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Abstract Users of distributed database systems often observe performance problems such as unexpectedly low through-
put or high latency. Determining the cause of the performance problems can be very hard task. Bottlenecks can occur in 
any of the components through which the data flows: the applications, the operating systems, the network interfaces and 
hardware. Horizontal and vertical partitioning are important aspects of physical design in relational database system that 
has a significant impact on performance. The distribution design involves making decisions on the fragmentation and the 
allocation of data across the sites of a computer network. In this paper we address the fragmentation phase of distributed 
database systems. In this paper, vertical partitioning problem during the design of distributed databases is discussed by 
conducting a comparative study for different vertical partitioning algorithms to reach the most efficient vertical fragmen-
tation scheme that leads to a proper data allocation and replication.

Introduction
The advent of telecommunication era and the constant development of hardware and network struc-
tures have encouraged the decentralization of data while increasing the needs to access information 
from different sites leading to great advances in distributed database systems. A distributed database 
system is a collection of sites connected on a common high-bandwidth network. Logically, data 
belongs to the same system but physically it is spread over the sites of the network, making the 
distribution invisible to the user (Ceri and Weiderhold. 1989). Each site is autonomous database 
with its processing capability and data storage capacity. The advantage of this distribution resides 
in achieving availability, modularity, performance, and reliability.

 Distributed and parallel processing on database management systems (DBMS) is an efficient way of 
improving performance of applications that manipulate large volumes of data. This may be accom-
plished by removing irrelevant data accessed during the execution of queries and by reducing the 
data exchange among sites, which are the two main goals of the design of distributed databases (M. 
Özsu and P. Valduriez, 1999). 
data exchange among sites, which are the two main goals of the design of distributed databases (M. 
Özsu and P. Valduriez, 1999). 
data exchange among sites, which are the two main goals of the design of distributed databases (M. 

The primary concern of distributed database systems is to design the fragmentation and allocation 
of the underlying database. The distribution design involves making decisions on the fragmentation 
and placement of data across the sites of a computer network. The first phase of the distribution 
design in a top-down approach is the fragmentation phase, which is the process of clustering into 
fragments the information accessed simultaneously by applications. The fragmentation phase is 
then followed by the allocation phase, which handles the physical storage of the generated frag-
ments among the nodes of a computer network, and the replication of fragments.

Related Work
Vertical partitioning is the process that divides a relation into sub-relations called vertical and hori-
zontal fragments (but the focus in this paper is on vertical fragmentation process), containing subsets 
of the original attributes (Ceri and Weiderhold. 1989), (Navathe, Ceri, Weiderhold, and Dou 1984) 
and (Muthuraj, 1992). Most of the vertical fragmentation algorithms have started from construct-
ing an attribute affinity matrix from the attribute usage matrix: the Attribute affinity matrix is an n 
x n matrix for the n-attribute problem whose (i, j) element equals the “between-attributes” affinity 
which is the total number of accesses of transactions referencing both attributes i and j. An iterative 
binary partitioning method has been used in (Navathe, Ceri, Weiderhold, 1984) and [Cornell, and 
Yu., 1987] based on first clustering the attributes and then applying empirical objective functions or 
mathematical cost functions to perform the fragmentation.
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The concept of using fragmentation of data as a means of improving the performance of a data-
base management system has often appeared in the literature on file design and optimization. Attri-
bute partitioning and attribute clustering have been studied earlier by (Baião, 2001), (Babad, 1977), 
(Eisner and Severance, 1976), (Hoffer, 1976), (Hammer and Niamir, 1987), (Navathe et al., 1984), 
and (Navathe and Ra, 1989). (Stocker and Dearnley, 1973) have discussed the implementation of a 
self-reorganizing database management system that carries out attribute clustering. They also show 
that in a database management system where storage cost is low compared to the cost of accessing 
the subfiles, it is beneficial to cluster the attributes, since the increase in storage cost will be more 
than offset by the saving in access cost. (Ceri, and Pernici, 1989) considers a mathematical model 
of attribute partitioning where each attribute ai is of known length, and has probability pi of being 
requested by a query. 

The joint probability that attributes ai and aj are requested by the same query is assumed to be pipj. 
A cost function based on this assumption is derived, which reflects the expected amount of data that 
must be transmitted in order to answer the query. The objective here is to choose a partition such 
that this cost function is minimized. (Hoffer, 1976) developed a non-linear, zero-one program, which 
minimizes a linear combination of storage, retrieval and update costs, with capacity constraints for 
each file. 

(Hammer and Niamir, 1979) developed two heuristics, grouping and regrouping, and used them 
to perform the partitioning. The grouping heuristic starts by initially assigning each attribute to a 
different partition. On each iteration, all possible grouping of these partitions is considered and the 
one with maximum improvement is chosen as the candidate grouping for the next iteration. During 
regrouping, attributes are moved between partitions to achieve any additional improvements pos-
sible.

(Navathe et al, 1984) used a two-step approach for vertical partitioning. In the first step, they used 
the given input parameters in the form of an attribute usage matrix to construct the attribute affinity 
matrix on which clustering is performed. After clustering, an empirical objective function is used to 
perform iterative binary partitioning. In the second step, estimated cost factors reflecting the physical 
environment of fragment storage are considered for further refinement of the partitioning scheme. 

(Cornell and Yu, 1987) propose an algorithm, as an extension of (Navathe et al, 1984) approach, 
which decreases the number of disk accesses to obtain an optimal binary partitioning. This algorithm 
uses specific physical factors such as number of attributes, their length and selectivity, cardinality of 
the relation etc. 

There are important differences in the criteria that are used in traditional clustering problems and 
data fragmentation problem. In data clustering algorithms, the number of clusters is usually fixed. 
Otherwise, the extreme case of only a single cluster in the partition will minimize the inter-cluster 
variation. 

However in the database design application, there is a need to determine the number of clusters as 
well, and hence the objective function used in data clustering algorithms cannot be borrowed without 
any changes to vertical partitioning in databases. Most importantly, in distributed database design, 
the number of clusters is an important factor that influences the trade-off between local and remote 
transaction processing costs.  

A Critical Assessment to Some Vertical Partitioning Algorithms:A Critical Assessment to Some Vertical Partitioning Algorithms:A
The partitioning algorithms mentioned above use some heuristics to create fragments of a relation. 
The input to most of these algorithms is an Attribute Usage Matrix (AUM). AUM is a matrix, which 
has attributes as columns, and queries as rows and the accesses frequency of the queries as values in 
the matrix. Most of earlier data fragmentations algorithms use an Attribute Affinity Matrix (AAM) 
derived from the AUM provided as input. An AAM is a matrix in which for each pair of attributes, 
the sum total of frequencies of queries accessing that pair of attributes together is stored.

The results of the different algorithms are sometimes different even for the same attribute affinity 
matrix indicating that the objective functions used by these algorithms are different. Most of the 
proposed vertical partitioning algorithms do not have a mechanism to evaluate the “goodness” of 
partitions that they produce. 

The input to the vertical partitioning algorithm is an attribute usage matrix. An example of AUM is 
given in table-1 below:
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(Navathe et al, 1984) used a two-step approach for vertical partitioning. In the first step, 
they used the given input parameters in the form of an attribute usage matrix to construct 
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storage are considered for further refinement of the partitioning scheme. (Cornell and 
Yu, 1987) propose an algorithm, as an extension of (Navathe et al, 1984) approach, 
which decreases the number of disk accesses to obtain an optimal binary partitioning. 
This algorithm uses specific physical factors such as number of attributes, their length 
and selectivity, cardinality of the relation etc.

There are important differences in the criteria that are used in traditional clustering 
problems and data fragmentation problem. In data clustering algorithms, the number of 
clusters is usually fixed. Otherwise, the extreme case of only a single cluster in the 
partition will minimize the inter-cluster variation. However in the database design 
application, there is a need to determine the number of clusters as well, and hence the 
objective function used in data clustering algorithms cannot be borrowed without any 
changes to vertical partitioning in databases. Most importantly, in distributed database 
design, the number of clusters is an important factor that influences the trade-off between 
local and remote transaction processing costs.

3. A Critical Assessment to Some Vertical Partitioning Algorithms: 

The partitioning algorithms mentioned above use some heuristics to create fragments of a 
relation. The input to most of these algorithms is an Attribute Usage Matrix (AUM). 
AUM is a matrix, which has attributes as columns, and queries as rows and the accesses 
frequency of the queries as values in the matrix. Most of earlier data fragmentations 
algorithms use an Attribute Affinity Matrix (AAM) derived from the AUM provided as 
input. An AAM is a matrix in which for each pair of attributes, the sum total of 
frequencies of queries accessing that pair of attributes together is stored. 

The results of the different algorithms are sometimes different even for the same attribute 
affinity matrix indicating that the objective functions used by these algorithms are 
different. Most of the proposed vertical partitioning algorithms do not have a mechanism 
to evaluate the “goodness” of partitions that they produce.

The input to the vertical partitioning algorithm is an attribute usage matrix. An example 
of AUM is given in table-1 below: 

Attributes 

Table-1.
Attribute  
Usage
Matrix 

Transactions 1 2 3 4 5 6 7 8 9 10 Access 
Freq

T1 1 0 0 0 1 0 1 0 0 0 Acc1=25
T2 0 1 1 0 0 0 0 1 1 0 Acc2=50
T3 0 0 0 1 0 1 0 0 0 1 Acc3=25
T4 0 1 0 0 0 0 1 1 0 0 Acc4=35
T5 1 1 1 0 1 0 1 1 1 0 Acc5=25
T6 1 0 0 0 1 0 0 0 0 0 Acc6=25
T7 0 0 1 0 0 0 0 0 1 0 Acc7=25
T8 0 0 1 1 0 1 0 0 1 1 Acc8=15
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Algorithms such as Bond Energy, Binary Vertical Partitioning algorithm use the Attribute 
Affinity Matrix (AAM) formed from the Attribute Usage Matrix (AUM). Attribute affinity 
measures the bond between two attributes of a relation according to how they are accessed by 
applications.

Attribute affinity between attributes i and j is defined as: 
Affij = �T

t=1
qt,ij (1)

where qt,ij is the number of accesses of transaction t referencing both attributes i and j.

The attribute affinity matrix is given in table 2 below. 

Table-2.
Attribute
Affinity 
Matrix

Bond Energy Algorithm 
The Bond Energy Algorithm (BEA) (Navathe, Ceri, Weiderhold, 1984) is used to group the 
attributes of a relation based on the attribute affinity values in AAM. It is considered appropriate 
for the following reasons (Muthuraj, 1992): 

� It is designed specially to determine groups of similar items as opposed to a linear 
ordering of the items. (ie. It clusters the attributes with larger affinity values together, 
and the ones with smaller values together). 

� The final groupings are insensitive to the order in which items are presented to the 
algorithm.  

� The AAM is symmetric, and hence allows a pairwise permutation of rows and columns, 
which reduces complexity. 

� Because of the definition of Affij, the initial AAM is already semiblock diagonal, in that 
each diagonal element has a greater value of any element along the same row or column. 

� The computation time of the algorithm is reasonable. O(n2 ), where n is the number of 
attributes.

Attributes 1 2 3 4 5 6 7 8 9 10 
1 75 25 25 0 75 0 50 25 25 0 
2 25 110 75 0 25 0 60 110 75 0 
3 25 75 115 15 25 15 25 75 115 15 
4 0 0 15 40 0 40 0 0 0 40 
5 75 25 25 0 75 0 50 25 25 0 
6 0 0 15 40 0 40 0 0 0 40 
7 50 60 25 0 50 0 85 60 60 0 
8 25 110 75 0 25 0 60 110 75 0 
9 25 75 115 15 25 15 25 75 115 15 
10 0 0 15 40 0 40 0 0 15 40 
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This algorithm takes as input the attribute affinity matrix, permutes its rows and columns and gener-
ates a clustered affinity matrix (CAM). The permutation is done in such a way to maximize the fol-
lowing global affinity measure (AM).
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This algorithm takes as input the attribute affinity matrix, permutes its rows and 
columns and generates a clustered affinity matrix (CAM). The permutation is done 
in such a way to maximize the following global affinity measure (AM). 

                 n           n 
AM = � i=1 � j=1 Aff i ,j [Aff i ,j -1 + Aff i ,j +1 + Aff i-1,j + Aff i+1,j ]   (2) 

where Aff0,j = Affi,0 = Affn+1,j = Aff i, n+1 = 0 

And since the attribute affinity matrix is symmetric, then the objective function of the formulation 
above could be reduced to: 

AM = � i=1 � j=1 Aff i ,j [Aff i ,j -1 + Aff i ,j +1]    (3) 

The last set of conditions takes care of the cases where an attribute is being placed  
in CAM to the left of the leftmost attribute or to the right of the rightmost attribute 
during column permutations, and prior to the topmost row and following the last row 
during row permutations.  

Before explaining the algorithm we have to define some more quantities. Let us define the bond 
between two attributes Ai and Aj as: 
      n 

bondi, j = � z=1 Affz,i Aff z, j     (4)
     
The net contribution to the global affinity measure of placing the attribute k between 
Ai and Aj is:  

Contikj  =  2bondik  + 2 bondkj - 2bondij    (5)

Generation of the Clustered Affinity Matrix is done in three steps: 

Initialization: Place and fix one of the columns of AAM arbitrarily into CAM. 

Iteration: Pick each of the remaining n-i columns (where i is the number of columns 
already placed in CAM) and try to place them in the remaining i+1 positions in the CAM matrix. 
Choose the placement that makes the greatest contribution to the global affinity measure described 
above. Continue this until no more columns remain to be placed. 

Row Ordering: Once the column ordering is determined, the placement of the rows should also be 
changed so that their relative positions match the relative positions of the columns. 

When the CAM is big, usually more than two clusters are formed and there are more than one 
candidate partitions. After applying the BEA on the above AAM, the resulting CAM will be: 
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Table 3. 
Clustered
Affinity
Matrix

Binary Vertical Partitioning Algorithm 
 (Navathe et al., 1989) extended the results of (Hoffer and Severance, 1975) by giving algorithms 
to quantitatively cluster the attributes together and taking into account blocks of attributes with 
similar properties. The binary vertical partitioning algorithm uses the clustered affinity matrix to 
partition an object into two non-overlapping fragments. The approach of this algorithm is 
splitting rather than grouping with the objective of finding sets of attributes that are accessed 
mostly by distinct set of applications. 

The binary vertical partitioning algorithm uses the clustered affinity matrix to partition an object 
into two non-overlapping fragments. Assume that point x is fixed along the main diagonal of the 
clustered affinity matrix, as shown in table 4. The point x defines two blocks: upper (U) and 
lower (L). Each block defines a vertical fragment given by the set of attributes in that block. 

   A1 A2 A3…. A i. Ai+1 …… An 
           . 
  A1                                                . 
                                                         . 
  A2                                                . 
  .                                                    . 
  .                                                    . 
  Ai                                                                        . 
  ……………………………… ………………………… 
  A i+1                                                                    . 
  .                                                    . 
  .                                                    . 
  .                                                    . 
                        An  An           . 

Attributes 5 1 7 2 8 3 9 10 4 6 
5 75 75 50 25 25 25 25 0 0 0 
1 75 75 50 25 25 25 25 0 0 0 
7 50 50 85 60 60 25 60 0 0 0 
2 25 25 60 110 110 75 75 0 0 0 
8 25 25 60 110 110 75 75 0 0 0 
3 25 25 25 75 75 115 115 15 15 15 
9 25 25 25 75 75 115 115 15 15 15 
10 0 0 0 0 0 15 15 40 40 40 
4 0 0 0 0 0 15 15 40 40 40 
6 0 0 0 0 0 15 15 40 40 40 

L

X

U

Table 3.
Clustered 
Affinity 
Matrix

4
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Table 4.
Partitioned
Attribute
Affinity
Matrix

If At is the set of attributes used by transaction t, then it is possible to compute the following sets: 
T = (t|t is a transaction) 
LT = (t|At � L) 
UT = (t|At � U) 
IT = T - (LT U UT)

T represents the set of all transactions. LT and UT represent the set of transactions that match the 
partitioning, as they can be entirely processed using attributes in the lower or upper block, 
respectively; IT represents the set of transactions that needs to access both fragments. 

CT = � t�T qt     
CL = � t�LT qt 
CU = � t�UT qt 
CI = � t�IT qt

CT counts the total number of transaction accesses to the considered object. CL and CU count the 
total number of accesses of transactions that need only one fragment; CI counts the total number 
of accesses of transactions that need both fragments. Totally n-1 possible locations of point x
along the diagonal is considered, where n is the size of the input matrix (ie. the number of 
attributes). A non-overlapping partition is obtained by selecting the point x along the diagonal 
such that the following objective function z is maximized: 

max z = CL*CU-CI 2    (6)

The partition that corresponds to the maximal value of the z function is accepted if z is positive 
and rejected otherwise. The above objective function comes from an empirical judgment of what 
should be considered a “good” partitioning. The function is increasing in CL and CU and 
decreasing in CI. For a given value of CI, it selects CL and CU in such away that the product CL
* CU is maximized. 

This results in selecting values for CL and CU that are as nearly equal as possible. Thus the 
above function z will produce fragments that are “balanced” with respect to the transaction load. 
This algorithm has the disadvantage of not being able to partition an object by selecting out an 
embedded “inner” block. 

Limitations of the Bond Energy and Binary Vertical Portioning Algorithms: 
� All the aforementioned Algorithms use affinity matrix as input and because the attribute 

affinity is a measure of an imaginary bond between a pair of attributes, this measure does 
not reflect the closeness or affinity when more than two attributes are involved.  

� In the BEA the creation of partitions is left to the subjective evaluation of the designer. 
� There is no common criterion or objective function to compare and evaluate the results 

of these vertical partitioning algorithms. 

Attributes 5 1 7 2 8 3 9 10 4 6 
5 75 75 50 25 25 25 25 0 0 0 
1 75 75 50 25 25 25 25 0 0 0 
7 50 50 85 60 60 25 60 0 0 0 
2 25 25 60 110 110 75 75 0 0 0 
8 25 25 60 110 110 75 75 0 0 0 
3 25 25 25 75 75 115 115 15 15 15 
9 25 25 25 75 75 115 115 15 15 15 
10 0 0 0 0 0 15 15 40 40 40 
4 0 0 0 0 0 15 15 40 40 40 
6 0 0 0 0 0 15 15 40 40 40 

x
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Limitations of the Bond Energy and Binary Vertical Portioning Algorithms

 • All the aforementioned Algorithms use affinity matrix as input and because the attribute affinity is 
a measure of an imaginary bond between a pair of attributes, this measure does not reflect the close-
ness or affinity when more than two attributes are involved. 

 • In the BEA the creation of partitions is left to the subjective evaluation of the designer.

 • There is no common criterion or objective function to compare and evaluate the results of these 
vertical partitioning algorithms.

 • The above algorithms assumes that there will always be a possibility of an (n-1) partitioning for a 
relation R, ignoring the fact that there could be a situation where considering the entire relation R as 
one fragment could be the optimum solution, i.e. having an (n-0) partition possibilities.

Graph-based vertical partitioning
A new algorithm has been developed by Navathe and Ra based on a graphical technique (Navathe 
and Ra, 1989). This algorithm starts from the attribute affinity matrix by considering it as a complete 
graph called the “affinity graph” in which an edge value represents the affinity between the two attri-
butes, and then forms a linearly connected spanning tree. By a “linearly connected tree” we imply 
a tree that is constructed by including one edge at a time such that only edges at the “first” and the 
“last” node of the tree would be considered for inclusion. We then form “affinity cycles” in this span-
ning tree by including the edges of high affinity value around the nodes and “growing” these cycles 
as large as possible. After the cycles are formed, partitions are easily generated by cutting the cycles 
apart along “cut-edges”. 

The major feature of this algorithm is that all fragments are generated by one iteration in a time of 
O(n2) that is more efficient than the previous approaches. 

Recalling table 1 of page 3, the attribute usage matrix for a relation containing 10 attributes with 
respect to 8 transactions, namely, T1 through T8 that are initiated by the applications. Table 2 shows 
an example of an attribute affinity matrix. Figure 1 shows the result of applying the algorithm to the 
attribute affinity matrix. In Figure 1 the nodes refer to attributes of the relation.

The resulting vertical fragments are: 1. (a1,  a5,  a7) 2. (a2, a3, a8, a9) 3. (a4, a6, a10)
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T = (t|t is a transaction) 
LT = (t|At � L) 
UT = (t|At � U) 
IT = T - (LT U UT)

T represents the set of all transactions. LT and UT represent the set of transactions that match the 
partitioning, as they can be entirely processed using attributes in the lower or upper block, 
respectively; IT represents the set of transactions that needs to access both fragments. 

CT = � t�T qt     
CL = � t�LT qt 
CU = � t�UT qt 
CI = � t�IT qt

CT counts the total number of transaction accesses to the considered object. CL and CU count the 
total number of accesses of transactions that need only one fragment; CI counts the total number 
of accesses of transactions that need both fragments. Totally n-1 possible locations of point x
along the diagonal is considered, where n is the size of the input matrix (ie. the number of 
attributes). A non-overlapping partition is obtained by selecting the point x along the diagonal 
such that the following objective function z is maximized: 

max z = CL*CU-CI 2    (6)

The partition that corresponds to the maximal value of the z function is accepted if z is positive 
and rejected otherwise. The above objective function comes from an empirical judgment of what 
should be considered a “good” partitioning. The function is increasing in CL and CU and 
decreasing in CI. For a given value of CI, it selects CL and CU in such away that the product CL
* CU is maximized. 

This results in selecting values for CL and CU that are as nearly equal as possible. Thus the 
above function z will produce fragments that are “balanced” with respect to the transaction load. 
This algorithm has the disadvantage of not being able to partition an object by selecting out an 
embedded “inner” block. 

Limitations of the Bond Energy and Binary Vertical Portioning Algorithms: 
� All the aforementioned Algorithms use affinity matrix as input and because the attribute 

affinity is a measure of an imaginary bond between a pair of attributes, this measure does 
not reflect the closeness or affinity when more than two attributes are involved.  

� In the BEA the creation of partitions is left to the subjective evaluation of the designer. 
� There is no common criterion or objective function to compare and evaluate the results 

of these vertical partitioning algorithms. 

Attributes 5 1 7 2 8 3 9 10 4 6 
5 75 75 50 25 25 25 25 0 0 0 
1 75 75 50 25 25 25 25 0 0 0 
7 50 50 85 60 60 25 60 0 0 0 
2 25 25 60 110 110 75 75 0 0 0 
8 25 25 60 110 110 75 75 0 0 0 
3 25 25 25 75 75 115 115 15 15 15 
9 25 25 25 75 75 115 115 15 15 15 
10 0 0 0 0 0 15 15 40 40 40 
4 0 0 0 0 0 15 15 40 40 40 
6 0 0 0 0 0 15 15 40 40 40 

x

6



We can summarize the major advantages of this method over the previous approaches in the fol-
lowing:

1. There is no need for iterative binary partitioning. The major weakness of iterative binary parti-
tioning used in (Navathe, Ceri, Weiderhold, 1984) is that at each step two new problems are gen-
erated increasing the complexity; furthermore, termination of the algorithm is dependent on the 
discriminating power of the objective function.

2. The method obviates the need for using any empirical objective functions as in (Navathe, Ceri, 
Weiderhold, 1984). As shown by (Cornell and Yu, 1987) the “intuitive” objective functions used in 
(Navathe, Ceri, Weiderhold, 1984) do not necessarily work well when an actual detailed cost for-
mulation for a specific system is utilized.

3. The method requires no complementary algorithms such as the SHIFT algorithm of (Navathe, 
Ceri, Weiderhold, 1984) that shifts the rows and columns of the affinity matrix.

4. The complexity of this approach is O(n2) as opposed to O(n2log(n)) in (Navathe, Ceri, Weider-
hold, 1984).

Contributions and Enhancements
This paper has shown how Graph-based vertical partitioning algorithm has contributed towards 
the optimization of data fragmentation problem by providing an efficient way of improving perfor-
mance of applications. 

Several contributions and suggestions to the enhancements of data fragmentation problem in gen-
eral and the design of vertical partitioning in particular are considered in this paper, among those 
are:
1. Examining whether the criteria used in the data-clustering domain could be adapted, with some 
changes, to the data fragmentation problem.

2. Studying the applicability of some data clustering algorithms for distributed database design to 
data fragmentation problem.

3. Outlining a design strategy for n-ary partitions, with the desirable behavior for minimizing query-
processing cost.

4. Recommending an algorithm that will bring us closer to achieve the ideal objective of having any 
query to access only the attributes in a single data fragment with no or minimal access of irrelevant 
attributes in that fragment. 
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� The above algorithms assumes that there will always be a possibility of an (n-1) 
partitioning for a relation R, ignoring the fact that there could be a situation where 
considering the entire relation R as one fragment could be the optimum solution, i.e. 
having an (n-0) partition possibilities. 

Graph-based vertical partitioning: 
A new algorithm has been developed by Navathe and Ra based on a graphical technique 
(Navathe and Ra, 1989). This algorithm starts from the attribute affinity matrix by considering it 
as a complete graph called the “affinity graph” in which an edge value represents the affinity 
between the two attributes, and then forms a linearly connected spanning tree. By a “linearly 
connected tree” we imply a tree that is constructed by including one edge at a time such that only 
edges at the “first” and the “last” node of the tree would be considered for inclusion. We then 
form “affinity cycles” in this spanning tree by including the edges of high affinity value around 
the nodes and “growing” these cycles as large as possible. After the cycles are formed, partitions 
are easily generated by cutting the cycles apart along “cut-edges”.  
The major feature of this algorithm is that all fragments are generated by one iteration in a time 
of O(n2) that is more efficient than the previous approaches.  

Recalling table 1 of page 3, the attribute usage matrix for a relation containing 10 attributes with 
respect to 8 transactions, namely, T1 through T8 that are initiated by the applications. Table 2 
shows an example of an attribute affinity matrix. Figure 1 shows the result of applying the 
algorithm to the attribute affinity matrix. In Figure 1 the nodes refer to attributes of the relation. 
The resulting vertical fragments are: 1. (a1,  a5,  a7) 2. (a2, a3, a8, a9) 3. (a4, a6, a10) 
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We can summarize the major advantages of this method over the previous approaches in the 
following:

1. There is no need for iterative binary partitioning. The major weakness of iterative binary 
partitioning used in (Navathe, Ceri, Weiderhold, 1984) is that at each step two new problems are 
generated increasing the complexity; furthermore, termination of the algorithm is dependent on 
the discriminating power of the objective function. 
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5. Finally, describing how partitioning can provide the functionality that enables each site to process 
the queries locally with minimal access to data located at remote sites.

Conclusions and future work
In this paper, we have presented different approaches that handle vertical fragmentation problem 
during the design of distributed databases by evaluating different vertical partitioning algorithms. 
We have compared BEA algorithm, Binary vertical algorithm and Graph based vertical partitioning 
algorithm and brought out the problems associated with the use of attribute affinity matrix currently 
used in almost all of the earlier data partitioning algorithms.

Implementation results have shown that the Graph based vertical partitioning algorithm offers better 
performance for query processing time. Experiments using Graph-based vertical partitioning resulted 
in fragmentation schemas with better performance results when compared to other fragmentation 
schemas proposed in the literature. The main contribution of this paper is in providing a clear guid-
ance to choose the most adequate fragmentation technique to be applied in each relation of the data-
base schema. Our study did not cover horizontal fragmentation algorithms which play an important 
role in optimizing queries and maintenance overhead and which could be covered in future work. 

Data partitioning in general, and vertical partitioning in particular, presents many new opportunities 
for distributed and parallel computing. Several new challenges for data partitioning are present. First, 
new algorithms are needed to maintain database consistency since maintenance is performed by a set 
of distributed computing components that receive data from autonomous sources. Second, the paral-
lelization of maintenance tasks is an important research area, since there are many available choices 
and the performance implications are significant.
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