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1. Introduction

An N-class classi"er is aimed to subdivide the feature
space into N decision regions D

i
, i"1,2,N, so that the

patterns of the class u
i
belong to the region D

i
. According

to the statistical pattern recognition theory, such decision
regions are de"ned to maximise the probability of correct
recognition, commonly named classi"er's accuracy
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i
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and, consequently, to minimise the classi"er error prob-
ability

P(error)"
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N
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jE1
j/1
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) dx. (2)

To this end, the so-called Bayes decision rule assigns
each pattern x to the class for which the a posteriori
probability P(u

i
Dx) is maximum. An error probability

lower than the one provided by the above Bayes rule can
be obtained using the so-called `rejecta option. Namely,
the patterns that are the most likely to be misclassi"ed are
rejected (i.e., they are not classi"ed); they are then handled
by more sophisticated procedures (e.g., a manual classi-
"cation is performed). However, handling high reject rates
is usually too time-consuming for application purposes.
Therefore, a trade-o! between error and reject is manda-
tory. The formulation of the best error-reject trade-o!
and the related optimal reject rule was given by Chow
[1]. According to Chow's rule, a pattern x is rejected if

max
k/1,2,N

P(u
k
D x)"P(u

i
D x)(¹, (3)

where ¹3[0, 1]. On the other hand, the pattern x is
accepted and assigned to the class u

i
, if

max
k/1, 2, N

P(u
k
D x)"P(u

i
D x)*¹. (4)

The feature space is therefore subdivided into N#1
regions. The reject region D

0
is de"ned according to

Eq. (3), while the decision regions D
1
, 2, D

N
are de"ned

according to Eq. (4). It is easy to see that the probability
of a pattern being rejected can be computed as follows:

P(reject)"P
D0

p(x) dx. (5)

On the other hand, the classi"er's accuracy is de"ned
as the conditional probability that a pattern is correctly
classi"ed, given that it has been accepted:

Accuracy"P(correct D acceptd)"
P(correct)

P(correct)#P(err)
.

(6)

A careful analysis of Chow's work allows to point out
that his reject rule provides the optimal error}reject
trade-o!, only if the a posteriori probabilities are exactly
known. Unfortunately, in real applications, such prob-
abilities are a!ected by signi"cant estimate errors. How-
ever, to the best of our knowledge, no previous work has
clearly investigated the e!ects of estimate errors on the
optimality of Chow's rule. In addition, alternative reject
rules described in the literature were not speci"cally
designed to handle estimate errors [2]. In this paper,
we investigate the e!ects of estimate errors on Chow's
rule, and propose the use of multiple reject thresholds
related to the data classes. The reported experimental
results show that such class-related reject thresholds pro-
vide an error-reject trade-o! better than the one in
Chow's rule.

2. Reject option with class-related thresholds

As previously mentioned, Chow's reject rule provides
the optimal error-reject trade-o!, only if the posterior
probabilities of the data classes are exactly known. This
fact can be illustrated by an example. Fig. 1 shows
a simple one-dimensional classi"cation task with two
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Fig. 1. Application of Chow's rule to the `truea and `estimateda
a posteriori probabilities.

Fig. 2. Two di!erent reject thresholds ¹
1

and ¹
2

applied to the
estimated a posteriori probabilities of the classi"cation task in
Fig. 1.

data classes u
1

and u
2

characterised by Gaussian distri-
butions. The terms P(u

i
D x) and P(u

i
D x), i"1, 2, indi-

cate the `truea and `estimateda a posteriori probabilities,
respectively. We hypothesised that signi"cant errors af-
fect the estimated probabilities in the range of feature
values in which the two classes are `overlappeda. Other
researchers share this assumption, which is in agreement
with real experiments [3]. The optimal decision and
reject regions provided by Chow's rule applied to the true
probabilities are indicated by the terms D

1
, D

2
and D

0
.

The term ¹ indicates Chow's reject threshold. Analog-
ously, the terms DK

1
, DK

2
and DK

0
stand for the decision and

reject regions provided by Chow's rule applied to the
estimated probabilities. It is easy to see that no threshold
¹ value applied to the estimated probabilities can pro-
vide both the optimal decision regions and the optimal
reject region. Therefore, this example points out that
Chow's rule cannot provide the optimal error}reject
trade-o!, if the posterior probabilities are a!ected by
errors. The authors have proved the general validity of
this conclusion [4].

A careful analysis of Fig. 1 suggests a di!erent ap-
proach from Chow's rule for obtaining the optimal er-
ror}reject trade-o!, when the a posteriori probabilities
are a!ected by errors. Fig. 1 shows that the estimated
regions di!er from the optimal ones in the ranges
(DK

1
!D

1
) and (D

2
!DK

2
). In particular, Chow's rule

erroneously accepts the patterns belonging to the range
(DK

1
!D

1
), since the posterior probability PK (u

1
, D x) takes

on higher values than the true ones within this range.
However, it is easy to see that such patterns would be
correctly rejected using a threshold value ¹

1
'¹. Ana-

logously, the patterns belonging to (D
2
!DK

2
) are erron-

eously rejected, since the posterior probability PK (u
2

D x)
takes on lower values than the true ones within this
range. Such patterns would be correctly accepted using
a threshold value ¹

2
(¹.

The above analysis suggests the use of multiple reject
thresholds for the di!erent data classes to obtain the
optimal decision and reject regions, even if the a poste-
riori probabilities are a!ected by errors. Fig. 2 shows the
use of two di!erent reject thresholds ¹

1
and ¹

2
for the

classi"cation task of Fig. 1. It is easy to see that such
thresholds applied to the estimated probabilities allow to

obtain both the optimal decision regions and reject re-
gion. Therefore, this example suggests that the use of
N class-related reject thresholds (CRTs) can provide
a better error}reject trade-o! than Chow's. The general
validity of this conclusion has been proved by the
authors [4]. In particular, under the assumption that the
a posteriori probabilities are a!ected by signi"cant er-
rors, we have proved that, for any reject rate R, such
values of the CRTs ¹

1
,2, ¹

N
exist that the correspond-

ing classi"er's accuracy A(¹
1
,2,¹

N
) is equal or higher

than the accuracy A(¹) provided by Chow's rule

∀R &¹
1
, ¹

2
,2, ¹

N
: A(¹

1
, ¹

2
,2,¹

N
)*A(¹). (7)

Therefore, we propose the following reject rule, named
CRT rule, for a classi"cation task with N data classes
that are characterised by estimated a posteriori probabil-
ities PK (u

i
D x), i"1,2, N. A pattern x is reject if:

max
k/1,2, N

PK (u
k
D x)"PK (u

i
D x)(¹

i
, (8)

while it is accepted and assigned to the class u
i
, if:

max
k/1,2, N

PK (u
k
D x)"PK (u

i
D x)*¹

i
. (9)

The CRTs take on values in the range [0,1]. It is worth
noting that, analogously to Chow's rule, in real applica-
tions, the values of the CRTs must be estimated accord-
ing to the classi"cation task at hand.

3. Experimental results

The data set used for our experiments consists of a set
of multisensor remote-sensing images related to an agri-
cultural area near the village of Feltwell (UK). We se-
lected 10944 pixels belonging to "ve agricultural classes
and randomly subdivided them into a training set (5124
pixels) and a test set (5820 pixels). Each pixel was charac-
terised by a feature vector containing the brightness
values in the six optical bands, and over the nine radar
channels considered. Further details on the selected data
set can be found in Ref. [5]. In our experiments, we
considered the usual error}reject requirement of real
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Fig. 3. Accuracy}rejection trade-o!s of the k-nn classi"er using
the CRT and Chow's rules.

G

Fig. 4. Accuracy}rejection trade-o!s of the MLP neural net-
work using the CRT and Chow's rules.

pattern recognition applications, that of obtaining the
highest accuracy and a reject rate below a given
value R

MAX
. Accordingly, the CRT values were esti-

mated by solving the following constrained maximisation
problem [4]:

max
T1 , 2, TN

A(¹
1
,2, ¹

N
)

R(¹
1
, 2, ¹

N
))R

MAX
. (10)

It is worth noting that, according to Eq. (7), for any given
R

MAX
, the CRT values obtained as solutions of the above

maximisation problem provide an accuracy equal or
higher than in Chow's rule.

In real applications, the functions R(¹
1
,2, ¹

N
) and

A(¹
1
,2, ¹

N
) can be estimated according to Eqs. (5) and

(6) using a "nite validation set. Therefore, they take on
a "nite number of values in the range [0,1], and Eq. (10)
represents a constrained maximisation problem, whose
`targeta and `constrainta functions are discrete valued
functions of continuous variables. To the best of our
knowledge, no algorithm reported in the literature "ts
well the characteristics of this problem. Therefore, we
have developed a specially designed algorithm to solve it
[4]. Our algorithm takes into account that R(¹

1
,2, ¹

N
)

is an increasing function of the variables ¹
1
,2, ¹

N
(i.e.,

the number of rejected patterns cannot decrease for in-
creasing values of the CRTs) and also assumes that
A(¹

1
,2, ¹

N
) is an increasing function of ¹

1
,2, ¹

N
.

(This assumption is often veri"ed in the experiments).
The basic idea is to solve Eq. (10) iteratively. We start
from CRT values that provide a reject rate equal to zero,
and at each step increase the value of one of the CRTs in
order to increase accuracy until the reject rate exceeds the
value R

MAX
. It is worth noting that our algorithm does

not guarantee an optimal solution to Eq. (10). Neverthe-
less, experimental results reported in the following show
that it a!ords CRT values that provide a better er-
ror}reject trade-o! than in Chow's rule.

In our experiments, we used two di!erent classi"ers:
a K-nearest neighbours (K-NN) classi"er, with a `Ka
parameter value of 21, and a multi-layer perceptron
(MLP) neural network. We used a net architecture with
15 input units and "ve output units as the number of
input features and data classes, respectively. The archi-
tecture also included "fteen hidden neurons. Test data
were used to estimate the value of Chow's reject thre-
shold and the values of the CRTs. We considered a range
of reject rates from 0 to 20%, since this range is usually
the most relevant for application purposes. Figs. 3 and
4 show a comparison of the two reject rules in the
accuracy-reject plane. For any value of the reject rate,
the CRT rule provides an accuracy higher than Chow's

rule. Accordingly, we can say that with the pro-
posed reject rule a better error}reject trade-o! can be
obtained.
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