team in League 1 hasσT,i = 0.0 and each team in League 2 hasσT,i =
0.35.

The within-season variation in won-loss percentages can be measured by the
standard deviation of the won-loss percentage in each season across all teams in the
league:
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In this case,σN,t is a vector with one value for each season being examined. For each
year, σN,t is identical to σL.

These two types of variation in won-loss percentages can be averaged to arrive at
league-wide measures of each type of variation for the period. A measure of the
average variation in teams’ won-loss percentages can be found by averaging the
σT,is across teams in the league:
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Similarly, the average variation in won-loss percentages in each season can be
found by averaging the σN,ts across each season:

σ
σ

N

N t
t

T
=
∑ ,

.

(5)

Note that if the same N teams play an identical number of games in each season,
then this ratio will be equal to σL. But league expansion, schedule adjustment,
strikes, and postponed games that are not played reduce the periods during which
this condition holds in professional and college sports leagues.

Consider the values of these two statistics for the two hypothetical sports leagues
shown on Table 1.σT,i is zero for each team in League 1; thus, the statistic is zero for
that league. Each team in that league finished in the same position in each season, so
there is no time variation in winning percentages during those five seasons. σT,i is
0.35 for each team in League 2, so the statistic is 0.35 for that league. Notice that in
this case the average variation in won-loss percentage over time for each team is the
same as the average variation in won-loss percentage in each season.

Using these two measures of average variation, define the Competitive Balance
Ratio (CBR) as

CBR T

N

= σ
σ

. (6)

The CBR scales the average time variation in won-loss percentage for teams in the
league by the average variation in won-loss percentages across seasons; it indicates
the relative magnitude of each type of variation across a number of seasons.
Expressing these two types of variation as a ratio has a number of appealing intu-
itive properties. First, unlike the standard deviation of winning percentage, this
ratio is easier to compare during different time periods because it does not have to
be compared to an idealized value that depends on the number of games played in
each season. In Major League Baseball (MLB), σI changes as the schedule
expanded from 154 games to 162 games. This makes it difficult to compare the σL

from the 1980s to that from the 1930s. Because it is a ratio, the CBR also has intu-
itively appealing upper and lower bounds of zero and one. This can be seen from the
CBR for the two leagues shown on Table 1, which also illustrates the two bounding
cases of the CBR. League 1 has no team-specific variation in won-loss percentage
during these 5 seasons; each team in the league finishes in the same place in each
season. The CBR for League 1 is zero. In League 2, the team-specific variation in
won-loss percentage is equal to the within-season variation during these 5 seasons;
the CBR for League 2 is one. In a league with a CBR of 0.5, the team-specific varia-
tion is half the size of the within-season variation during the period.
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Because the denominator of the CBR is related to σL, these two metrics are
inversely related; the CBR reflects some of the same information as the standard
deviation of winning percentage. However, the CBR is a useful complement to σL

because it also reflects the average amount of team-specific variation in won-loss
percentage that will not be reflected in σL.

APPLICATION: PROFESSIONAL BASEBALL

To illustrate the usefulness of the CBR relative to other measures of competitive
balance, I calculated several alternative measures of competitive balance for MLB
during the past 100 seasons. This particular setting is an interesting case because
competitive balance in MLB has been examined in a number of recent studies. The
first application of the standard deviation of winning percentage as a measure of
competitive balance was MLB, in Scully’s book The Business of Major League
Baseball (1989). Competitive balance in MLB has also been examined by Fort and
Quirk (1995), Quirk and Fort(1997), Butler (1995), Zimbalist (1992), and others.

Table 2 shows standard deviations, CBR, and HHI of first-place finishes for
MLB by decade for the American League (AL) and National League (NL). TheσLs
differ somewhat from those reported by Quirk and Fort (1997) because the data on
Table 2 reflect only the won-loss records of teams that played in each year of each
decade; the sample is restricted to teams with the same denominator for σT,i. Thus,
Seattle and Toronto are not included in the AL in the 1970s because they did not join
until 1976, and Milwaukee is excluded from the 1990s because the Brewers played
8 seasons in the AL and 2 seasons in the NL during this decade. For this reason, I
also calculated standard deviations using the sampling correction (N – 1 in the
denominator) rather than the population statistic (N in the denominator) used by
Quirk and Fort. σI, the idealized variation in won-loss percentage, is 40 for the first
five decades and 39 for the second five decades.

Table 2 also shows HHIs by decade for first-place finishes in each league for the
period 1901-1968 and in each division from 1969-1999. These indexes are calcu-
lated by squaring the share of the first-place finishes for each team in each decade. If
a team finished first in the AL in 1 year in the 1920s, then that team’s share of that
decade’s first-place finishes was one tenth. If another team finished first in the AL
twice, then that team’s share was one fifth.

Notice that σL and the CBRs convey some of the same information during this
period. The σLs have generally fallen and the CBRs generally risen over time, sug-
gesting that competitive balance has increased in professional baseball during the
past century. The coefficient of correlation between these two measures of competi-
tive balance is –0.56, confirming the inverse relationship discussed above. The
HHIs are largest in the 1950s and smallest in the past 20 years for both leagues, sug-
gesting the same conclusion. However, the CBR uncovers important distinctions
between several periods that have similarσLs and HHIs. One of the most striking of
these periods is the NL between 1910 and 1929. The standard deviations and HHIs
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TABLE 2: Measures of Competitive Balance Ratio (CBR): Major League Baseball

League 1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 1990-1994 1995-1999

AL
σL 98 104 92 107 89 98 75 71 67 66 63 72
CBR 0.76 0.82 0.76 0.68 0.71 0.58 0.8 0.8 0.86 0.87 0.97 0.63
HHI 0.26 0.36 0.32 0.34 0.32 0.66 0.29 0.18 0.11 0.12 0.14 0.25

NL
σL 125 91 89 91 97 81 64 70 65 67 70 68
CBR 0.66 0.83 0.57 0.63 0.69 0.69 0.83 0.69 0.92 0.89 0.86 0.74
HHI 0.34 0.24 0.26 0.28 0.28 0.44 0.19 0.23 0.12 0.17 0.21 0.26

NOTE: AL = American League, HHI = Hirfindahl-Hirschman Indexes, and NL = National League.
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for these two decades are very similar, suggesting that competitive balance was
comparable across these two decades. However, the CBR for the 1910s is much
larger than for the 1920s.2

Table 3 shows the final standings in the NL for each of these seasons, andσN,t and
σT,i for each team and each season during the period. An examination of theσT,is for
each decade underscores the difference between these two periods that the CBR
captures. Bear in mind that the CBR is based on variation in won-loss percentages,
not standings, but I have reported final standings on Table 3 to highlight the relative
position of each team.

There was an average amount of team-specific variation in won-loss percentage,
and thus standings, in the period 1910-1919. The annual average standard deviation
of WPCT was 79 during this period, which is only slightly below 84, the average in
the NL during the entire 100 seasons in the sample. The final standings also bear
this out. Although New York won four pennants during the period, they also fin-
ished last in 1915 and fourth in 1916. Even though Boston was terrible early and
late in the period, the Braves managed to finish first, second, and third from 1914-
1916.

The 1920s, however, were a different story. The smallest average team-specific
variation in won-loss percentage in the 1910s, 65 for Brooklyn, is about the same as
the largest average team-specific variation in won-loss percentage in the 1920s, 66
for Chicago. The annual average standard deviation of WPCT is 53 for the 1920s,
and statistically different from that in the 1910s at the 1% level. Team-specific vari-
ation in won-loss percentage was significantly lower in the 1920s than in the 1910s.
This means that the CBR for the 1910s is statistically different from the CBR for the
1920s in the NL, as the denominators for these two decades are not statistically dif-
ferent from one another.3 The p value for a one-tailed test of the hypothesis that the
CBR in the 1910s differs from the CBR in the 1920s in the NL is less than .01.

The standings bear this difference in CBRs out. In the 1920s, the top of the stand-
ings were dominated by New York, who won four pennants and only finished in the
lower half of the league once, and by Pittsburgh, who won two pennants and never
finished in the lower division. The cellar was occupied by Boston and Philadelphia,
who accounted for 15 of the 16 eighth-and seventh-place seasons and never fin-
ished higher than fourth- and fifth place, respectively, and by Brooklyn, who won
the pennant in 1920 but managed just one other upper division finish in the decade.

Notice that the HHI changes relatively little in the NL across these two decades.
The distribution of league championships in the 1910s by team was 4,2,1,1,1,1
across six teams for an HHI of .24, and in the 1920s the distribution by team was
4,2,2,1,1 across five teams for an HHI of .26. The 10 league championships were
distributed among one fewer team in the 1920s. This further underscores the differ-
ence between the CBR and other measures of competitive balance. There was very
little turnover in relative standings in the 1920s, whereas the league championships
were distributed among roughly the same number of teams. The same set of teams
(Pittsburgh, St. Louis, and New York) were consistently in the upper division and
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TABLE 3: National League Standings: 1910-1929

Team 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 T,i 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 σT,i

Boston 8 8 8 5 1 2 3 6 7 6 108 7 4 8 7 8 5 7 7 7 8 60
Brooklyn 6 7 7 6 5 3 1 7 5 5 65 1 5 6 6 2 7 6 6 6 6 60
Chicago 1 2 3 3 4 4 5 5 1 3 79 6 7 5 4 5 8 4 4 3 1 66
Cincinnati 5 6 4 7 8 7 8 4 3 1 86 3 6 2 2 4 3 2 5 5 7 50
New York 2 1 1 1 2 8 4 1 2 2 68 2 1 1 1 1 2 5 3 2 3 40
Philadelphia 4 4 5 2 6 1 2 2 6 8 79 8 8 7 8 7 6 8 8 8 5 56
Pittsburgh 3 3 2 4 7 5 6 8 4 4 81 4 2 4 3 3 1 3 1 4 2 31
St. Louis 7 5 6 8 3 6 7 2 6 7 67 5 3 3 5 6 4 1 2 1 4 59
σN,t 108 110 123 106 67 49 97 90 85 116 69 95 92 108 106 66 68 108 127 90
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the same set of teams (Boston, Brooklyn, and Philadelphia) were consistently in the
lower division during the 1920s. The CBR captures this relative stratification in
standings but the other two measures do not.

The CBR also reveals a change in the level of competitive balance in the second
half of the 1990s relative to the first half of that decade that is not reflected by the
standard deviation of winning percentage. This can be seen in the right panel of
Table 2, which divides the 1990s into two 5-year periods. Note that the values for
the entire decade will not, in general, be the average of the two subperiods for any of
these measures of competitive balance. The CBR and σL are variances, and recall
that var(A + B) ≠ var(A) + var(B). The HHI is the sum of fractions that do not have
the same denominator, so they should not sum either.

From Table 2, σL rose in the last half of the 1990s in the AL and fell in the NL.
However, there is no statistical difference between these figures, so based on this
measure of competitive balance there does not appear to have been any change in
competitive balance during this period. The CBR fell in both leagues, although only
the drop in the AL is statistically significant; the p value on a one-tailed test of the
hypothesis that the CBR differs across these two 5-year periods is .03 for the AL
and .12 for the NL. The CBR indicates that the level of competitive balance in the
AL was significantly lower after 1994. Whereas the CBR falls from .86 during
1990-1994 to .74 during 1995-1999, this drop just misses statistical significance at
the 10% level. The HHIs rose in the latter half of the decade but the change is not
statistically significant. Like in the earlier period, the CBR contains information
about the level of competitive balance not reflected in the other two alternative
measures.

AN EMPIRICAL TEST OF ALTERNATIVE MEASURES
OF COMPETITIVE BALANCE

The discussion in the previous section shows that, in the case of professional
baseball during the past century, widely used measures of competitive balance
exhibit strikingly different patterns over time. These differences may be due to the
different facets of competitive balance captured by each metric. It also makes it dif-
ficult to reach a definitive conclusion about the extent to which competitive balance
in professional baseball has changed over time.

The lack of consensus among competing measures of competitive balance high-
lights a more important point: The focus of economic analysis of competitive bal-
ance in sports leagues should be the effect that changes in competitive balance have
on the behavior of consumers, not on comparisons of the degree of competitive bal-
ance over time. Thus, analyzing the relationship between variation in competitive
balance and the behavior of baseball fans, the consumers of professional baseball,
is important to our understanding of competitive balance. In a sense, this can be
viewed as an empirical test of Neale’s (1964) League Balance Effect of competitive
balance on attendance.
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The behavior of fans could be measured in a number of ways. In this case, I use
attendance at baseball games as a measure of fan behavior. Data on attendance at
MLB games are readily available for the past 100 seasons and econometric model-
ing of attendance at professional baseball games has a long history, beginning with
the work of Noll (1974). To analyze the effect of competitive balance on attendance,
I use a linear reduced form model of the determination of attendance:

ATTit = αi + δDit + βSit + eit, (7)

where ATTit is total attendance in the major league i (i = AL, NL) in season t (t =
1901, 1902, . . ., 1999), Dit is a vector of variables that affect demand for attendance
at MLB contests, Sit is a vector of variables that affect the supply of MLB contests,
eit is a random error term, and αi, δ, and β are vectors of unknown parameters to be
estimated. Table 4 describes the variables in Equation 7 and their sources.

The attendance variable is home attendance for the entire league in hundreds of
thousands. There are 198 league years in the sample. Population clearly affects the
demand for attendance at MLB games. The larger the population, the greater the
demand, all other things being equal. However, there may be other factors that
affect demand for attendance at baseball games that change systematically over
time, like changes in consumer preference for leisure and entertainment goods,
competition from other sports and leisure activities, travel costs, and so forth. I
include a separate time trend for each league to capture these factors. Televised
games may also be a substitute for attendance. Equation 7 includes a dummy vari-
able for the period after 1951 when, according to Horowitz (1974), broadcasting of
baseball games became widespread.

I also allow for the effect of television on attendance to change over time by
including linear and quadratic time trends beginning in 1952. During the two world
wars in the previous century, a large portion of the population was overseas or other-
wise engaged in the war effort. I include a dummy variable for war years in Equa-
tion 7 to control for the effect of these events on attendance.

The baseball schedule has changed several times during the past century. To con-
trol for variation in the length of the season, as well as the effect of rain-outs that are
not made up and other factors that affect the schedule, I include the number of
games played in Equation 7 as a control variable. The number of teams in each
league also affects total league attendance, and I include the number of teams in
each league in each season as a regressor to control for this. I also include a dummy
variable that is equal to one in each of the years when there was a work stoppage in
MLB. This variable captures supply and demand effects associated with strikes.

Finally, I include the three measures of competitive balance discussed above as
regressors in Equation 7 separately. Including these measures of competitive bal-
ance in the attendance model assumes that the level of competitive balance matters
to fans, and that changes in the level of competitive balance shift the demand curve
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for baseball. To sign these variables, I assume that more competitive balance will
increase demand for attendance, other things being equal. Under this assumption,
the sign on the CBR should be positive, the sign on the standard deviation of win-
ning percentage should be negative, and the sign on the HHI should be negative.
CBR can only be calculated during a period of seasons, not for an individual season.
I calculate the CBR for 5-year periods for each league in the sample. To make a
proper comparison, I also average σL and the HHI during the same 5-year periods
for each league.

Assuming that the error term has the usual properties, the parameters of Equa-
tion 7 can be estimated using Ordinary Least Squares. Table 5 shows the results of
this estimation using the three measures of competitive balance—CBR, σL, and
HHI—as regressors.4

This model explains more than 97% of the observed variation in attendance dur-
ing the sample period. The parameters in the models are, in general, correctly
signed, and most are significant at conventional levels. The intercept shift for the
AL is not statistically significant, suggesting that separate intercepts are not
needed. Notice that the population variable and the two league-specific trends are
not individually significant. This is probably due to multicollinearity, as the popula-
tion variable grows slowly and steadily throughout the period. A joint significance
test on these three variables shows that they are highly significant when taken
together (the p value on this F test is smaller than .01), so I have kept these three
variables in the empirical model. The number of games played per season and the
number of teams variables are correctly signed and significant, as are the war and
strike dummy variables. Attendance may vary with the business cycle, falling dur-
ing contractions and rising during expansions. However, the Federal Reserve
Board’s Index of Industrial Production, one measure of the business cycle, was not
significant when added to Equation 7. Adding this variable had no effect on the
other parameters.
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TABLE 4: Variables in Equation 7

Variable Source

Total U.S. population NBER Macrohistory Database (http://www.nber.org)
War dummy Equals 1 in 1917, 1918, 1919, 1941, 1942, 1943, 1944, and 1945
Strike dummy Equals 1 in 1972, 1981, 1994, and 1995
Attendance The Baseball Archive (http://www.baseball1.com/)
Number of games played The Baseball Archive (http://www.baseball1.com/)
Number of teams in league The Baseball Archive (http://www.baseball1.com/)
Television dummy Equals 1 after 1951
Television time trend Begins in 1952
AL and NL time trends Begin in 1901

NOTE: NBER = National Bureau of Economic Research, AL = American League, and NL = National
League.
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The dummy variable for the television broadcast era is not significant, suggest-
ing that the advent of televised baseball did not affect the level of attendance. How-
ever, the trend and trend squared terms are highly significant. Television appears to
have continually eroded attendance at baseball games at an increasing rate during
the past half century. But these trend terms could also reflect other changes in soci-
ety during this period, so this entire effect cannot be attributed solely to television
broadcasts.

The parameters on the measures of competitive balance are of most interest in
this article. All three of the parameters on the competitive balance metrics are cor-
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TABLE 5: Ordinary Least Squares (OLS) Regression Results

Variable CBR Model σL Model HHI Model

Intercept –0.763 –0.438 –0.632
(0.592) (0.638) (0.594)

AL dummy 0.053 0.055 0.052
(0.454) (0.458) (0.458)

Population –0.052 –0.057 –0.034
(0.073) (0.075) (0.074)

AL trend 0.019 0.018 0.015
(0.011) (0.011) (0.011)

NL trend 0.020* 0.02 0.017
(0.011) (0.011) (0.011)

War dummy –0.186* –0.177* –0.181*
(0.047) (0.048) (0.048)

Strike dummy –0.398* –0.402* –0.402*
(0.097) (0.099) (0.098)

Number of games played 0.0009* 0.0008* 0.0009*
(0.0004) (0.0004) (0.0004)

Number of teams in league 0.079* 0.083* 0.077*
(0.037) (0.037) (0.038)

Television dummy 0.135 0.131 0.158
(0.083) (0.084) (0.086)

Television time trend –0.026* –0.022* –0.027*
(0.011) (0.011) (0.012)

Television time trend squared 0.001* 0.001* 0.001*
(0.00001) (0.00001) (0.00010)

CBR 0.210* — —
(0.098) — —

σL — –1.153 —
— (1.161) —

HHI — — –0.179
— — (0.114)

R2 0.973 0.972 0.972

NOTE: CBR = Competitive Balance Ratio, HHI = Hirfindahl-Hirschman Index, AL = American
League, and NL = National League. N = 198. Standard errors are shown in parentheses.
*Significant at 5% level.
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rectly signed, but only the parameter on the CBR is statistically significant; varia-
tion in the CBR is significantly related to variation in attendance in MLB. The HHI
variable is nearly significant—the p value on a two-tailed t test of significance is .11
for this variable. The evidence here indicates that fans’decisions to attend baseball
games may be influenced by the amount of turnover in relative standings in the
league. This result confirms Neale’s (1964) conjecture about the League Standing
Effect. Total attendance rises (falls) when there is more (less) competitive balance,
including relative turnover in final league standings over time. This can be due to
reduced demand for tickets to perennial losers and winners.

These results need two important qualifications. First, they may reflect omitted
variable bias. Equation 7 is basically a demand function that also contains variables
that shift the supply of baseball games. This equation does not contain a variable
capturing the price of attending baseball games, although the league-specific trends
and intercepts may capture some of this effect. Consumer theory clearly defines a
relationship between the price of a good or service and demand. Unfortunately, data
on the price of baseball tickets are relatively scarce, especially during a 100-season
period. Noll (1974) developed average price measures for a number of MLB teams
in the 1970s and early 1980s and used these price data to analyze team-specific
home attendance. However, these price variables were not statistically significant
in a similar attendance model. The primary concern for these results would be the
case where the omitted price variable is systematically positively correlated with
the CBR, which would lead to an upward bias in the estimated parameter on that
variable. There seems to be little reason to expect such a systematic positive corre-
lation with the CBR.

Measurement error problems are the second qualification. The past 30 years of
the sample period contain attendance for two franchises located in Canada, Mon-
treal and Toronto, but the model contains no Canadian control variables and aggre-
gating attendance to the league level makes controlling for these effects difficult.
The empirical results were not affected by simply dropping data from the Canadian
franchises from the sample, although this still leaves games played by these teams
in U.S. cities in the data.

A second potential source of measurement error comes from averaging the com-
petitive balance measures during 5-year periods. This averaging means that in some
cases variation in competitive balance in future seasons is being used to explain
variation in current attendance. Unfortunately, the CBR can only be calculated dur-
ing a period of seasons. To assess the potential effect on the empirical results, I esti-
mated a set of models where the three competitive balance measures were expressed
as 3-season moving averages of past seasons, removing some (but not all) of this
effect. I also estimated a set of models where the attendance variable was aggre-
gated across 5-year periods and the population, number of games, and number of
teams variables were averaged across the same 5-year periods. This reduced the
sample size to 40. The results from these alternative models, which are available by
request from the author, did not quantitatively change the results. Measurement
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error induced by averaging the competitive balance measures across 5-season peri-
ods does not appear to drive the results presented on Table 5, either because the
underlying competitive balance in MLB changes relatively slowly or because con-
sumers alter their perceptions of the state of competitive balance more slowly than
the averaging done here.

CONCLUSIONS

The standard deviation of annual won-loss records has frequently been used as a
measure of competitive balance in sports leagues. Although this measure of com-
petitive balance is useful in many situations, it does not reflect variation in relative
standings within a sports league over time. To address this problem, I have proposed
a complementary measure of competitive balance, the CBR. This computationally
simple statistic scales average team-specific variation in won-loss ratio during a
number of seasons by the average within-season variation in won-loss percentage
during the same period.

The NL in the 1910s and 1920s represents one case where the standard deviation
of winning percentage measure of competitive balance and indexes of champion-
ship concentrations fail to distinguish between a period with high turnover in rela-
tive standings and one with low turnover. The AL in the 1990s represents another
such case. Furthermore, variation in the CBR over time does a better job explaining
observed variation in attendance in MLB than the other two alternative measures.
These results suggest that CBR is a useful measure of competitive balance in sports
leagues.

The CBR could be applied to a number of other interesting cases in the econom-
ics of sports. Expansion and free agency have been hypothesized to affect competi-
tive balance in professional baseball to some extent. Comparing CBRs across dif-
ferent time periods may shed new light on these effects. As another example, in
Bennett and Fizel (1995) and Eckard (1998), measures of competitive balance are
used to assess the effect of the 1984 Supreme Court deregulation of college football
telecasts. To the extent that the 1984 Supreme Court decision led to increased strati-
fication in college football standings, the CBR may capture changes in competitive
balance that other measures of competitive balance cannot.

NOTES

1. See Quirk and Fort (1997, chap. 7) for a comprehensive discussion of these techniques, and
Schmidt (2001) for a discussion of Gini Coefficients.

2. Fort and Quirk (1995) used excess tail percentages from the distribution of won-loss percentages
as a measure of competitive balance. The excess tail percentages for two standard deviations for this
period, 39 and 37, are also similar.

3. The Competitive Balance Ratio (CBR) in the American League in the 1920s is not statistically dif-
ferent from the CBR in the 1910s.
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4. The results on Table 5 were robust to White’s (1980) correction for heteroskedasticity and the
Newey and West (1987) correction for serial correlation and heteroskedasticity. These results are avail-
able by request.
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