
Improving Network System Security with Function Extraction Technology 

for Automated Calculation of Program Behavior

Mark G. Pleszkoch 

IBM Global Services and 

CERT Research Center 

Software Engineering Institute 

Carnegie Mellon University, Pittsburgh, PA 

markp@us.ibm.com

Richard C. Linger 

CERT Research Center 

Software Engineering Institute 

Carnegie Mellon University, Pittsburgh, PA 

rlinger@sei.cmu.edu

Abstract 

Malicious attacks on systems are a threat to business, 

government, and defense. Many attacks exploit system 

behavior unknown to the developers who created it. In 

today’s state of art, software engineers have no practical 

means to determine how a sizable program will behave in 

all circumstances of use. This sobering reality lies at the 

heart of many problems in security and survivability. If 

full behavior is unknown, so too are embedded errors, 

vulnerabilities, and malicious code. This paper describes 

function-theoretic foundations for automated calculation 

of full program behavior. These foundations treat 

program control structures as mathematical functions or 

relations. The function, or behavior, of control structures 

can be abstracted in a stepwise process into procedure-

free expressions that specify their net functional effects. 

Problems of computability and complexities of language 

semantics appear to have engineering solutions. 

Automated behavior calculation will add rigor to security 

and survivability engineering. 

1. Understanding Program Behavior 

Traditional engineering disciplines depend on rigorous 

methods to evaluate the expressions (equations, for 

example) that represent and manipulate their subject 

matter. Yet the discipline of software engineering has no 

practical means to fully evaluate the expressions it 

produces. In this case, the expressions are computer 

programs, and evaluation means understanding their full 

behavior, right or wrong, intended or malicious. Short of 

substantial time and effort, no software engineer can say 

for sure what a sizable program does in all circumstances 

of use. Yet modern society is dependent on the correct 

functioning of countless large-scale systems composed of 

programs whose full behavior and security properties are 

not reliably known. Many of these systems control key 

infrastructures in communication, energy, finance, and 

transportation. The existence and malicious exploitation 

of unknown functionality is the Achilles heel of software. 

It is little wonder that systems experience an endless flood 

of errors, vulnerabilities, and malicious code with 

frequently serious consequences. 

The task of understanding program behavior is a 

haphazard, error-prone, resource-intensive process carried 

out by programmers and analysts in human time scale. Yet 

reliable understanding is essential to discover 

vulnerabilities and malicious code. And because attackers 

can make deleterious modifications to programs at any 

time, the task of behavior discovery never ends. The 

problem clearly exceeds manual capabilities and must be 

addressed through automation.   

Sizable programs are hard to understand because they 

contain a huge number of execution paths, any of which 

may contain security exposures. Faced with massive sets 

of possible executions, programmers can often do no more 

that achieve a general understanding of mainline program 

behavior. There is simply no way to understand and 

remember it all in today’s state of practice. The situation 

is illuminated by an argument of the open source software 

movement, that more people looking at code will find 

more security flaws. It is interesting to note there is no 

open source arithmetic movement, seeking more people to 

determine if sums are flawed. Society knows how to make 

sums correct and has automated the process. It turns out 

the same may be true of software. Function-theoretic 

mathematical foundations of software illuminate a feasible 

strategy to develop innovative automation to address 

security exposures. An opportunity exists to move from an 

uncertain understanding of program security properties 

laboriously derived in human time scale to a precise 

understanding automatically computed in CPU time scale.

The function-theoretic model of software [4, 5, 6, 7, 

10, 11 14] treats programs as rules for mathematical 

functions, that is, mappings from domains (inputs, stimuli) 

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1



to ranges (outputs, responses), no matter what subject 

matter programs deal with. The key to the function-

theoretic approach is the recognition that, while programs 

may contain an enormous number of execution paths, they 

are at the same time composed of a finite number of 

control structures, each of which implements a 

mathematical function or relation in the transformation of 

its inputs into outputs. In particular, the sequential logic of 

programs can be composed of single-entry, single-exit 

sequence (composition), alternation (ifthenelse), and 

iteration (whiledo) control structures, plus variants and 

extensions [7, 15]. This finite property of program logic 

viewed through the lens of function theory opens the 

possibility of automated calculation of program behavior. 

Every control structure in a program has a behavior 

signature, which can be extracted and composed with 

others in a stepwise process based on an algebra of 

functions that traverses the control structure hierarchy. 

The behavior signature of a program represents the 

specifications or business rules that it implements. These 

concepts are the basis for function extraction (FX) 

technology.  

Section 2 of this paper introduces concepts of behavior 

computation, and section 3 defines the equations that map 

control structures into behavioral representations. Section 

4 describes an algebra of functions for stepwise behavior 

extraction, and section 5 elaborates on research areas that 

must addressed. Section 6 describes a malicious code 

example, and section 7 discusses the architecture of a 

function extractor. Section 8 connects function extraction 

to related research.    

2. Program Behavior Signatures 

The behavior signature of a program control structure 

defines its net functional effect in terms of how it 

transforms input data values into output data values [3, 

13]. Behavior signatures are inherently procedure-free, 

that is, they define behavior with all sequence, branching 

and looping logic and local data items abstracted out to 

facilitate human understanding. What remains is a precise 

specification of the overall transformation carried out by 

the structure. In informal illustration, Table 1 depicts 

behavior signatures of representative control structures 

operating on small non-negative integers.  

How are behavior signatures computed? Consider the 

sequence control structure below constructed of 

assignments that operate on small integers x and y 

(matters of machine precision are left aside for the 

moment). The behavior extraction question asks: What 

does this program do, that is, what function does it 

compute? The answer is not obvious at first glance. 

Table 1.  Example Behavior Signatures 

Control 

Structure

Behavior 

Signature 

do

   a := b + c 

   b := a + 2 

   a := b – a 

enddo 

set a to 2 and b to 

b + c + 2 

if x > y 

   then z := x 

   else z := y 

endif 

set z to the 

maximum of x and 

y and leave x and 

y unchanged 

while x > 1 

do

    x := x – 2 

enddo 

set odd x to 1, 

even x to 0  

do

    x := x – y  

    y := y + x 

    x := y – x 

enddo 

Function extraction requires deriving a procedure-free 

expression of what this structure does from beginning to 

end for all values of x and y. For a sequence structure, this 

requires composing the statements to determine their net, 

sequence-free effect. A simple trace table as depicted in 

Table 2 can be used for this purpose, with a row for every 

assignment and a column for every data variable assigned. 

Cells in the table record the effect of the row assignments 

on the variables. Subscripts are attached to variables to 

index effects from row to row, with 0 denoting initial 

values. 

Table 2.  Trace Table Construction 

Operation Effect on x Effect on y 

x := x – y x1 = x0 – y0 y1 = y0 

y := y + x x2 = x1 y2 = y1 + x1 

x := y – x x3 = y2 – x2 y3 = y2 

The derivations below express final values in the table 

in terms of initial values through algebraic substitution: 

x3 = y2 –  x2 

    = y1 + x1 –  x1 

    = y1 

    = y0 

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2



y3 = y2  

    =  y1 + x1  

    =  y0 + x0 – y0  

    =  x0  

Thus, the computed final values reveal that the control 

structure exchanges the initial values of x and y. This is its 

behavior signature, and can be written as a concurrent 

assignment in which initial values on the right are 

simultaneously assigned in order to final values on the 

left, and attached to the control structure in square 

brackets as a comment to document its function: 

[x, y := y, x] 

do

    x := x + y 

    y := x – y 

    x := x – y 

enddo 

The control structure in this example is a simple 

sequence whose behavior was derived in a trace table 

composition: alternation and iteration structures require 

trace tables that incorporate columns for conditions 

(predicates) as well, and derivation of their final values in 

terms of initial values in similar fashion. 

This behavior function defines the net effect of the 

sequence with matters of machine precision aside. If 

necessary, however, the finite nature of machine precision 

can be integrated into the analysis. For example, 

properties of overflow and underflow can be dealt with in 

several referentially transparent ways, with the best 

approaches ultimately determined through experience with 

function extraction technology and user preferences, as 

discussed next. 

The first approach is to ignore overflow and underflow 

in the extraction process. This method corresponds to 

performing referentially transparent extraction on a 

program and machine model that have infinite precision. 

In this case, the calculated behavior precisely defines the 

net effect of the sequence with machine precision not 

accounted for, and is sufficient for many analytical 

purposes. It is the obvious choice where machine 

precision has no effect on particular operations. An 

advantage of this approach is that the calculated behavior 

signature is not complicated by details of finite precision; 

however, any behavior resulting from finite precision is 

lost. For example, if, in the sequence structure above, 

two’s complement arithmetic is preformed and overflow 

and underflow do not cause machine traps, then the 

exchange behavior is always correct, even when overflow 

does occur, because the result must be correct modulo the 

word size of the executing machine. If necessary, 

however, the finite nature of machine precision can be 

incorporated through a second or third approach as 

follows.

In the second approach, the domain of each potential 

overflow or underflow can be explicitly incorporated into 

the conditions of the conditional assignment statement. 

The finite nature of integer representations on a given 

machine introduces the possibility of underflow and 

overflow into the functional effect of the sequence, and 

the possibility of producing other than the intended result. 

This corresponds to performing referentially transparent 

extraction on a program and machine model with finite 

precision to a behavior model with infinite precision. This 

possibility can be accounted for by partitioning the 

domain and range of each assignment in the sequence into 

equivalence class regions, based in this example on 

subsets of initial values of x and y, within each of which 

the same functional results will be obtained. Some classes 

will produce the program function calculated above, 

others will not. Incorporation of the operational semantics 

of machines is important for analysis of programs for 

vulnerabilities and malicious code intended to exploit, for 

example, finite properties and overflow characteristics of 

number representations or data structures such as buffers 

or registers. When the behavior calculations are 

augmented by operational semantics, such problems 

become obvious, with no additional analysis on the part of 

the user required. For example, consider the following 

program function for a single assignment: 

[ ((x + y) >= 2^31)  overflow occurs 

| ((x + y) < -2^31)   negative overflow occurs 

| true                        z := x + y ] 

do

    z := x + y 

enddo 

An advantage of this approach is that the complete 

behavior of the program is captured in the behavior 

specification, however, the overflow and underflow 

conditions may obscure the primary logic of the program. 

This disadvantage can be mitigated by introducing 

variable bounds as preconditions and treating the behavior 

outside those preconditions as undefined, as the following 

example illustrates: 

[ (abs(x) < 10^8) and (abs(y) < 10^8)  z := x + y 

| true                                                   undefined] 

do

    z := x + y 

enddo 

The third approach is to incorporate the operational 

semantics of the executing machine into the behavior 

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3



calculation and simplification process as part of the trace 

table analysis. This method corresponds to performing 

referentially transparent extraction where the program and 

machine model, and the behavior model, are finite 

precision. That is, arithmetic operations in the behavior 

specification are subject to the same overflow and 

underflow as in the program. For example, consider the 

following treatment of the exchange program: 

[x, y := (x + y) – ((x + y) – y), (x + y) – y] 

do

    x := x + y 

    y := x – y 

    x := x – y 

enddo 

In this method, “((x + y) – y)” cannot always be 

simplified to “x,” because the original expression can 

exhibit overflow, while the simplified expression cannot. 

A disadvantage of this approach is that overflow and 

underflow semantics are embedded in calculated behavior 

just as deeply as in the program statements. Behaviors that 

do not require simplification, however, will more clearly 

reflect the primary logic of the program. 

These examples illustrate the power of function-

theoretic methods to deal with any behavioral and 

operational semantics appropriate to the problem at hand. 

As work on function extraction progresses, suitable 

vocabulary, definitions, reduction and simplification rules, 

and flexible user interfaces will emerge to support human 

preferences and reasoning methods.  

In any case, it is important to recognize that the process 

is capable of extracting the true and complete behavior of 

any program or program part, the very behavior that 

exposes unforeseen errors, vulnerabilities, and embedded 

malicious code. These behaviors are generated in the 

programmed functional logic and in its interaction with 

executing machines, and function-theoretic behavior 

calculation can deal completely and correctly with both. 

3. Function-theoretic Foundations for 

Behavior Calculation

The canonical forms of behavior signatures of the basic 

control structures can be expressed through function 

composition and case analysis as follows (for control 

structure labeled P, operations on data labeled g and h, 

predicate labeled p, and program function labeled f). 

These function equations are independent of language 

syntax and program subject matter, and define the 

mathematical basis for behavior calculation: 

Sequence Control Structure: The program function of a 

sequence  

P:  g; h  

can be given by 

f = [P] = [g; h] = [h] o [g] 

where the square brackets denote the behavior signature of 

the enclosed program and “o” denotes the composition 

operator. That is, the program function of a sequence can 

be calculated by ordinary function composition of its 

constituent parts as illustrated in the example above. 

Alternation Control Structure: The behavior signature 

of an alternation control structure 

P:  if p then g else h endif 

can be given by 

f = [P] = [if p then g else h endif] 

            = ([p] = true  [g] | [p] = false  [h]) 

where | is the “or” symbol. That is, the program function 

of an alternation is given by a case analysis of the true and 

false branches, and the opportunity to combine them into a 

single abstraction as in the maximum operation of Table 

1.

Iteration Control Structure: For iteration control 

structures, the program function is given by a 

mathematical analysis of the potentially infinite number of 

loop iterations using quantification over the natural 

numbers: 

P:  while p do g enddo 

can be reexpressed as 

f = [P] = {(s,t) : Exists finite n ≥ 0 such that (s,t) ∈ ([p] = 

false) o ([g] o ([p] = true))n
 } 

Notice that this results in the function [P] being undefined 

on all initial states that cause the loop to fail to terminate. 

Fortunately, there is an alternative analysis that is very 

useful in practice, using function composition and case 

analysis in a recursive equation based on the equivalence 

of an iteration control structure and an iteration-free 

control structure (an ifthen structure): 

f = [P] = [while p do g enddo] 

  = [if p then g; while p do g enddo endif] 

  = [if p then g; f endif] 

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4



Function f must therefore satisfy 

f  = ([p] = true  [f] o [g] | [p]= false  I) 

where I is the identity function. Note that the converse is 

not true; there may be other functions that satisfy this 

recursive equation that are only subsets of f. However, 

even these subsets can prove useful in behavior 

calculation. 

In addition to these function equations, key theorems 

of function-theoretic mathematics provide important 

guidance for the behavior calculation process [7, 8]: 

Logic Structure Theorem: This theorem guarantees the 

sufficiency of sequence, alternation, and iteration control 

structures to represent any sequential logic. (Extensions 

and variants of these structures are included as well.) 

Thus, program logic can be expressed in nested and 

sequenced single-entry, single-exit structures, each with a 

common underlying mathematical model, namely, the 

function mappings defined above.

Abstraction/Refinement Theorem: This theorem and an 

associated Axiom of Replacement define conditions for 

substitution of behavior signatures and their control 

structure refinements, thereby enabling behavior 

extraction in a stepwise, algebraic process. 

Flow Verification Theorem: This theorem defines 

conditions for correctness of control structures with 

respect to their behavior signatures. As noted above, even 

though programs can contain an enormous number of 

paths, they are expressed in a finite number of control 

structures, each of which can be verified in from one to 

three reasoning steps as defined by the theorem. 

Verification is thus reduced to a finite process. 

4. Stepwise Extraction of Behavior in an 

Algebra of Functions 

A behavior signature defines behavior identical to that 

of the control structure from which it was extracted, that 

is, the signature and control structure are function-

equivalent mappings of inputs into outputs. Thus, 

signatures can be freely substituted for corresponding 

control structures [14]. Such substitution defines an 

algebra of functions that permits stepwise extraction of 

program behavior by traversing control structure 

hierarchies from bottom to top. At each step, net effects of 

control structures are composed and propagated while 

details are left behind. In illustration, consider the 

miniature program on the left of Figure 1 and the question 

of what it does. The program takes as input and produces 

as output a queue of integers named Q, and uses local 

queues of integers named odds and evens and a local 

integer variable named x (declarations not shown). The 

symbol <> stands for not equal, || for concatenation. The 

stepwise behavior calculation process is depicted in 

Figures 1 through 3. 

Figure 1. Stepwise Extraction: First Step 

Figure 2. Stepwise Extraction: Second Step 

PROC (Q)  

WHILE Q <> empty

DO

x := end(Q)

[x is odd -> odds := odds || x 

OR x is even -> evens := 

evens || x]

ENDDO

WHILE odds <> empty

DO

[end(Q) := end(odds)]

ENDDO

WHILE evens <> empty

DO

[end(Q) := end(evens)] 

ENDDO

ENDPROC

PROC (Q)  

WHILE Q <> empty

DO

x := end(Q)   

IF odd(x)

THEN

end(odds) := x

ELSE

end(evens) := x

ENDIF

ENDDO

WHILE odds <> empty

DO

x := end(odds)

end(Q) := x

ENDDO

WHILE evens <> empty

DO

x := end(evens)

end(Q) := x 

ENDDO

ENDPROC

PROC (Q)  

WHILE Q <> empty

DO 

x := end(Q)

[x is odd -> odds := odds || x 

OR x is even -> evens := 

evens || x]

ENDDO

WHILE odds <> empty

DO

[end(Q) := end(odds)]

ENDDO

WHILE evens <> empty

DO 

[end(Q) := end(evens)] 

ENDDO

ENDPROC

PROC (Q)  

[Q, odds, evens := empty, odds ||

odd_numbers(Q), evens || 

even_numbers(Q)]

[Q, odds := Q || odds, empty]  

[Q, evens := Q || evens, empty] 

ENDPROC

PROC (Q)  

WHILE Q <> empty

DO 

x := end(Q)

[x is odd -> odds := odds || x 

OR x is even -> evens := 

evens || x]

ENDDO

WHILE odds <> empty

DO

[end(Q) := end(odds)]

ENDDO

WHILE evens <> empty

DO 

[end(Q) := end(evens)] 

ENDDO

ENDPROC

PROC (Q)  

[Q, odds, evens := empty, odds ||

odd_numbers(Q), evens || 

even_numbers(Q)]

[Q, odds := Q || odds, empty]  

[Q, evens := Q || evens, empty] 

ENDPROC

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5



Figure 3. Stepwise Extraction: Final Step 

The control structures of the program form a natural 

hierarchy with a number of leaf nodes. To begin the 

stepwise extraction process, the lowest level, leaf-node 

ifthenelse and sequence control structures are abstracted 

into behavior signatures expressed as conditional rules 

and assignments as depicted on the right of Figure 1. 

Next, the three whiledo structures, now leaf nodes in the 

remaining hierarchy, can likewise be abstracted to 

concurrent assignments, as shown on the right of Figure 2. 

Finally, the sequence of three behavior signatures can be 

composed into a single assignment expressing the overall 

behavior signature of the program as shown on the right of 

Figure 3. This assignment defines what the program does 

in functional terms. It is the as-built behavior 

specification, that is, the calculated behavior of the entire 

program. The extraction process reveals that the program 

creates a new version of queue Q, now containing its 

original odd numbers followed by its original even 

numbers. Note in this process that intermediate control 

structures and data uses drop out to simplify scale-up by 

subsuming their functional effects into higher-level 

abstractions. The principal behavior calculation process is 

function composition through value substitution, which by 

definition eliminates intermediate expressions at 

successive levels of abstraction. As noted above, 

programs can exhibit an enormous number of execution 

paths, but are comprised of a finite number of control 

structures, so the behavior calculation process is itself 

finite and guaranteed to terminate. Furthermore, behavior 

is recorded at each step, to produce functional 

documentation for human understanding at all levels. 

This miniature example illustrates in informal terms a 

stepwise behavior extraction process that is invariant with 

respect to scale—the same mathematics and operations 

are employed at all levels of extraction, no matter the size 

of the program. Were this program embedded in a larger 

system, it is the extracted behavior of Figure 3 that would 

participate in further extraction, and not the program 

itself. In this way, local details are left behind at each step 

with no loss of information while abstractions propagate 

to higher levels. Abstraction does not mean vagueness; the 

extracted behavior embodies the precise net effect of 

implementation details. This process, combined with other 

techniques, can limit complexity in behavior extraction of 

large programs. Additional mathematical methods for 

unification and reduction must be applied to simplify 

intermediate expressions. These methods address the 

question of scale up to a practical industrial process, and 

are key elements of the required work to automate 

function extraction. Note that such methods were applied 

in the example, where auxiliary functions odd_numbers 

and even_numbers were created to express the overall 

program behavior. Automated function extractors to carry 

out such behavior calculation will permit help eliminate 

error-prone human analysis in understanding both 

intended and unintended functionality of programs. 

5.  Function Extraction Research Areas 

Research areas important to developing FX capabilities 

can be addressed through the following technical 

approaches: 

Loop abstraction: No general mathematical theory for 

loop abstraction can exist, however an engineering 

solution for behavior extraction from loops is possible. 

Because even a single while loop can compute an 

arbitrary partial recursive function, many results from 

computability theory stand in the way. For example, the 

undecidability of the Halting Problem [2] means that there 

will be some terminating loops that automated function 

extractors will not be able to detect as terminating. The 

undecidability of program function equivalence implies 

that a function extractor must employ multiple 

representations of the same program function. The 

research approach here includes use of recursive 

expressions as discussed above  to represent loop 

operations as a starting point for behavior extraction, and 

development and application of canonical patterns and 

behavior templates for loops. Initial analysis suggests a 

surprisingly small number of patterns can cover a variety 

of loop structures. Undecidability results from 

computability theory will be used to guide research 

choices along feasible directions. Potential limitations at 

the mathematical level can often be dealt with effectively 

at the engineering level to produce satisfactory solutions. 

This appears to be the case with respect to loop 

abstraction.

Indirect data references: Popular programming 

languages permit indirect references to data structures 

through pointers and pointer manipulation, with attendant 

complexities in extracting and understanding behavior. 

The solution strategy involves representing pointer-

referenced data in canonical storage maps to systematize 

PROC (Q)  

[Q, odds, evens := empty, odds ||

odd_numbers(Q), evens || 

even_numbers(Q)]

[Q, odds := Q || odds, empty]  

[Q, evens := Q || evens, empty] 

ENDPROC

PROC (Q)  

[Q := odd_numbers(Q) || 

even_numbers(Q)]

ENDPROC

PROC (Q)  

[Q, odds, evens := empty, odds ||

odd_numbers(Q), evens || 

even_numbers(Q)]

[Q, odds := Q || odds, empty]  

[Q, evens := Q || evens, empty] 

ENDPROC

PROC (Q)  

[Q := odd_numbers(Q) || 

even_numbers(Q)]

ENDPROC

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6



data references in a common framework. The underlying 

storage maps will permit uniform treatment of all data 

operations. Pointer references to data items, either explicit 

or implicit,  introduce a level of indirection that must be 

accommodated in the semantics of behavior calculation. 

The approach here includes using data references 

expressed in canonical reference frameworks as a starting 

point for analysis. In particular, all objects are allocated 

on the heap in Java, so the problem of aliasing, that is, 

different variable names referring to the same storage 

location, is substantial. This is an area where automatic 

analysis can bring significant benefits to understanding 

implications of the data layout of an unknown program.  

Scale-up: Extracted behavior expressions must be 

limited in complexity for rapid human understanding and 

analysis. It is thus important to control complexity in 

expressions as they propagate to higher levels. As 

discussed above, much complexity reduction is intrinsic to 

function-theoretic behavior extraction. Additional 

simplification can be achieved through mathematical 

methods for unification and elimination of cases in 

behavior expressions, as well as through human factors 

engineering for effective display and analysis of behavior 

catalogs. A key strategy in this complexity reduction is 

introduction of definitions to represent units of behavior 

that recur frequently throughout a program. Such use of 

definitions has long been applied in mathematics to render 

theorems and proofs more understandable. For example, 

although it is possible to do set theory using only 

“epsilon” (set membership) as the sole non-logical 

symbol, in practice it is impossible to express even the 

axioms of Zermelo-Fraenkel set theory in this manner 

without a complete loss of understandability. Facilities for 

specifying and integrating definitions into the process will 

be an important capability for automated function 

extraction. 

Insights in these research areas will permit function 

extractor development as a key enabler for the secure 

systems of the future. In fact, it is difficult to imagine how 

security goals for critical systems can be achieved without 

knowing what programs do in all circumstances of use. In 

the current state of the art, this knowledge is sporadically 

and imperfectly accumulated from specifications, designs, 

code, and test results, all potentially incomplete and 

incorrect. Dynamic program modifications and just-in-

time compositions in modern network-centric systems 

severely limit the value and relevance of even this hard 

won but static and suspect knowledge. But programs are 

mathematical artifacts subject to mathematical analysis. 

Human fallibility still exists in interpreting the analytical 

results, but there can be little doubt that routine 

availability of calculated behavior would substantially 

reduce vulnerabilities and malicious code in software and 

make intrusion and compromise more difficult and 

detectable. Furthermore, broader questions about system 

security capabilities for authentication, encryption, 

filtering, etc., are in large part questions about the 

behavior of the programs that implement these functions. 

And because programs are subject to dynamic change and 

adaptation, only automated analysis can maintain the 

currency and relevance of such behavior knowledge at 

acceptable cost and quality. 

6.  A Malicious Code Example 

Large programs are capable of extensive behavior in 

mapping their inputs into outputs. The calculated behavior 

of these programs is often extensive, and can be usefully 

organized into behavior catalogs. These catalogs are 

repositories of program behavior expressed in graphic 

structures that organize behavior expressions represented 

in conditional concurrent assignment statements, 

essentially if-then rules, themselves indexed according to 

the predicates involved. All behavior expressions are 

defined in identical syntax and semantics at all levels of 

abstraction. Behavior catalogs thus embody  a uniform, 

hierarchical structure that can be searched, browsed, and 

analyzed according to users’ objectives in investigating 

what a program does. In miniature illustration, consider 

the problem of understanding the behavior of the Java 

financial program depicted in Figure 4, perhaps as 

delivered by a software vendor. The behavior catalog 

documented in Figure 5 was derived through manual 

application of a behavior calculation algorithm. It defines 

non-trivial behavior that would require substantial effort 

to derive through program reading. 

The behavior catalog is expressed as a tree structure 

entered on the left and exited on the right. The summary 

box defines key properties of the program, namely, that 

Account_Record is unchanged and AdjustRecord is 

updated by one of four possible cases. The definition box 

gives helpful intermediate terms introduced by the 

extractor to simplify and systematize the behavior 

expressions. The four possible behaviors in the caseboxes 

on the right are disjoint; case selection is based on 

evaluation of predicates in the top section of each 

casebox. A predicate that evaluates true results in the 

functional mapping defined in the bottom of its casebox. 

Although the operations that carry out the functional 

mappings are displayed in a sequential format for 

readability, they are concurrent, that is, all initial values of 

data elements on the right are simultaneously assigned as 

the corresponding final values of data elements on the left. 

Behavior expressions are procedure-free.  

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7



Figure 4. A Java Financial Program Containing 

Malicious Code 

A scan of the cases reveals that the program is dealing 

with account balances that may be negative, and is 

advancing loans in 100.00 increments as necessary and 

permissible under the business rules of the bank. 

Inspection of case 1 shows that under the condition that 

acctRec.balance is not negative the program copies 

Account_Rec into Adjust_Rec and sets in_default to false. 

Case 3 handles the situation where increments of 100.00 

can be added to the account to create a positive balance 

without exceeding the loan maximum, and in_default is 

likewise set to false. A programmer or financial analyst 

could quickly verify that cases 1 and 3 correctly carry out 

the banking functions desired. But cases 2 and 4 where 

in_default is set to true reveal suspicious behavior. In case 

2 where acctRec.balance is negative and adding 100.00 

exceeds acctRec.loan_max, the balance field is skimmed 

by a penny, which is added to spec.balance. The 

skimming also occurs in case 4, which is executed when 

the number of 100.00 advances that can be made without 

exceeding the maximum is insufficient to create a positive 

balance. The behavior signature of this malicious code is 

an unavoidable product of the behavior calculation. No 

matter how carefully concealed in program code by an 

attacker, malicious code will be aggregated and coalesced 

into defined cases of program behavior. It is also 

important to note that behavior calculation is independent 

of data naming. Malicious code cannot be disguised by 

changing variable names because the function extraction 

process will inevitably arrive at the same behavior 

signature, which is name independent. In addition, 

traceability to the malicious code is built into the 

extraction process. 

7.  The Architecture of a Function Extractor 

Figure 6 depicts a notional architecture of a program 

function extractor. Functional semantics are defined for 

the control and data structures of the target language, and 

possibly the machine, as well as for the behavior 

expression forms that will represent the extracted 

behavior. These semantics are stored in data repositories 

and employed to verify the correctness of the extractor, to 

ensure that the calculated behavior indeed corresponds to 

the behavior of the program being analyzed. The extractor 

itself employs abstraction and simplification rules to the 

stepwise extraction of program functions of the control 

structures of the input program. The behavior calculations 

are provided to a graphical interface with appropriate 

human factors. Users need never be exposed to the 

underlying mathematics, but can have confidence in the 

extracted behavior in the knowledge that it was derived 

using sound mathematical methods.  

8.  Related Research and Future Steps 

The objectives of behavior computation are to reveal 

the behavior signatures of vulnerabilities and malicious 

code as well as other security properties, and to provide a 

catalog of all program behavior for assessment of security 

properties and risks. Research efforts based on syntactic 

scanning of programs deal with surface features, and 

cannot get at the underlying semantics that reveal the 

function and intent of malicious code attacks. Because the 

functionality of a particular malicious code attack can be 

programmed and disbursed in any number of syntactic 

forms, syntactic detection can be difficult. However, all 

such forms will result in the same behavior signature at 

the semantic level, thereby reducing the deceptive power 

of syntactic variations. 

public class AccountRecord {

public int acct_num;

public double balance;

public int loan_out;

public int loan_max;

} // end of AccountRecord

public class AdjustRecord

extends AccountRecord {

public boolean in_default;

public static AdjustRecord spec;   

} // end of AdjustRecord

public static AdjustRecord classify_account

(AccountRecord acctRec) {

AdjustRecord adjustRec = new AdjustRecord();

adjustRec.acct_num = acctRec.acct_num;

adjustRec.balance = acctRec.balance;

adjustRec.loan_out = acctRec.loan_out;

adjustRec.loan_max = acctRec.loan_max;

while ((adjustRec.balance < 0.00) &&

((adjustRec.loan_out + 100) <= adjustRec.loan_max)) {

adjustRec.loan_out += 100;

adjustRec.balance += 100.00;

}

adjustRec.in_default = (adjustRec.balance < 0.00);

if (adjustRec.balance < 0.00) {

adjustRec.balance -= 0.01;

AdjustRecord.spec.balance += 0.01;

}

return adjustRec;

}

Function

Extractor

Behavior

Catalog

public class AccountRecord {

public int acct_num;

public double balance;

public int loan_out;

public int loan_max;

} // end of AccountRecord

public class AdjustRecord

extends AccountRecord {

public boolean in_default;

public static AdjustRecord spec;   

} // end of AdjustRecord

public static AdjustRecord classify_account

(AccountRecord acctRec) {

AdjustRecord adjustRec = new AdjustRecord();

adjustRec.acct_num = acctRec.acct_num;

adjustRec.balance = acctRec.balance;

adjustRec.loan_out = acctRec.loan_out;

adjustRec.loan_max = acctRec.loan_max;

while ((adjustRec.balance < 0.00) &&

((adjustRec.loan_out + 100) <= adjustRec.loan_max)) {

adjustRec.loan_out += 100;

adjustRec.balance += 100.00;

}

adjustRec.in_default = (adjustRec.balance < 0.00);

if (adjustRec.balance < 0.00) {

adjustRec.balance -= 0.01;

AdjustRecord.spec.balance += 0.01;

}

return adjustRec;

}

Function

Extractor

Behavior

Catalog

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8



Figure 5. Extracted Behavior Catalog Containing Malicious Code Signature  

While research efforts based on code slicing permit 

semantic analysis bounded by particular slices, they 

cannot address full functional behavior that encompasses 

all parts of a malicious code attack that has been disbursed 

throughout a program. Nevertheless, important research 

results have emerged from syntactic and slicing analysis, 

as well as from decompilation, data structure discovery, 

reverse engineering, and predicate abstraction. These 

results can be applied in FX development.  

Static analysis of programs has a long and successful 

history of application in computer science. It has been 

used to help determine the run-time types of variables in 

dynamically typed languages, as well as to determine 

many other useful run-time properties of programs. The 

theory of static analysis is rich and deep, and has been 

extensively generalized using mathematical lattice theory 

[1]. Recent application of static analysis to the problem of 

identifying data aliasing [12] has proven to be a powerful 

tool in program understanding. However, it is important to 

note that the objective of function extraction goes well 

beyond the scope of static analysis. FX considers the 

complete behavior of a program, whereas static analysis 

focuses only on certain aspects of a program being 

analyzed. For example, static analysis typically assumes 

that either path of an alternation control structure can be 

executed, and presents only that information that holds for 

both the then-part and the else-part. Function extraction 

considers the then-part and the else-part separately, and 

determines which path will be applicable using 

conditional trace table analysis. Nevertheless, static 

analysis may be useful as a pre-processing step, 

particularly for languages with dynamic typing, including 

inheritance in object oriented languages. 

Function extraction is very close in spirit to symbolic 

evaluation. In particular, substitution of symbolic results 

through composition of program statements is at the 

foundation of trace table analysis. Like McCarthy [9], we 

share a deep appreciation for the application of recursion-

theoretic results to the problem of expressing program 

behavior symbolically. Yet in addition to this respect for 

recursion theory, behavior extraction also draws 

significant benefit from the experience of decades of 

If (acctRec.balance < 0.00) and (acctRec.loan_out + 100 <= 

acctRec.loan_max) and (term1 > term2)

then

adjustRec.acct_num  = acctRec.acct_num

adjustRec.balance     = acctRec.balance + (100.00 * term2) - 0.01

adjustRec.loan_out    = acctRec.loan_out + (100 * term2)

adjustRec.loan_max  = acctRec.loan_max

adjustRec.in_default  = true

AdjustRecord.spec.balance = AdjustRecord.spec.balance + 0.01

1. AccountRecord acctRec

Object is unchanged

2. AdjustRecord adjustRec

A new object adjustRec is created and 

returned, the contents of which are 

described in cases 1 through 4

3. AdjustRecord.spec

Object is updated in cases 2 and 4

if (acctRec.balance >= 0.00)

then

adjustRec.acct_num = acctRec.acct_num

adjustRec.balance    = acctRec.balance

adjustRec.loan_out   = acctRec.loan_out

adjustRec.loan_max = acctRec.loan_max

adjustRec.in_default = false 

CASE 1
ENTER

CASE 2

if (acctRec.balance < 0.00) and

(acctRec.loan_out + 100 > acctRec.loan_max)

then

adjustRec.acct_num = acctRec.acct_num

adjustRec.balance    = acctRec.balance - 0.01 

adjustRec.loan_out   = acctRec.loan_out

adjustRec.loan_max = acctRec.loan_max

adjustRec.in_default = true

AdjustRecord.spec.balance = AdjustRecord.spec.balance + 0.01

CASE 3

if (acctRec.balance < 0.00) and (acctRec.loan_out + 100 <= 

acctRec.loan_max) and (term1 <= term2)

then

adjustRec.acct_num = acctRec.acct_num

adjustRec.balance    = acctRec.balance + (100.00 * term1)

adjustRec.loan_out   = acctRec.loan_out + (100 * term1)

adjustRec.loan_max = acctRec.loan_max

adjustRec.in_default = false

term1 = required times 100.00 must be added

to acctRec.balance to make it 

non-negative

term2 = maximum times 100.00 can be added 

to acctRec.loan_out without 

exceeding acctRec.loan_max

OR

OR

CASE 4

EXIT

OR

EXIT

EXIT

EXIT

SUMMARY

DEFINITIONS
If (acctRec.balance < 0.00) and (acctRec.loan_out + 100 <= 

acctRec.loan_max) and (term1 > term2)

then

adjustRec.acct_num  = acctRec.acct_num

adjustRec.balance     = acctRec.balance + (100.00 * term2) - 0.01

adjustRec.loan_out    = acctRec.loan_out + (100 * term2)

adjustRec.loan_max  = acctRec.loan_max

adjustRec.in_default  = true

AdjustRecord.spec.balance = AdjustRecord.spec.balance + 0.01

1. AccountRecord acctRec

Object is unchanged

2. AdjustRecord adjustRec

A new object adjustRec is created and 

returned, the contents of which are 

described in cases 1 through 4

3. AdjustRecord.spec

Object is updated in cases 2 and 4

if (acctRec.balance >= 0.00)

then

adjustRec.acct_num = acctRec.acct_num

adjustRec.balance    = acctRec.balance

adjustRec.loan_out   = acctRec.loan_out

adjustRec.loan_max = acctRec.loan_max

adjustRec.in_default = false 

CASE 1
ENTER

CASE 2

if (acctRec.balance < 0.00) and

(acctRec.loan_out + 100 > acctRec.loan_max)

then

adjustRec.acct_num = acctRec.acct_num

adjustRec.balance    = acctRec.balance - 0.01 

adjustRec.loan_out   = acctRec.loan_out

adjustRec.loan_max = acctRec.loan_max

adjustRec.in_default = true

AdjustRecord.spec.balance = AdjustRecord.spec.balance + 0.01

CASE 3

if (acctRec.balance < 0.00) and (acctRec.loan_out + 100 <= 

acctRec.loan_max) and (term1 <= term2)

then

adjustRec.acct_num = acctRec.acct_num

adjustRec.balance    = acctRec.balance + (100.00 * term1)

adjustRec.loan_out   = acctRec.loan_out + (100 * term1)

adjustRec.loan_max = acctRec.loan_max

adjustRec.in_default = false

term1 = required times 100.00 must be added

to acctRec.balance to make it 

non-negative

term2 = maximum times 100.00 can be added 

to acctRec.loan_out without 

exceeding acctRec.loan_max

OR

OR

CASE 4

EXIT

OR

EXIT

EXIT

EXIT

SUMMARY

DEFINITIONS

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 9



human application of functional verification, especially 

within the context of Cleanroom Software Engineering 

[14]. By combining recursion theory with correctness 

verification and the increasing effectiveness of 

automation, behavior extraction has potential to impact 

how programming will be done in the future. 

Figure 6. Function Extractor Architecture 

The FX extraction language is similar in appearance to 

functional programming. For example, the recursive 

expression used to represent unsimplifiable loop behavior 

is similar to the "let" statement in ML. The algebra of 

functions at the heart of FX is also a fundamental feature 

of Backus' FP language; however in this instance the 

algebra of functions in program verification preceded FP. 

The important difference between the extraction language 

and functional programming languages is that the latter 

are constrained to be executable. The extraction language 

includes full first order logic, and thus cannot always be 

executed. By removing the executability constraint, the 

extraction language can focus on representing behavior in 

an easily understood manner. 

The CERT Research Center is initiating a project to 

develop FX technology and an engineering prototype. 

9. Acknowledgements 

It is a pleasure to acknowledge valuable feedback and 

suggestions on function extraction technology and 

engineering provided by Robin Abello, Alan Hevner, Tom 

Longstaff, and John McHugh, as well as from the referees.  

Special appreciation is due to Robin Abello for his work 

on an FX engineering pre-prototype. 

10. References 

[1] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, 

Techniques, and Tools, Addison Wesley, Reading, MA, 1986. 

[2] M. Davis, Computability and Unsolvability, Dover 

Publications, New York, 1982. 

[3] P. Hausler, M. Pleszkoch, R. Linger, and A. Hevner, “Using 

Function Abstraction to Understand Program Behavior.” IEEE

Software, 7, 1, IEEE Computer Society Press, Los Alimitos CA,  

January, 1990. 

[4] A. Hevner, R. Linger, A. Sobel, and G. Walton, “Specifying 

Large-Scale, Adaptive Systems with Flow-Service-Quality 

(FSQ) Objects,” Proceedings of the 10th OOPSLA Workshop on 

Behavioral Semantics, Tampa, FL, October, 2001, ACM Press, 

New York, 2001.  

[5] A. Hevner, R. Linger, A. Sobel, and G. Walton, “The Flow-

Service-Quality Framework: Unified Engineering for Large-

Scale, Adaptive Systems,” Proceedings of the 35th Annual

Hawaii International Conference on System Sciences, Hawaii, 

January 7-10, 2002, IEEE Computer Society Press, Los 

Alamitos, CA, 2002. 

[6] D. Hoffman and D. Weiss, (eds.), Software Fundamentals: 

Collected Papers by David L. Parnas, Addison Wesley, Upper 

Saddle River, NJ, 2001. 

[7] R. Linger, H. Mills, and B. Witt, Structured Programming: 

Theory and Practice, Addison Wesley, Reading, MA, 1979. 

[8] R. Linger, M. Pleszkoch, G. Walton, and A. Hevner, Flow-

Service-Quality Engineering: Foundations for Network System 

Analysis and Development, CMU/SEI-2002-TN-01, Software 

Engineering Institute, Carnegie Mellon University, Pittsburgh, 

PA, 2002. 

 [9] J. McCarthy, "A Basis for a Mathematical Theory of 

Computation," Computer Programming and Formal Systems,

(P. Braffort and D. Hirschberg, eds.), North-Holland, 

Amsterdam, 1963.  

[10] H. Mills, R. Linger, and A. Hevner, Principles of 

Information System Analysis and Design, Academic Press, San 

Diego, CA, 1986. 

[11] H. Mills and R. Linger, “Cleanroom Software 

Engineering,” Encyclopedia of Software Engineering, 2nd ed.,

(J. Marciniak, ed.), John Wiley & Sons, New York, 2002. 

[12] R. O’Callahan, Generalized Aliasing as a Basis for 

Program Analysis Tools, (Ph.D. Dissertation CMU-CS-01-124), 

Carnegie Mellon University, Pittsburgh, PA, Nov. 2000.  

[13] M. Pleszkoch, P. Hausler, A. Hevner, and R. Linger, 

“Function-Theoretic Principles of Program Understanding,” 

Proceedings of the 23rd Annual Hawaii International 

Conference on System Science, Hawaii, January, 1990, IEEE 

Computer Society Press, Los Alamitos, CA, 1990. 

[14] S. Prowell, C. Trammell, R. Linger, and J. Poore, 

Cleanroom Software Engineering: Technology and Practice,

Addison Wesley, Reading, MA, 1999. 

ExtractorProgram

Functional

semantics of

the language

Graphic

interface

Simplification

Rules

Abstraction

Rules

Functional

semantics of

the function

expressionsUsed to verify

extractor

correctness 

Behavior

Catalog

Browsing and 

analysis

User

Controls

Selection and 

modification

ExtractorProgram

Functional

semantics of

the language

Graphic

interface

Simplification

Rules

Abstraction

Rules

Functional

semantics of

the function

expressionsUsed to verify

extractor

correctness 

Behavior

Catalog

Browsing and 

analysis

User

Controls

Selection and 

modification

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 10


